Supplementary Information for

Ultra-Sensitive pH Control of Supramolecular Polymers and Hydrogels: pK ${ }_{\mathrm{a}}$ Matching of Biomimetic Monomers

Brian J. Cafferty, Rekha R. Avirah, Gary B. Schuster, Nicholas V. Hud*
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332

Table of Contents
General Information 2
Materials and Synthesis 2
Supplementary Figures
S1 Gel inversion tests 3
S2 Rheology measurements, strain sweeps 3
S3 Rheology measurements, frequency sweeps 4
S4 UV-vis absorption analysis 4
S5 AFM topographic images 5
S6 Sensitivity of assemblies to temperature 5
S7 NMR of precipitate from a trimoleclar assembly 6
S8 Sensitivity of assemblies to pH 7
S9 pK_{a} determination of monomers 8
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ of CyCo Compounds 9-10
Derivation of Equation for pH Sensitivity 11-12
Example Calculation 13

General Information

Assemblies were formed by adding CyCo6 and/or CyCo4 to a solution containing an equivalent amount of TAP and 200 mM sodium phosphate buffered at pH 7 ; pH was adjusted with NaOH or HCl . Unless otherwise noted, assembly solutions were equilibriated and analyzed at $20{ }^{\circ} \mathrm{C}$. CyCo4 and CyCo6 purity were determined by NMR and LCMS. NMR analysis for molecular characterization and precipitate composition was performed in DMSO-d ${ }_{6}$ on a Varian Mercury 400 MHz NMR. HRMS was performed using a Waters Synapt G2. pH measurements were taken with a VWR 8100 pH meter equipped with an InLab semi-micro combination electrode.

Spectroscopic analysis of the assemblies was performed using UV-vis and ${ }^{1}$ H NMR. UV-vis analysis was carried out on an Agilent 8453 spectrophotometer equipped with an 89090A temperature controller. Cells of different path lengths (0.1 and 0.01 mm) were used depending on the concentration of the sample to maintain an optical density below 1.2. ${ }^{1} \mathrm{H}$ NMR spectra were collected on a Bruker DRX-500 500 MHz NMR and were the sum of 64 transients. Assembly solutions investigated by NMR contained $90 \% \mathrm{H}_{2} \mathrm{O}$ and $10 \% \mathrm{D}_{2} \mathrm{O}$ and were observed using the WATERGATE pulse sequence. Cytosine was used as an internal standard at a starting concentration of 25 mM , cytosine did not show any indication of interacting or being incorporated within the assemblies.

AFM imaging was performed on freshly cleaved mica that was pre-activated with MgCl_{2} with 1-2 h incubation. The mica substrate was rinsed with water and dried under N_{2}. Solutions containing the assemblies were incubated on ice just prior to deposition. A $2 \mu \mathrm{l}$ sample of the assembly solution was spin coated for 30 s at 2500 rpm and dried with N_{2} gas. AFM imaging was performed with a Nanoscope Illa (Digital Instruments) in tapping mode, using Si tips (Vistaprobes, $48 \mathrm{~N} / \mathrm{m}$).

Rheological measurements were carried out on a Physica MCR 501 rheometer (Anton Paar). The storage modulus, G^{\prime}, and loss modulus, $\mathrm{G}^{\prime \prime}$, were measured in oscillatory tests at a constant angular frequency of $1 \mathrm{rad} / \mathrm{s}$ while sweeping the strain. Frequency scans were performed under a strain of 1.0%. All measurements were temperature controlled with a Peltier plate at $20^{\circ} \mathrm{C}$.

