r UM2510
,l life.augmented

User manual

A guide to using the VL53L1X ultra lite driver

Introduction

The purpose of this user manual is to describe the main functions of the VL53L1X ultra lite driver (ULD) to program the
VL53L1X sensor for ranging distances and detecting objects.

The VL53L1X ULD is an optimized version of the initial VL53L1X driver. The table below indicates the main differences between
the two drivers. For example, in the the VL53L1X ULD, the API contains only four files instead of 35, and the code footprint is
much smaller (2.3 KB vs. 9 KB in Flash).

The VL53L1X is the third generation of long distance ranging, Time-of-Flight sensors. Please refer to the VL53L1X datasheet for
more details.

Figure 1. VL53L1X sensor module

Table 1. Main differences between VL53L1X APl and VL53L1X ULD API

Code footprint in Flash 9 KB 2.3 KB
Number of files 35 4
Timing budget (ms) [20 - 500] [15, 20, 33, 50, 100, 200, 500]
Fast ranging 100 Hz Yes No (66 Hz max.)
Dynamic SPAD selection (DSS) (") No Yes

1. DSS is an internal operation which consists of adapting dynamically the number of active SPADs according to the quantity of returned
photons. This avoids saturating the SPAD receiver. DSS is executed at the beginning of each ranging operation.

UM2510 - Rev 6 - June 2021 www.st.com

For further information contact your local STMicroelectronics sales office.


http://www.st.com

m UM2510

Acronyms and abbreviations

1 Acronyms and abbreviations

Table 2. Acronyms and abbreviations

API| application programming interface
cps counts per second
DSS dynamic SPAD selection
FMT final module test
FoV field of view
12C inter-integrated circuit (serial bus)
IR infrared radiation
IMP inter-measurement period
kcps kilo counts per second
NVM non volatile memory
ROI region of interest
SPAD single photon avalanche diode
B timing budget
ToF Time-of-Flight
ULD ultra lite driver
VCSEL vertical cavity surface-emitting laser
xcd crosstalk calibration distance
xtalk crosstalk

UM2510 - Rev 6 page 2/27



UM2510

VL53L1X system overview

3

2 VL53L1X system overview

The VL53L1X system is composed of a hardware module and an ultra lite software driver (VL53L1X_ULD)
running on a host (see figure below). The hardware module contains the ToF sensor.

ST delivers the software driver which is referred to in this document as "the driver".

This document describes the functions of the driver which are accessible to the host. These functions control the
sensor and get the ranging data.

Figure 2. VL53L1X system overview

VL53L1X VL53L1X

Driver module

UM2510 - Rev 6 page 3/27



m UM2510

Ranging API functional description

3 Ranging API functional description

This section gives a functional description of the ranging operations and describes the call flow to be followed to
perform a ranging measurement using the VL53L1X sensor.

3.1 Distance ranging description

The sensor ranges continuously and autonomously with a programmable inter-measurement period.
Autonomously means that ranging is made without involvement from the host. This allows the host to be in a
Low-power state (energy saving). The host is only woken up upon measurement interrupts when ranging data are
available. There is no need to issue a new start command to enable new ranging, however a clear interrupt is
required after getting ranging data to enable the next interrupt event. Otherwise, the device ranges continuously
and no interrupt event occurs to notify the user of the availability of new ranging data once the sensor finishes the
ranging sequence.

Note: In this user manual, the term interrupt may designate a physical interrupt on the GPIO1 pin or a “software”
interrupt which is a value change in the GPIO__TIO_HV_STATUS register.

3.2 Distance threshold detection description

In addition to the regular ranging capability, the sensor can be programmed to detect an object under certain
predefined criteria by using the function VL53LX_SetDistanceThreshold (). The available detection condition
use-cases include:

. Object under a certain distance
. Objet beyond a certain distance
. Object within a window limited by a near and far threshold
. Object out of a window limited by a near and far threshold

3.3 Timing considerations

The timing budget (TB) is the time required for the device to make one distance measurement. Increasing the

TB improves the measurement reliability but also increases power consumption. So, there is a trade-off between
measurement accuracy and power consumption. In the VL53L1X_ULD driver, the TB values available are [15, 20,
33, 50, 100, 200, 500 ms].

