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ABSTRACT:

Oil pollution in water and separation of oil fromater are receiving much attention in recent years
due to the growing environmental concerns. Membtaaknology is one of the emerging solutions
for oil-water separation. However, there is a latidn in using polymeric membrane for oil water
separation due to its surface properties (wettiagaliour), thermal and mechanical properties.
Here, we have shown a simple method to increasbytiphilicity of the polyethersulfone (PES)
hollow fiber ultrafiltration (UF) membrane by usingcarboxyl, hydroxyl and amine modified
graphene attached poly acrylonitrile-co-maleimiGeRANCMI). The prepared membranes were
characterized for its morphology, water and oiltechangle, liquid entry pressure of oil (LR
water permeability and finally subjected to a contius 8 hrs filtration test of oil emulsion in wate
The experimental data indicates that the G-PANCMlypan important role in enhancing the
hydrophilicity, permeability and selectivity of ti#ES membrane. The water contact angle(|CA
of the PES membrane is reduced from 63.72 ®&2.6 + 2.8 which is 64.5% reduction while, the
oil contact angle was increased from 43.6 £ 85112.5 + 3.2which is 158% higher compared to
that of the PES membrane. Similarly, the LERcreased 350% from 50+10 kPa of the control PES
membrane to 175+ 25 kPa of PES-G-PANCMI membranareMimportantly, the water
permeability increased by 43% with >99% selectivBased on our findings we believe that the
development of PES-G-PANCMI membrane will open upsdution for successful oil-water

separation.
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1.Introduction

In recent years, oil-water separation is receivimgch attention due to the growing environmental
concernsrelated to oil pollution in water (Shannon, 2008grge volumes of oil polluted
wastewater are produced in various industries agloil fields, metallurgical, petrochemical,
pharmaceutical etc., in the form of oil water emans(Sirivedhin and Dallbauman, 2004rhe
untreated oil polluted wastewater contains harnsfutmicals and dissolved minerals which are
classified as hazardous waste and these will imggative impact on people’s health and even
will have damaging impact on the ecosystem and dvegavernmental regulation are increasingly
more stringent to remove the hazardous waste bdfscbarge (Reilly et al., 1991; Group 1998).
The conventional oil-water separation techniquet s gravity separation, skimming and flotation
are useful for free oil/water mixtures (Oil dropket50um and dispersed oil size range of 20-150
pm), but are not applicable to small size (<20unhwater emulsions (Cheryan et al., 1998;
Nordvik et al., 1996). Low efficiency and high opgon cost are the other limiting factors of the
conventional oil-water separation techniques. Tioeee advanced techniques are urgently needed
to effectively separate various oil/water mixtures.

There is a growing tendency to use membrane teogpdor oil/water separation. Currently, there
are two different types of membrane are in useoibiwater separation based on their surface
properties. The first type is super hydrophobicesafeophilic (Deng et al.,, 2013), these
membranes are favourable for the oil transportatrbite repel the liquid water entering the pores.
For example, silicon oxycarbide fibres (Lu et &009), PTFE coated mesh (Feng et al., 2004), and
modified polyester textile (Zhang and Seeger 20MEmbranes with rationally controlled pore size
(to be smaller than the emulsified water droplatg)also suitable for effective oil-water separatio
(Zhang et al., 2013; Shi et al., 2013).

The second type is super hydrophilic-super-oleogh@Xu et al., 2013)These membranes are

favourable for the water transportation while ref oil entering the pores. For example, aligned



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119
120

121
122

123
124
125

126

127

128

ZnO nanorod array coated mesh (Tian et al., 20Z2plite-coated mesh (Wen et al., 2013),
Alumina nanopatrticles coated fabric (Samuel et 2011) and hydrogel-coated mesh are super
hydrophilic in nature (Xue et al., 2011). The firstpe super hydrophobic-super oleophilic
membrane has several drawbacks such as the adaefdmgh viscous oil to the membrane surface
which is generally difficult to be removed and regs more chemical usage to remove it (Chen et
al., 2013). The second type super hydrophilic-supeophobic membranes are advantageous over
the first type super hydrophobic-super oleophilembranes. Because, these membranes allow only
water to pass through, which reduces the possilmfimembrane clogging. Similarly, they prevent
the formation of water barrier between the membianméace and the oil phase due to the fact that
water is heavier than oil phase (Zhang et al., 2013

Fig.1. shows how the water barrier affects the permdateih the first type super hydrophobic-
super oleophilic membranes. For the first type sinyerophobic-super oleophilic membranes, the
system has to operate in very high turbulent flowptish the oil emulsion towards the membrane.