Materials and Synthesis

2,4,6-triaminopyrimidine (TAP) was purchased from Acros Organic and was used as received. Synthesis of 1-(5-Carboxypentyl)-1,3,5-triazin-2,4,6-trion (CyCo6) and 1-(3-Carboxypropyl)-1,3,5-triazin-2,4,6-trion (CyCo4) was performed by following/modifying the procedure reported by Hager et al., (see reference 17).
CyCo6: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=1.27\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.19(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CO}$), 3.61 (t, J=7.5 Hz, 2H; CH2N), 11.63 ppm (brm, NH); ${ }^{33} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta=24.1,25.6,27.05,33.5,40.2,148.6,149.8,174.4 \mathrm{ppm}$; HRMS m / z calcd. for [M - H] ${ }^{\top}$ 242.0777; found, 242.0785.

CyCo4: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=1.75\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.24\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CO}\right)$, 3.68 ($\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~N}$), $11.63 \mathrm{ppm}(\mathrm{brm}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=23.2$, 31.4, 40.5, 149.2, 150.44, 174.5 ppm ; HRMS m / z calcd. for $[\mathrm{M}-\mathrm{H}]$], 214.0464; found, 214.0451.

Supplementary Figures

Fig. S1 Gel-inversion tests of various TAP-CyCo4 assemblies. Each vial contains 20 mM TAP and 20 mM modified-Cy species buffered at pH 7 at $20^{\circ} \mathrm{C}$. Solutions contained (a) CyCo4 and TAP (precipitate, no gelation), (b) same as (a), but with an additional 1 M NaCl which shows evidence of precipitation within 5 minutes, (c) TAP, CyCo4 and CyCo6 in a 1:0.5:0.5 ratio, respectively (no additional NaCl) which begins to precipitate after 30 minutes, and (d) TAP, CyCo4 and CyCo6 in a 1:0.8:0.2 ratio, respectively, which begins to precipitate after 5 minutes. Note that the rate of precipitation is decreased at lower temperature, for example precipitation began after 2 hours for gels described in (c) when stored at $4{ }^{\circ} \mathrm{C}$.

Fig. S2 Strain sweeps for gels prepared using (a) TAP-CyCo6 and (b) TAP-CyCo4-CyCo6 (1:0.66:0.33 ratio) at $\mathrm{pH} 6.5,7.0,7.4$ and 8.5 . Solutions were 40 mM in both TAP and CyCo monomer (1.4% by weight in total monomer).

Fig. S3 Frequency sweeps for gels prepared using (a) TAP-CyCo6 and (b) TAP-CyCo4-CyCo6 (1:0.66:0.33 ratio) at $\mathrm{pH} 6.5,7.0,7.4$ and 8.5. Solutions were 40 mM in both TAP and CyCo monomer (1.4% by weight in total monomer).

Fig. S4 UV absorption analysis of TAP, CyCo4 and CyCo6 at various concentrations. (a) Spectra of TAP alone (black) and TAP in a solution with CyCo6 at 50 mM in each monomer (blue) where the absorption maxima have been normalized to unity. (b-d) Plot of the absorption ratio of A285 nm/A278 nm as a function of monomer concentration in (b) 1:1 mixtures of TAP:CyCo6, (c) 1:0.5:0.5 mixtures of TAP:CyCo4:CyCo6, and (d) 1:0.33:0.66 mixtures of TAP:CyCo4:CyCo6. All solutions were buffered at pH 7 and held at $20^{\circ} \mathrm{C}$.

Fig. S5 AFM topographic images of TAP-CyCo supramolecular structures. (a) Sample containing 15 mM TAP and CyCo6. (b) Sample containing 15 mM TAP, 5 mM CyCo4, 10 mM CyCo6 (1:0.33:0.66 ratio of TAP:CyCo4:CyCo6). Insert shows height profile delineated by the red line in the main panel.

Fig. S6 Plots of the apparent solution-phase concentrations (equivalent to the MAC) of TAPCyCo assemblies vs temperature. All solutions contained 40 mM TAP and 40 mM CyCo4+CyCo6 at (a) 1:0:1, (b) 1:0.5:0.5 or (c) 1:0.33:0.66 molar ratios of TAP:CyCo4:CyCo6. Solutions contained 40 mM TAP and 40 mM CyCo4+CyCo6.