The inter-measurement period (IMP) is the time between two consecutive measurements. The IMP must be
greater than or equal to the TB otherwise the actual IMP is double the expected value. Note that there is no
automatic check in the VL53L1X_ULD driver, so the user has to verify this condition when setting the IMP.

Figure 3. Ranging sequence and timings

Fower Supply

Jshut down

GFIOT {interrupt)

Criver command  FEEElaNEERE/lE

Systemn state

timing budget

{1) = get ranging data
{2} = clear interrupt inter-measurement period

UM2510 - Rev 6 page 4/27



UM2510

API function call flow

3

3.4 API function call flow

The VL53L1X_ULD driver is used in the following two use cases:

Calibration flow is used to calibrate the sensor. Such calibration is done during manufacturing. The
calibration data must be stored in the host sytem and sent to the sensor during the bootup stage.

Ranging flow is used for distance measurements or object detection operations in the application software.

3.4.1 Calibration flow
Figure 4. Calibration flow
Calibration Flow
Associated APl functions : YWait for device bocted (1)

(1) WLS3L1X¥_BootState

(2) WLS3L 1% _Sensorlnit

(33 WLE3L1X_Calibrate Off set
(41 WLE3L 12X GetOffset

(5 WLE3L X Calibratextalk
(6) WLS3L1X_Getxtalk

*Haost routine

Atall calibration (5)

Get xtalk data (G)

Store xtalk data (™)

UM2510 - Rev 6 page 5/27



UM2510

Mandatory functions

3

3.4.2 Ranging flow

Figure 5. Ranging flow

APl functions :
(1) WLa3L1 % _BootState
i) WLE3L = _Sensorlnit
3 Bx
WLESLTH  SetTimingBudget
WLG3L1H SetOffset
1AL StatRanging
1 %5301 A _CheckForDataReady
1 Trigger GPIOT pin
1 Ex WLA3L1K_GetDistance
)
)

tfor device booted (1)

WLESL1 X _Clearlnterrupt
WLE3LTH _StopRanging Folling!

Interrupt

Wit for data rea

3.5 Mandatory functions
Mandatory functions include:
. VL53L1X_BootState
. VL53L1X_Sensorlnit
. VL53L1X_StartRanging
. VL53L1X_CheckForDataReady
. VL53L1X_GetDistance
. VL53L1X_Clearlnterrupt
. VL53L1X_Stop

3.51 Sensor boot

The VL53L1X_BootState function is used to check that the sensor has booted. It is strongly recommended to
ensure that the sensor finishes booting before the first 12C access.

3.5.2 Sensor init

The VL53L1X_Sensorlnit function is called once to initialize the sensor with a default configuration. With this
default configuration, the sensor ranges at 10 Hz in Long-distance mode.

3.5.3 Start a measurement
The VL53L1X_StartRanging function is used to make a distance measurement.

UM2510 - Rev 6 page 6/27



‘W UM2510

Optional functions

3.54 Wait for notification ranging data to be ready
There are two ways to receive notification that ranging data are ready:

. The host can poll a register value change. This is done by using the VL53L1X_CheckForDataReady which
returns “1” when new ranging data are ready.

. The host can wait for a physical interrupt event. The interrupt event can be triggered at the GPIO1 pin.
The interrupt polarity can be set by the VL53L1X_SetInterruptPolarity function. This changes the interruption
transition (from high to low or from low to high)

3.5.5 Get ranging data

Each type of ranging data has its own get ranging data functions. The VL53L1X_GetRangeStatus and
VL53L1X_GetDistance are the main get ranging data functions. If required, other ranging data parameters can be
read, for example, return signal, ambient rate, etc.

3.5.6 Clear interrupt

Use the VL53L1X_Clearlnterrupt function to clear the interrupt. It is strongly recommanded to clear the interrupt to
enable the next interrupt event when new ranging data are ready.

3.5.7 Stop the measurement

Ranging occurs continuously. To stop the current ranging operation, the user can use the stop command,
VL53L1X_Stop (). If the stop command is issue during the ranging operation, the sensor completes the current
ranging operation before stopping.