But, this process will increase the overall energgsumption of the system.

Oil layer Oil emulsion Oil layer Oil emulsion
v v > A
AY /! \
\ / < /
\ / . ’

(h,) | Water barrier Water indirect contactwith membrane surface

'.& " o-': v “ o' . 4 .-—.’, . l" » l"t - - l": - -.' r. .
.‘ & b | 'f "’UJn 4"}_-'.-’«\' o "- " ‘?JJu- _:‘a .:“’"\‘ " ‘?H'Jﬂ .:‘:-J‘"’ ) "- 4'- S ...?“J" ..n"_'o
F
o (a) / (b)
Porous super hydrophobic & oleophilic Porous super hYdI’OPh“iC & oleophobic
membrane membrane

Fig. 1. a) Water in direct contact with membrane surfacéhe first type super hydrophobic-super
oleophilic membranes, b) water barrier betweenntieenbrane surface and the oil emulsion in the
second type super hydrophilic-super oleophobic nramds.

Generally, hydrophilic membrane exhibits an affinibr water. It possess a high surface energy
value and has the ability to form hydrogen-bondghwvater. Hydrophilic surface will repel the
hydrophobic oily particles such as hydrocarbonsfastants, grease etc. Recently, considerable

attention has been focused to improve the surfgcophilicity of the membranes along with
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generation of surface micro-nano structures forwaiter separation, which results in super
oleophobic surfaces with low oil-adhesion (Zhulet2013; Zhang et al., 2012; Kota et al., 2012).
Recently, carbon-based nanomaterials such as grafeai et al., 2014), graphene oxide (Zinadini
et al., 2014), carbon nanotube (Duan, 2014) ardrarie (Tasaki et al., 2007) have gained much
attention in the field of membrane science and resgging due to its high surface area, high
mechanical strength and chemical stability. Graphisna sp-hybridized two-dimensional carbon
sheet (Novoselov, 2004). Incorporating graphene imderivative graphene oxide in a polymer
matrix have shown improved membrane performancg 2013; Akin et al., 2014; Heo et al., 2013;
Han et al., 2013; Sun, 2013; Zhao, 2013) . Howeggaphite and graphene are generally
hydrophobic in nature which limits their applicatiom water filtration (Li et al., 2008).

Here we report a novel method to produce ultraingttjraphene based membrane for successful
oil water separation. Initially, the wettabilityf graphene was increased by amine and carboxyl
functionalisation. Graphene was first carboxylatesing highly concentrated acid mixture
(hydrochloric acid and sulphuric acids). The casiexgroup was further modified to acid chloride.
Finally the acid chloride modified graphene oxidaswamine functionalised by using ethylene
diamine. The functionalized graphene oxide was th#ached to a highly hydrophilic water
insoluble polymer (poly acrylonitrile co maleic awmhide). The graphene oxide grafted poly
acrylonitrile co maleimide (G-PANCMI) was used teepare the dope solution. The hollow fibre
ultrafiltration membranes were prepared by dry sghning.