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectrum of precipitated material collected from a solution originally containing a 1:0.5:0.5 ratio of TAP:CyCo4:CyCo6. TAP and CyCo4+CyCo6 were originally 40 mM in 200 mM sodium phosphate buffer, pH 7 . Precipitation from the gel phase began after two hours, resulting in complete gel collapse over the course of 24 hours. The NMR spectrum of the precipitate dissolved in DMSO reveals precipitate enrichment in CyCo4, with a 4:1 ratio of CyCo4:CyCo6. Resonance assignments indicated on the CyCo4 and CyCo6 chemical structure were used to determine the ratio of both molecules in the isolated precipitate.

Fig. S8 Effect of pH on TAP-CyCo assemblies as followed by ${ }^{1} \mathrm{H}$ NMR. (a) Representative spectra of a solution containing a 1:0.33:0.66 ratio of TAP:CyCo4:CyCo6, at 35 mM in TAP and CyCo4+CyCo6. (b) Plot of the apparent solution-phase concentration as determined from the NMR experiment shown in (a) of CyCo6 + CyCo4 vs pH , which provides the MAC as a function of pH . (c) Representative spectra of a solution containing a 1:1 ratio of TAP:CyCo6 originally at 40 mM in each monomer. (d) Plot of the apparent solution-phase concentration as determined from NMR experiment shown in (c) of CyCo6 vs pH . Note that the box in left corner of plot indicates samples that contained TAP-CyCo6 precipitate. (e) NMR tube containing a solution with a white precipitate of TAP and $\mathbf{C y C o 6}$ at pH 6.5 from the titration experiment.

Fig. S9 pK ${ }_{\mathrm{a}}$ determination of the $\mathbf{C y}$ heterocycle for $\mathbf{C y C o 6}$ and $\mathbf{C y C o 4}$ by ${ }^{1} \mathrm{H}$ NMR and for TAP by UV-vis in 200 mM sodium phosphate buffer at $20^{\circ} \mathrm{C}$. (a) Representative ${ }^{1} \mathrm{H}$ NMR spectra of the methylene proton peak used to determine the pK_{a} of $\mathrm{CyCo6}$. (b) Plot of CyCo6 methylene peak position as a function of pH . (c) Plot of $\mathrm{CyCo4}$ methylene peak position as a function of pH . (d) UV-vis spectra of TAP $(50 \mu \mathrm{M})$ at various pHs between 5.0 and 9.9. (e) Change in absorbance of TAP at 272 nm (where the protonated form of TAP absorbs maximally) as a function of pH . Sigmoidal fits (shown) reveal $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of 7.3 for $\mathbf{C y C o 6}, 7.2$ for $\mathrm{CyCo4}$ and 7.5 for TAP.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of CyCo Compounds

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C y C o 6}$ in DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{CyCo6}$ in DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C y C o 4}$ in DMSO- d_{6}

180	160	140	120	100	80	60	40	20	0	ppm

${ }^{13} \mathrm{C}$ NMR spectrum of CyCo4 in DMSO-d ${ }_{6}$

Derivation of equations for the pH sensitivity of self-assembling acid and base monomers:

We consider a system of two molecules, an acid AH and a base B, that assemble in aqueous solution. The deprotonated (i.e., negatively charged) form of AH is designated as \mathbf{A}^{\ominus}, and the protonated (i.e., positively charged) form of \mathbf{B} is designated as $\mathbf{B H}{ }^{\oplus}$.