3.6 Optional functions

3.6.1 Setting distance mode

Two distance modes are available: Short and Long (default). Short mode has better ambient light immunity
but the maximum distance measurable is limited to 1.3 m. Long distance mode ranges up to 4 m but is less
performant under ambient light.

Use the function VL53L1X_SetDistanceMode (dev, DM) to set the distance mode. For Short mode, DM = 1 and
for Long mode, DM = 2.

VL53L1X_GetDistanceMode returns the current distance mode.

3.6.2 Inter-measurement period

The inter-measurement period (IMP) is the time between two ranging operations (see Section 3.3 Timing
considerations).

Use the VL53L1X_SetinterMeasurementinMs function to set the intermeasurement period in milliseconds.
VL53L1X_GetIntermeasurementinMs returns the curent IMP. The default IMP is 100 ms.

The IMP must be greater than or equal to the TB otherwise the start of ranging is missed and the
intermeaurement period is effectively doubled. The user has to verify the TB and the intermeasurement period as
there is no automatic check in the API.

3.6.3 Setting the timing budget

The TB is the time required by the sensor to make one distance measurement (see Section 3.3 Timing
considerations).

Use the VL53L1X_SetTimingBudget function to set the TB in milliseconds. The TB values available are [15, 20,
33, 50, 100, 200, 500]. This function must be called after VL53L1X_SetDistanceMode.
Note: 15 ms only works with Short distance mode. 100 ms is the default value.

The TB can be adjusted to improve the standard deviation (SD) of the measurement. Increasing the TB,
decreases the SD but increases the power consumption. For example, VL53L1X_SetTimingBudgetinMs (dev)
sets the TB to 50 ms. VL5L31X_GetTimingBudget returns the current TB.

UM2510 - Rev 6 page 7/27



m UM2510

Optional functions

3.64 Setting threshold and detection mode

In addition to the regular ranging features, the sensor also has the capability to detect a target with predefined
detection criteria. When the preconfigured criteria are matched the sensor raises an interrupt and returns the
distance.

Use the VL53L1X_ERROR VL53L1X_SetDistanceThreshold (dev, ThreshLow, ThreshHigh, Window,
IntOnNoTarget) to configure the detection criteria.

. ThreshLow is the low distance threshold in millimeters
. ThreshHigh is the high distance threshold in millimeters
. Window :
—  Window = 0: Below a certain distance
° If object distance > ThreshLow or no object found: no report
° If object distance < ThreshLow and object found: report
—  Window = 1: Beyond a certain distance
° If object distance < ThreshHigh or no object found: no report
° If object distance > ThreshHigh and object found: report
—  Window = 2: Out of distance range (min/max), "out of Window"
° ThreshLow < object distance < ThreshHigh: no report
° ThreshLow > object distance > ThreshHigh: report
—  Window = 3: Within the distance range (min/max), "inside Window"
° ThreshLow > object distance > ThreshHigh: no report
° ThreshLow < object distance < ThreshHigh: report
. IntOnNoTarget is no longer used, set to 0

To go back to the regular ranging mode, write 0x20 to the 0x46 register (8 bits).

3.6.5 Setting ROI
The receiving SPAD array of the sensor consists of 16x16 SPADs which cover the full FoV.

It is possible to program a smaller ROI, with a smaller number of SPADs, to reduce the FoV for applications which
require a narrow FoV.

Use the function VL53L1X_SetROI (dev, X, Y).
. X is the ROI width from 4 to 16, if X < 4 the Firmware limits the width to 4
. Y is the ROI height from 4 to 16, if Y < 4 the Firmware limits the height to 4

VL53L1X_GetROl returns the current ROI.

Note: Lowering the number of SPADs limits the maximum ranging distance. Some experimentation is required.