The prepared membranes were characterized usintR)FSpectroscopy, Contact angle (CA),
Tensile testing, Zetapotential (surface chargeyaea), scanning electron microscopy (SEM), and
the Porometer. Both control PES and modified G-PAMNCES membrane were tested for the oil
entry pressure and clean water flux. Finally, laé prepared membranes were tested for oil water
separation, permeability, selectivity and antifogliproperty in long term experiments at two

different temperatures.
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2. Experimental

2.1 Materials

Polyethersulfone (PES) k-3010 powder was purch&sed Sumitomo chemicals pte Itd, Japan.
Acrylonitrile, Maleic anhydride, dichloroethane aadobisisobutyronitrile (AIBN) were purchased
from sigma Aldrich with 99% purity. High purity eghol, Nitric acid (HNQ), Sulphuric acid
(H2SQy), thionyl chloride (SOG) and DMAc (N-N-Dimethyl acetamide), were also phased
from Sigma Aldrich and used as received. Castrakdifluid oil was purchased locally. The xGnP,
exfoliated graphite nano platelets were purchasech fXG Sciences. The oily waste water (oll
emulsion) was prepared by constantly mixing 200pgnthe oil in DI water at 400rpm using a
multi blade mechanical stirrer. The water usedtha reaction was distilled and de-ionized (DlI)

with a Milli-Q plus system from Millipore, BedfordA, USA.

2.2. Synthesis of functionalised xGnP

About 1 gram of the pristine xGnP was initially ated with an excess of acid mixture
(H2SO/HNO;3 3:1) to introduce the acid functionality on to tp@phene surfaces. After successful
oxidation, the functionalised graphene was cergatl filtered and washed with excess water until
the pH of the wash water was neutral. After throdgiing, the acid functionalised xGnP was
further refluxed with 150ml of thionyl chloride 80°C for 24 hours. The excess thionyl chloride
after the reaction was filtered off and then abdb5®ml of ethylene diamine was added to the
reaction vessel and continued to reflux for ano#@nrs. The amine functionalised xGnP was
finally separated out by centrifugation and washaith excess ethanol to remove the unreacted
reagentand further with waterFig.2). The detailed synthesis of ultra-wetting graphbae been
discussed in our recent publication (Prince e8I16).

2.3. Synthesis of xGnP grafted PANCMI

As shown in our recent study (Prince et al., 20 BANCMA was synthesised as per our
previously reported proceduresing azobisisobutyronitrile as an initiator. Thgnthesised

PANCMA was allowed to react overnight with the asmimnctionalised xGnP in 500m| of DMAc.
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Further, 100ml of toluene was added to the reactibxtiure and refluxed at 130 for about 5 hours
and the toluene was distilled off from the reacti@ssel. The product in DMAc was poured into
methanol to separate the product in polyamic acrhf This intermediate product was further
subjected to thermal imidisation using a multisthgating of 208C for 2hours and finally at 260

for another 30 mins to obtain the final xGnP gmfANCMI (G-PANCMI). Fig. 3 shows the

schematic representation of the G-PANCMI synthesis.

@&~ H:50.,/HNO;
—
70°C-dhrs

B Ethylene diami
. ———
FO°C-48hrs

L

Amine moditied Graphene

) :cooH ® :coa %:-NH-CH;—CHZ-NHZ
-

Fig. 2. Different steps involved in the amine functionatien of xGnP

2.4 Fabrication of PES and PES-G-PANCMI hollow fibre membranes by dry wet spinning

The control Poly ether sulfone (PES) and xGnP gdafioly (acrylonitrile co maleimide) (G-
PANCMI) modified PES-G-PANCMI hollow fibre ultrafiiation membranes were prepared by
dry wet spinning method. PES was used as the dgmer, NMP was the base solvent, DEG
was used as a non-solvent, PVP was used as atvadgibre forming agent) and G-PANCMI
was used as a hydrophilic additive. Based on tkaltse of our previous studies, the weight