If the neutral forms of these molecules assemble with a $1: 1$ stoichiometry, then we can define a solubility product for these monomers that is the product of the concentrations of the free (uncharged) monomers that coexist in solution with the supramolecular assembly. That is,

$$
\begin{equation*}
K_{\mathrm{sp}}=[\mathbf{A H}][\mathbf{B}] \tag{Eq.1}
\end{equation*}
$$

We can write the Henderson-Hasselbalch equations for both monomers as

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{AH}}+\log \frac{\left[\frac{\left[\mathrm{A}^{\ominus}\right]}{[\mathbf{A H}]}\right.}{} \text { and } \mathrm{pH}=\mathrm{p} K_{\mathrm{BH}^{\oplus}}+\log \frac{[\mathrm{B}]}{[\mathbf{B H}]]},
$$

where $\mathrm{p} K_{\mathrm{AH}}$ is the $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{A H}$ and $\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}$ is the $\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid of \mathbf{B}. Using these equations, the concentrations of the ionized forms of these molecules can be related to the concentrations of their neutral forms,

$$
\begin{aligned}
& {\left[\mathbf{A}^{\ominus}\right]=[\mathbf{A H}] \times 10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}} \quad \text { (Eq. 2), }} \\
& {\left[\mathbf{B} \mathbf{H}^{\oplus}\right]=[\mathbf{B}] \times 10^{\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}-\mathrm{pH}}(\text { Eq. 3) } .}
\end{aligned}
$$

Here, to simplify our derivation, we consider only samples with equal molar amounts of each monomer. Because the supramolecular assemblies and the sample as a whole both have a $1: 1$ stoichiometry of $\mathbf{A H}$ and \mathbf{B}, the concentrations of the two monomers free in solution will also be equal. That is, $[\mathbf{A H}]+\left[\mathbf{A}^{\ominus}\right]=[\mathbf{B}]+\left[\mathbf{B H} \mathbf{H}^{\oplus}\right]$. Using Eq. 2 and Eq. 3, we can rewrite this equality as:

$$
\begin{equation*}
[\mathbf{A H}]\left(1+10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}}\right)=[\mathbf{B}]\left(1+10^{\mathrm{p} K_{\mathrm{BH}} \oplus-\mathrm{pH}}\right) \tag{Eq.4}
\end{equation*}
$$

Using Eq. 1 to eliminate [B] from Eq. 4, and solving for [AH] we obtain,

$$
\begin{equation*}
[\mathbf{A H}]=\sqrt{\frac{K_{\mathrm{sp}}\left(1+10^{\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}-\mathrm{pH}}\right)}{\left(1+10^{\left.\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}\right)}\right.}} . \tag{Eq.5}
\end{equation*}
$$

The total concentration of the neutral and ionized species of AH in solution can then be written as,

$$
\begin{equation*}
[\mathbf{A H}]+\left[\mathbf{A}^{\ominus}\right]=\sqrt{K_{\mathrm{sp}}\left(1+10^{\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}-\mathrm{pH}}\right)\left(1+10^{\left.\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}\right)}\right.} . \tag{Eq.6}
\end{equation*}
$$

We define the Normalized Fraction Assembled, or NFA, as the relative fraction of monomers assembled at a particular pH as compared to the fraction of monomers assembled at the pH of maximum assembly, which is midway between $\mathrm{p} K_{\mathrm{AH}}$ and $\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}$ ($\mathrm{p} K_{\text {ave }}$). That is,

$$
\begin{equation*}
\mathrm{NFA}=\frac{\mathrm{A}_{\mathrm{tot}}-\sqrt{K_{\mathrm{sp}}\left(1+10^{\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}-\mathrm{pH}}\right)\left(1+10^{\left.\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}\right)}\right.}}{\mathbf{A}_{\mathrm{tot}}-\sqrt{K_{\mathrm{sp}}}\left(1+10^{\mathrm{p} K_{\mathrm{ave}}-\mathrm{p} K_{\mathrm{AH}}}\right)}, \tag{Eq.7}
\end{equation*}
$$

where $\mathbf{A}_{\text {tot }}$ is equal to the total concentration of AH in the sample, in neutral and ionized forms, and as free monomers and in supramolecular assemblies. The positive values of Eq. 7, ranging from 0 to 1 , represent physically meaningful solutions to the NFA; negative values indicate samples with completely unassembled monomers.