UM2510 - Rev 6 page 8/27



m UM2510

Ranging example pseudo code

3.7 Ranging example pseudo code

main (void ){
/* Platform Initialization code here */

/* Wait for device booted */
While (state) {
Status = VL53L1X BootState(dev, é&state);
HAL delay(2);
}
/* Sensor Initialization */
Status = VL53L1X SensorInit ()
/* Modify the default configuration */
Status = VL53L1X SetInterMeasurementPeriod();
Status = VL5311X SetOffset();
/* enable the ranging*/
Status = VL53L1X StartRanging();
/* ranging loop */
While (1) {
While (dataReady==0) {
Status = VL53L1X CheckForDataReady (dev, &dataReady):;
}
dataReady = 0;
Status = VL53L1X GetRangeStatus();
Status = VL53L1X GetDistance();
Status = VL53L1X ClearInterrupt ()

UM2510 - Rev 6 page 9/27




‘W UM2510

Calibration functions

4 Calibration functions

To benefit from the full performance of the sensor, the VL53L1X_ULD driver includes two calibration functions
(offset and crosstalk) which need to be run once at the production line. These calibration procedures have to be
run to compensate for device-to-device variation (i.e. when the absolute measured distance is not the same from
one device to another) and the presence of the cover glass that may affect the device ranging performances.

Calibration data, stored in the host system, have to be loaded in the VL53L1X sensor at each startup using a
dedicated driver function.

The calibration sequence order is important. Offset calibration should be run first followed by crosstalk calibration.

The two calibrations may be run sequentially one after the other, or may be run individually. When run individually,
make sure the offset data have been programmed into the sensor before running crosstalk calibration.

4.1 Offset calibration
Use the VL53L1X_CalibrateOffset () function to run offset calibration.
VL53L1X_CalibrateOffset () finds the offset, applies the offset, and returns the offset correction value.

The offset correction value returned by VL53L1X_CalibrateOffset () must be stored in the host system and writen
to the sensor during boot up with VL53L1X_SetOffset ().

411 Offset calibration procedure

Place a target, 17 % gray, at 140 mm from the sensor and call the VL53L1X_CalibrateOffset (dev, 140, &offset)
function.

The calibration may take a few seconds. The offset correction is applied to the sensor at the end of calibration.

4.1.2 Getting offset calibration
The function VL53L1X_GetOffset () returns the current offset correction applied to the sensor.
A value of zero means no offset has been applied.

41.3 Setting offset calibration
The function VL53L1X_SetOffset () applies the offset value in millimeters to the sensor.

The user may use this function to apply, to the sensor, the offset found during calibration which is stored in the
host system.

4.2 Crosstalk calibration

In imaging, crosstalk is defined as the amount of return signal received on the sensing array which is due to
VCSEL light reflection inside the protective window (cover glass) added on top of the module for aesthetic and
protective purposes.

Depending on the cover glass quality, the amount of return signal may be significant and may affect sensor
performance. The VL53L1X has a built-in correction that allows the user to compensate for this crosstalk
phenomenon.

Crosstalk calibration is used to estimate the amount of correction needed to compensate for the effect of a cover
glass added on top of the module.

421 Crosstalk calibration function
Use the function VL53L1X_CalibrateXtalk () to perform crosstalk calibration.

The VL53L1X_ CalibrateXtalk () finds the crosstalk compensation value, applies the correction, and returns the
crosstalk correction value.

The crosstalk compensation value returned by VL53L1X_CalibrateXtalk () must be stored in the host system and
applied to the sensor during boot up using VL53L1X_SetXtalk ().

UM2510 - Rev 6 page 10/27



m UM2510

Crosstalk calibration

4.2.2 Crosstalk calibration procedure
Crosstalk calibration should be conducted in a dark environment, with no IR contribution.

Place a 17 % reflectance chart at the crosstalk calibration distance (xcd), then call the
VL53I1X_CalibrateXtalk(dev, xcd, &xtalk) to perform the calibration. It may take a few seconds.

To characterize the xcd, refer to Section 4.2.3 Crosstalk calibration distance characterization.

4.2.3 Crosstalk calibration distance characterization

The crosstalk calibration distance needs to be characterized as it depends on the system environment which
mainly includes:

. The cover glass material and optical properties
. The air gap value i.e. the distance between the sensor and the cover glass
Do a full sweep with the target from near to far, noting the resulting measurement. You will get a plot similar to

Figure 6). At some point, the actual value and the measured value start to diverge. This is the crosstalk calibration
distance.

The figure below shows the crosstalk effect on the ranging curve. From a given distance, the effect of crosstalk is
predominant, and the sensor starts to under range.