percentage of the polymeric additive to the PESedeps fixed as 5wt% (G-PANCMf) The
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composition of the casting solution consists of2% PES, 5 wt% PVP-K-30, 5 wt% DEG, 69
wt% NMP respectively 5% of G-PANCMI was added toe tlPES-G-PANCMI dope
composition by replacing 5% of NMP where the NMmaantration was 64%. The phase
diagram of the dope compositions are presentédgd. PVP powder was first added into the
NMP /DEG mixture in a RB flask and the solution wasred by a mechanical stirrer for at
least 1-1.5 hours. After complete dissolution ofFR\PES and G-PANCMI were added and
allowed to stir at a constant speed of 250~350 fpmat least 24 h at 80C, to obtain a
completely dissolved / dispersed homogeneous paolgnsolution. The dope solution was
poured into the polymer tank and degassed at atimegaressure of -0.6 bar for 15-20 min.
Nitrogen gas was purged into the dope tank to ergatrt atmosphere and to push the polymer
towards the polymer pump. NMP and water were mixef0:20 volume ratigNMP: Water
80:20) was used as a bore liquid. The polymer mrludnd the bore liquid were pumped to the
spinneret (OD 1.2 mm, ID 0.6 mm). The air gap wed at 50mm. The hollow fibre
membranes were fabricated at arountiand at around 65-70% relative humidity with aetak
up speed of 0.21 m/s. The membranes were thenctadldrom the winder and left inside a
water tank (post coagulation tank) for 24 hrs tsheaut the residual NMP, DEG and PVP that
was not removed from the solution at the pointadrication process. The membranes were
immersed into a post treatment solution of 40% watel 60% glycerine before testing the

clean water flux.

Graphene, Graphene
=0 |
HN HN o
\ J
/ Of (/
,O. O N " N | N N
O = ¥ Amine modified S | Ox ~~—©0 N
b | . .
L / graphene / DMAC o= /—o N 200°C/2hrs
/ A ) N ¢ Y,
/N Y7 1100 < N, 260°C30min -
/ \\ | / \ \ / W\ /
N\ i K o \\ ) < N\ A J &
o~ o 1107c W o { =0 N o N"So
/5 hrs NH |
o —
\— NH o O.__NH
) S
Graphene
P Graphene
PANCMA G-PANCMA G-PANCMI

Fig. 3. Synthesis of xGnP grafted PANCMI
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Fig.4. Phase diagram for the dope compositions

2.5 Characterization

A scanning electron microscope (SEM) Jeol Jsm-7668fifpled to a XmaxN detector for energy-
dispersive X-ray (EDX) analysis was used to stuldg tmorphology and the overall chemical
composition and the distribution of the chemicaneénts of interest in the membrane. The water
contact angle (CAw) of the unmodified and modifieollow fibore membranes were determined
using the Sigma 701 Tensiometer. Five readings werasured for each sample and an average
was obtained from the results. The pore size ointkenbrane was measured using the Porometer
3G instruments (equipped with 3GWin control sof®arom Quanta chrome. Thermo gravimetric
(TG) analysis of the samples (10-15mg) was perfdrime a Mettler-Toledo thermo gravimetric
analyzer in temperature range of 30-8Dith a heat ramping rate of 15°C miunder nitrogen
atmosphere. The mechanical properties of the membravere studied using an Instron universal
materials testing machine (Model 3366). The holfdwe samples (5 numbers) of length 100 mm
were used for the test.

2.6 Liquid Entry Pressure experiment

The liquid entry pressure of oil (LEP was measured for the PES and PES-G-PANCMI

membranes. 10 numbers of hollow fiber membrane80ain length were used to fabricate the
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membrane module. The membrane modules were postad apoxy glue to seal one side of the
hollow fibers while keeping the other lumen sideopo feed the liquid oil. The membrane module
was kept in a non-pressured transparent box andpée lumen side of the membrane module was
connected to the feed tank topped-up with oil (@hdrake Fluid Dot 4). Compressed nitrogen
was used to apply pressure in the tank. The pressas increased to 25kPa at a time interval of 60
s to examine if any oil droplet appeared on the brame surface. The pressure was noted when the
oil droplets appear on the membrane surface. Tiperarent was carried out three times using
three different set of membranes made from the saimeition. The results were averaged to obtain
the final LER;.