We note that a similar equation is obtained if the ionized species of $\mathbf{A H}$ and \mathbf{B} form the supramolecular assembly. In which case $K_{\text {sp }}=\left[\mathbf{A}^{\ominus}\right]\left[\mathbf{B H}{ }^{\oplus}\right]$, and

$$
\mathbf{N F A}=\frac{\mathbf{A}_{\mathrm{tot}}-\sqrt{K_{\mathrm{sp}}\left(1+10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{BH}} \oplus}\right)\left(1+10^{\mathrm{p} K_{\mathrm{AH}}-\mathrm{pH}}\right)}}{\mathbf{A}_{\mathrm{tot}}-\sqrt{K_{\mathrm{sp}}\left(1+10^{\mathrm{p} K_{\mathrm{AH}}-\mathrm{p} K_{\mathrm{ave}}}\right)}} .
$$

Examples of curves generated using Eq. 7:

For the experimental data presented in the main text, $\mathbf{C y C o 6}+\mathbf{C y C o 4}$ is $\mathbf{A H}$; TAP is \mathbf{B}. The $\mathrm{p} K_{\mathrm{AH}}$ of CyCo6 and CyCo4 are equal to the $\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}$ of TAP , which is set here to 7.4. Experiments were carried out at pH 7.4 with total concentration TAP of 35 mM and total CyCo6+CyCo4 concentration of 35 mM , exhibiting a free monomer concentration of 15 mM in TAP and 15 mM in CyCo6+CyCo4. The concentrations of the neutral species of $\mathbf{A H}$ and \mathbf{B} are therefore each 7.5 mM at the pH of maximum assembly. Thus, $\mathbf{A}_{\mathrm{tot}}=35 \mathrm{mM}, K_{\mathrm{sp}}=(7.5 \mathrm{mM})^{2}, \mathrm{p} K_{\mathrm{ave}}=\mathrm{p} K_{\mathrm{AH}}$, and Eq. 7 reduces to:

$$
\mathbf{N F A}=\frac{35-7.5 \sqrt{\left(1+10^{7.4-\mathrm{pH})\left(1+10^{\mathrm{pH}-7.4}\right)}\right.}}{20},
$$

which gives the green curve shown in Figures 1a and 4 when plotted versus pH .

If $\mathbf{A H}$ and \mathbf{B} are not $\mathrm{p} K_{\mathrm{a}}$ matched (i.e., $\mathrm{p} K_{\mathrm{AH}}<\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}$), but the neutral monomers assemble with the same $K_{\text {sp }}$, then the NFA of solutions containing 35 mM in each monomer (neutral and ionized, free and assembled), is given by:

$$
\mathbf{N F A}=\frac{35-7.5 \sqrt{\left(1+10^{\mathrm{p} K_{\mathrm{BH}}{ }^{-}-\mathrm{pH}}\right)\left(1+10^{\left.\mathrm{pH}-\mathrm{p} K_{\mathrm{AH}}\right)}\right.}}{35-7.5\left(1+10^{\left.\mathrm{p} K_{\mathrm{ave}}-\mathrm{p} \mathrm{~A}_{\mathrm{AH}}\right)}\right.} .
$$

For example, if $\mathrm{p} K_{\text {ave }}$ of $\mathbf{A H}$ and \mathbf{B} is still 7.4 , but their $\Delta \mathrm{p} K_{\mathrm{a}}$ is 5 (i.e., $\mathrm{p} K_{\mathrm{AH}}=4.9$ and $\mathrm{p} K_{\mathrm{BH}}{ }^{\oplus}=9.9$), then the NFA curve is given by:

$$
\mathrm{NFA}=\frac{35-7.5 \sqrt{\left(1+10^{9.9-\mathrm{pH})\left(1+10^{\mathrm{pH}-4.9}\right)}\right.}}{35-7.5\left(1+10^{2.5}\right)},
$$

which is the red curve shown in Figure 1a.