Figure 6. VL53L1X crosstalk calibration distance definition

Ranging 4 _#7 Ideal
distance 7 Ranging curve

s
z

# Ranging curve
with Xtalk compensated

Xtalk
calibration t--------—- A

distance /
Ranging curve
with Xtalk effect

>
Target
distance

The crosstalk calibration distance corresponds to the maximum ranging distance achievable by the sensor when
the cover glass is present.

The ranging curve with crosstalk corrected is the ranging result when crosstalk compensation is applied i.e. when
crosstalk calibration is completed or after crosstalk calibration compensation is applied.

42.4 Getting crosstalk calibration data

The function VL53L1_GetXtalk () returns the current crosstalk value programmed in the sensor. Zero means there
is no crosstalk compensation. The unit is cps (counts per second).

UM2510 - Rev 6 page 11/27



UM2510

Crosstalk calibration

3

4.2.5 Setting crosstalk calibration data
The function VL53L1X_SetXtalk () applies the crosstalk value, in cps, to the sensor.

The user may use this function to apply, to the sensor, the crosstalk correction found during calibration and stored
in the host system.

UM2510 - Rev 6 page 12/27



m UM2510

Range status interpretation

5 Range status interpretation

There are five range statuses: 0, 1, 2, 4, and 7. When the range status is 0, there is no error. Range status 1 and
2 are error warnings while range status 4 and 7 are errors.

When the range status is 1, there is a sigma failure. This means that the repeatability or standard deviation of
the measurement is bad due to a decreasing signal noise ratio. Increasing the timing budget can improve the
standard deviation and avoid a range status 1.

When the range status is 2, there is a signal failure. This means that the return signal is too week to return a
good answer. The reason is because the target is too far, or the target is not reflective enough, or the target is too
small. Increasing the timing buget might help, but there may simply be no target available.

When the range status is 4, the sensor is "out of bounds". This means that the sensor is ranging in a “non-
appropriated” zone and the measured result may be inconsistent. This status is considered as a warning but, in
general, it happens when a target is at the maximum distance possible from the sensor, i.e. around 5 m. However,
this is only for very bright targets.

Range status 7 is called "wraparound". This situation may occur when the target is very reflective and the
distance to the target/sensor is longer than the physical limited distance measurable by the sensor. Such
distances include approximately 5 m when the senor is in Long distance mode and approximately 1.3 m when the
sensor is in Short distance mode. Example: a traffic sign located at 6 m can be seen by the sensor and returns a
range of 1 m. This is due to “radar aliasing”: if only an approximate distance is required, we may add 6 m to the
distance returned. However, that is a very approximate estimation.

UM2510 - Rev 6 page 13/27



m UM2510

Reducing the driver size to its absolute minimum

6 Reducing the driver size to its absolute minimum

Although ST have attempted to create a small driver, it might not be small enough for some applications. To
create the smallest possible driver, try the following approach:

. Use the current driver and configure the parameters as required. Start ranging (to show that it works).
. When satisfied that ranging works, dump the contents of the sensor from the location 0x2D through to 0x87.

. Replace the default register settings in the the array VL51L1X_DEFAULT_CONFIGURATION[] which is
located in the file VL53L1X_api.c.

. This makes your settings the default settings

. Your main routine then needs only to call the the VL53L1X_Sensorlnit() function and
VL53L1X_StartRanging().

. Most other functions can then be removed

UM2510 - Rev 6 page 14/27



m UM2510

Function descriptions

7 Function descriptions

In the descriptions below, most functions return an error status. 0 is successful. Most values are unsigned 16-bit
integers except where noted. Most ‘Set’ functions are paired with a corresponding ‘Get’ function.

7.1 GetSWVersion

VL53L1X ERROR VL53L1X GetSWVersion (VL53L1X Version t *pVersion);

This function returns the SW driver version.

7.2 Setl2CAddress

VL53L1X ERROR VL53L1X SetI2CAddress(uintlé t dev, uint8 t new address);

This function sets the sensor I12C address used for a multiple device application. The default address for the
sensor at boot up is 0x52.

7.3 Sensorlnit

VL53L1X ERROR VL53L1X SensorInit (uintl6 t dev);

This function loads the 45 bytes of configuration values which initialize the sensor.