2.7 Clean Water Permeability experiment

The clean water flux of the control PES and the #=BANCMI membranes were measured using
similar setup used in our previous study (Princalet2014). The fibers with the total effective
membrane area of 90 érfl0 fibers and 30 cm length (effective length 24cmre used to
fabricate the membrane module. The two edges ofrtambrane module were sealed by using
epoxy glue while keeping the lumen open on one B)deollect the clean water. The developed
membrane module was mounted to the filtration systéross-flow ultrafiltration experiments (out

to in) were carried out by using a filtration systat a constant feed pressure of 1bar. To evaluate
the performance of the prepared membrane in ogmsdparation, a long time (8 hrs) filtration test
was carried out using 200ppm oil (oil emulsionDhwater at the same condition for both control

PES membrane and the modified PES-G-PANCMI memburateidually.

3.Results and Discussion

3.1. Sructural analysis

The structure of the PES, G-PANCMI and PES/G-PANGiWEmMbranes were confirmed using
Fourier Transform Infra Red Spectroscopy (FTIR)shewn inFig.5. The FTIR spectra of PES

membrane showed a peak for the C-H stretching pé&lenzene ring at 2974 émThree peaks

10



276  between 1600 citand 1400 criwere attributed to aromatic ring vibration. The G@3Gstretching

277 peaks were located at 1320 tamd 1233 cnl. The S=0 stretching peaks were present at 1150 cm
278 'and 1102 cml. The FTIR spectrum of G-PANCMI showed a broad baatd 3219crit

279 corresponding to the —NH stretching vibration af tiamine moiety, a small peak at 293Xcfor

280 the —CH stretching vibration, a sharp peak at 2&8¥5corresponding to the —CN stretching
281  vibration of the nitrile group and two sharp peaitsl770crit and 1718cricorrespondingto the
282  C=0 stretching vibrations of the imide carbonylgws and finally a peak at 1386¢rfor —C-N-C

283  stretching vibration confirming the formation of idle functionality by the attachment of amine
284 modified xGnP to PANCMA. The FTIR spectra of PESMNCMI membrane showed the
285 presence of both PES and G-PANCMI peaks confirmimg successful incorporation of G-

286  PANCMI in PES matrix.

-CH Stretching vib

G-PANCMI

% Transmittance

-CN Stretéhing vib

PES/G-PANCMI . -C=0 Stretching vib

-CN Stretching vib

-CH Stretching vib

-C=0 Stretching vib ¥
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Wavenumber (cm-1)
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Fig. 5. FTIR spectra of the control PES, G-PANCMI andrinedified membrane PES-G-PANCMI

3.2 Mechanical and Thermal analysis

Thermo gravimetric (TG) analysis was performedneestigate the effect of incorporation of the
novel ultra-wetting graphene (G-PANCMI) on the that property of the PES UF membranes. The
differences in thermal stability of PES and PESANEMI based membranes are highlighted in
Fig. 6 (a). Compared to PES membrane, PES-G-PANCMI membraowexl excellent thermal
stability. The drastic weight loss for PES starsdabout 180°C. Whereas, PES-G-PANCMI
showed greater thermal stability up to a tempeeatof 216C, without much weight loss
confirming the improved thermal properties of tHeSPdue to the presence of G-PANCMI in the

membrane matrix.

—
100 - ;|
=
. B0 9 =~
éi o 2
£w] s |/
g =14 — PES-G-PANCMI
g . | —PES (b
m n 1] T T T T
(a) 0 5 10 15 20 25 30
0 Extension[mm]

90 1m0 20 0 asp || ST | Ve foad (9 [ Exiemson (9
E | PES-G-PANCAIT | X7 [ =10
Temperature ("C) TS |‘ ot t '

Fig. 6. (a) Thermo gravimetric (TG) analysis and (b) thechanical property of the control PES
and the modified membrane PES-G-PANCMI

The mechanical property of the control PES andntioelified PES-G-PANCMI membranes were
studied using an Instron universal testing macland the results are presentedFig.6 (b).

Compared to PES membrane, PES-G-PANCMI membrangeshexcellent mechanical stability.
The maximum load achieved for the PES membraneé2vé®sN whereas, PES-G-PANCMI showed

greater mechanical stability of 3.84 N which iswrd 30% higher than the PES membrane.