74 VL53L1X Clearinterrupt

VL53L1X ERROR VL53L1X ClearInterrupt(uintl6_t dev);

This function clears the interrupt to be called after a ranging data reading, to arm the interrupt for the next data
ready event.

7.5 SetinterruptPolarity

VL53L1X_ERROR VLS3L1X_SetInterruptPolarity(uint16_t dev,
uint8 t IntPol);

This function programs the interrupt polarity, 1 = active high (default), 0 = active low.

7.6 GetinterruptPolarity

VL53L1X ERROR VL53L1X GetInterruptPolarity(uintlé t dev,
uint8 t *pIntPol);

This function returns the current interrupt polarity, 1 = active high (default), 0 = active low.

UM2510 - Rev 6 page 15/27



m UM2510

StartRanging

1.7 StartRanging

VL53L1X ERROR VL53L1X StartRanging(uintlé t dev);

This function starts the ranging distance operation which is continuous. The clear interrupt has to be done after
each "get data" to allow the interrupt to be raised when the next data are ready. 1 = active high (default), 0 =
active low. If required, use SetInterruptPolarity() to change the interrupt polarity.

7.8 StopRanging

VL53L1X ERROR VL53L1X StopRanging (uintlé6_t dev);

This function stops the ranging.

7.9 CheckForDataReady

VL53L1X ERROR VL53L1X CheckForDataReady (uintl6 t dev,
uint8 t *isDataReady);

This function checks if the new ranging data are available by polling the dedicated register. Data are not ready
when "isDataReady == 0". Data are ready when "isDataReady==1".

710 SetTimingBudgetinMs

VL53L1X ERROR VL53L1X SetTimingBudgetInMs (uintl6 t dev,
uintlé_ t TimingBudgetInMs) ;

This function programs the timing budget in ms. The predefined values are 15, 20, 50, 100, 200, and 500. This
function must be called after the VL53L1X_SetDistanceMode.

7.1 GetTimingBudgetinMs

VL53L1X_ERROR VL53L1X GetTimingBudgetInMs (uintl6_t dev,
uintl6é t *pTimingBudgetInMs) ;

This function returns the current timing budget in ms.

712 SetDistanceMode

VL53L1X ERROR VL53L1X SetDistanceMode (uintl6_t dev,
uintlé_t DistanceMode) ;

This function programs the distance mode (1 = Short, 2 = Long). Short mode maximum distance is limited to 1.3
m but results in a better ambient immunity. Long mode can range up to 4 m in the dark with a timing budget of 200
ms.

713 GetDistanceMode

VL53L1X ERROR VL53L1X GetDistanceMode (uintl6 t dev,
uintlé_t *pDistanceMode) ;

This function returns the current distance mode (1 = Short, 2 = Long).

UM2510 - Rev 6 page 16/27



m UM2510

SetinterMeasurementinMs

714 SetinterMeasurementinMs

VL53L1X_ERROR VL53L1X SetInterMeasurementInMs (uintl6_t dev,
uint32 t InterMeasurementInMs) ;

This function programs the intermeasurement period (IMP) in ms. The IMP must be greater than or equal to the
timing budget. This condition is not checked by the API, so the customer must check this condition.

715 GetinterMeasurementinMs

VL53L1X ERROR VL53L1X GetInterMeasurementInMs (uintl6_t dev,
uintlée_t * pIM);

This function returns the intermeasurement period in ms.

7.16 BootState

VL53L1X ERROR VL53L1X BootState(uintl6 t dev, uint8 t *state);

This function returns the Boot state of the device (1 = booted, 0 = not booted).

717 GetSensorld

VL53L1X ERROR VL53L1X GetSensorId(uintl6é t dev, uintlé t *id);

This function returns the sensor ID which must be OXEACC.

7.18 GetDistance

VL53L1X_ERROR VL53L1X GetDistance (uintl6_t dev,
uintlé t *distance);

This function returns the distance measured by the sensor in mm.

719 GetSignalPerSpad

VL53L1X ERROR VL53L1X GetSignalPerSpad(uintl6_t dev,
uintlé_t *signalPerSp);

This function gives the returned signal per SPAD in kcps/SPAD.

7.20 GetAmbientPerSpad

VL53L1X ERROR VL53L1X GetAmbientPerSpad(uintl6 t dev,
uintlé_t *amb);

This function returns the ambient per SPAD in kcps/SPAD.