12



311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Similarly, the elongation (extension) of the PESFREGNCMI membrane (25%) was also higher
compared to PES membrane (15%). The improved meaigmoperties of the PES UF membrane

is due to the presence of G-PANCMI in the membraagix.

3.3 Morphological analysis

The surface morphology and cross section of the &tfSultra-wetting graphene modified PES-G-
PANCMI based hollow fibre membranes were examiredguSEM and the pictures are presented
in Fig.7, (a) cross section, (b) outer surface and (c) aotuege. Both membranes had an average
inner diameter of 0.6mm and an outer diameter &inin. However, the hollow fibre membranes
exhibit different internal structures dependingtbair composition. The internal structure of PES
membrane has a large number of macro voids. Whetteasiltra-wetting graphene modified PES-
G-PANCMI membranes has a lower macro voids with engponge like structures in the cross
section next to the internal surface. This is duthé increase in viscosity and the coagulationeval
of the casting solution. Further, G-PANCMI contaimghly hydrophilic amine and carboxylic
groups which slows down the non solvent/solventarge. As a result less water was drawn into
the membrane which lead to the sponge like stractBponge like structure helps to enhance the
water permeability and selectivity. In addition teat, the even distribution of ultra-wetting
graphene nano sheets can be identified in the sedn and on the outer surface of the PES-G-

PANCMI modified membrane.
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Fig. 7. SEM images of PES and PES-G-PANCMI membranesr@3ection (b) Outer surface
(c) Actual image of synthesized PES and PES-G-PAKRGMmMbranes

3.4 Poresize analysis

Pore size analysis: The average pore size of tie mEmbrane and the ultra-wetting graphene
modified PES-G-PANCMI membranes were measured hAadekperimental data indicated that
there is no significant difference on the mean psiee of both PES and PES-G-PANCMI
membranes. The average pore sizes of PES membes0.@7 + 0.02um and 0.07 + 0.03um for
the PES-G-PANCMI membrane.

3.5 Performance analysis

Fig. 8 (a) shows average LEPof the membranes together with its error rangengaring the
LEP.i, even though the membrane pore size was almost $amPES and G-PANCMI, LER
increased from 50+10kPa of PES membrane to 17&P2%f PES-G-PANCMI membrane (with

ultra-wetting graphene), which is 350% (3.5 timagher than the PES membrane.
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Fig.8. (a) Liquid entry pressure of oil (LD analysis, (b) Water and oil contact angle and (c)
Clean water flux of the PES and PES-G-PANCMI memérsamples

The increase in LER thus parallels to the increase in oil (dichloreei) contact angle
(oleophobicity) of the ultra-wetting graphene maadf PES-G-PANCMI membrane. The
oleophobicity of the PES membrane and PES-G-PAN@MMbranes were measured by their oil
contact angle by using dichloroethane and the tesare presented ifkig. 8 (b). The PES
membrane sample showed an oil contact angle of #36’. Ultra-wetting graphene modified
PES-G-PANCMI membrane sample showed an oil coragte of 112.5 + 32which is 158%
higher compared to that of the PES membrane. Simitdne hydrophilicity of the PES membrane
and PES-G-PANCMI membranes were measured by thetierwcontact angle and the results are
presentedn Fig.8 (b). The PES membrane sample showed a water contalet ah§3.7+ 3.8,
Ultra-wetting graphene modified PES-G-PANCMI basaembrane sample showed a water contact
angle of 22.6+ 25which is 64.5% reduction compared to that of tESRnembrane sample. The
effectiveness of the ultra-wetting graphene onhi@rophilicity is clearly demonstrated by these
tests. The increased hydrophilicity is attributedthhe presence of the amine (-NHnd acid (-
COOH) groups attached to the nano graphene shedtsei G-PANCMI matrix of the PES-G-
PANCMI membrane.
The prepared PES membrane and the ultra-wettingphgree modified PES-G-PANCMI
ultrafiltration membrane were tested to evaluatedlean water flux of the membrane using a cross

flow filtration method.Fig.8 (c) shows the clean water flux for both membranes @irstant feed
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water pressure of 100 kPa (1bar). The PES memlgane a pure water flux of 437+ 18 LMH.
Even though the pore size are similar for both nramd, the ultra-wetting graphene modified PES-
G-PANCMI based membrane gave higher pure waterdfux67+ 23 LMH which is around 43%
higher compared to the PES based membrane. Thesase in pure water flux is due to the increase
in hydrophilicity / wettability of the membrane.

To evaluate the performance of the prepared merakbranil water separation, a long time (8 hrs)
filtration test was conducted using 200ppm oil esrar (oil emulsion was kept at constant stirring
at 400rpm during filtration in order to have a h@aoeous emulsion) in DI water for the control
PES membrane and the PES-G-PANCMI membrane indilhdwand the results are summarized in
Fig. 9. It is observed that the ultra-wetting graphene iffedi PES-G-PANCMI membrane gives
stable flux compared to PES based membrane. Thalfp for the PES-G-PANCMI membrane is
only 9.2% (<10) of the initial flux after 8 hrs a@mulsion in water separation whereas the PES
membrane’s flux drop is 65% for the same duratiboperation. The obtained results highlight that
the presence of G-PANCMI helps to reduce foulingdeposition) on the membrane surface. The
reduced oil adhesion is mainly due to the presdmgkly hydrophilic amine (-Nk) and acid (-
COOH) groups attached to the nano graphene shedtsei G-PANCMI matrix (Prince et al.,
2016)of the PES-G-PANCMI membrane Previous liteastudies also indicate similar effects on
the oil separation efficiency of the hydrophilic meranes (Xu et al., 2013, Tian et al., 2012,Wen et
al., 2013,Xue et al., 2011)

In order to evaluate the oil-emulsion selectivfythe membrane, the total organic carbon (TOC)
of the feed (oil-emulsified solution) and permeatere measured every hour. Percentage of oil
emulsion rejection (selectivity) was calculated anesented ifrig. 9 (b). From the data, it is found
that the selectivity for the PES-G-PANCMI membranaigher and stable compared to the control
PES membrane. The selectivity for control PES mamdrdrops over time which may be due to
change in surface properties of the membrane aver. These result further confirms the increased

hydrophilicity of the PES membranes by G-PANCMIsBd on our findings, we conclude that the
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ultra-wetting graphene offers the distinct potdnta be an ideal material with significantly

improved properties for new generation water filtna membranes.
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Fig. 9: (a) Permeability (flux drop) and (b) oil removal efeeicy of the membrane samples PES &
PES-G-PANCMI in a long time study of 8 hrs

4. Conclusions

In this work, a simple method to increase the hgtilcity of the PES hollow fibre UF membrane
by using hydrophilic functionalised graphene grafpely acrylonitrile-co-maleimide (G-PANCMI)

or ultra-wetting graphene for successful oil-wateparation has been investigated. The prepared
membranes were characterized thoroughly and therexental data indicates that the G-PANCMI
play an important role in enhancing the hydrophilievettability, water permeability and
selectivity of the PES UF membrane. The water ainémgle (CAy) of the PES membrane is
reduced from 63.7 + 380 22.6 + 2.8 which is 64.5% reduction while, the oil contacyEnwas
increased from 43.6 + 330 112.5+ 3.2 which is 158% higher compared to that of the PES
membrane. Similarly, the LEPincreased 350% from 50£10 kPa of the control PE®hbrane to
175+ 25 kPa of PES-G-PANCMI membrane. More impdiyarthe water permeability increased
by 43% with >99% selectivity. Based on our findinvgs conclude that the development of PES-G-

PANCMI membrane will create a new avenue for susfcé®il-water separation
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Highlights

A new water insoluble highly hydrophilic copolymer PANCMACDAMN was developed.
Ultra-wetting graphene additive was used to fabricate PES hollow fiber membranes.

The new copolymer additive increases the hydrophilicity of the membrane by 64.5%

The addition of 5% ultra-wetting graphene increase the LEPy; of the PES membrane by 350%
The permeability of the membrane was increased by 43% with the new ultra-wetting graphene
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