UM2510 - Rev 6 page 17/27



‘7 UM2510

GetSignalRate

7.21 GetSignalRate

VL53L1X_ERROR VL53L1X GetSignalRate (uintl6_t dev,
uintl6é t *signalRate);

This function gives the returned signal in kcps.

7.22 GetSpadNb

VL53L1X ERROR VL53L1X GetSpadNb (uintl6_t dev, uintl6_t *spNb) ;

This function returns the current number of enabled SPADs.

7.23 GetAmbientRate

VL53L1X ERROR VL53L1X GetAmbientRate (uintlé_t dev,
uintl6_t *ambRate);

This function returns the ambient rate in kcps.

7.24 VL53L1X_GetRangeStatus

VL53L1X ERROR VL53L1X GetRangeStatus (uintlé_t dev,
uint8 t *rangeStatus);

This function returns the ranging status error where 0 = no error, 1 = sigma failure, 2 = signal failure, 4 = sensor
out-of-bounds, and 7 = wraparound).

7.25 SetOffset

VL53L1X _ERROR VL53L1X SetOffset (uintl6_t dev,
intl6 t OffsetValue);

This function programs the offset correction in mm where OffsetValue = the offset correction value to program in
mm.

7.26 GetOffset

VL53L1X ERROR VL53L1X GetOffset (uintl6_t dev, intl6_t *Offset);

This function returns the programmed offset correction value in mm.

7.27 SetXtalk

VL53L1X ERROR VL53L1X SetXtalk(uintlé t dev, uintl6 t XtalkValue);

This function programs the crosstalk correction value in cps. This is the number of photons reflected back from
the cover glass in cps.

UM2510 - Rev 6 page 18/27



m UM2510

GetXtalk

7.28 GetXtalk

VL53L1X ERROR VL53L1X GetXtalk(uintl6 t dev, uintl6é t *Xtalk);

This function returns the current programmed crosstalk correction value in cps.

7.29 SetDistanceThreshold

VL53L1X ERROR VL53L1X SetDistanceThreshold(uintlé6_t dev,
uintlé_t ThreshLow,
uintl6_t ThreshHigh, uint8_t Window,
uint8 t IntOnNoTarget);

This function programs the threshold detection mode. For example:
VL53L1X_SetDistanceThreshold(dev,100,300,0,1): below 100
VL53L1X_SetDistanceThreshold(dev,100,300,1,1): above 300
VL53L1X_SetDistanceThreshold(dev,100,300,2,1): out-of-window
VL53L1X_SetDistanceThreshold(dev,100,300,3,1):

Where:

. dev is the device address

. ThreshLow(in mm) is the threshold under which the device raises an interrupt if window = 0

. ThreshHigh(in mm) is the threshold above which the device raises an interrupt if window = 1
. IntOnNoTarget is the window detection mode where 0 = below, 1 = above, 2 = out, and 3 = in
. IntOnNoTarget = 1 (no longer used so just use 1)

in window

7.30 GetDistanceThresholdWindow

VL53L1X ERROR VL53L1X GetDistanceThresholdWindow (uintlé t dev,
uintl6é_t *window) ;

This function returns the window detection mode where 0 = below, 1 = above, 2 = out and 3 = in.

7.31 GetDistanceThresholdLow

VL53L1X_ERROR VL53L1X GetDistanceThresholdLow (uintl6_t dev,
uintlé t *low);

This function returns the low threshold in mm.

7.32 GetDistanceThresholdHigh

VL53L1X ERROR VL53L1X GetDistanceThresholdHigh (uintl6_t dev,
uintlé_t *high);

This function returns the high threshold in mm.

7.33 SetROI

VL53L1X ERROR VL53L1X SetROI (uintl6é t dev, uintlé t X,
uintlé t Y);

This function programs the ROI, the position of which is centered about the optical center. The smallest
acceptable ROl size is 4. X is the ROl width and Y is the ROI height.

UM2510 - Rev 6 page 19/27



m UM2510

GetROI_XY

7.34 GetROI_XY

VL53L1X ERROR VL53L1X GetROI XY (uintl6 t dev, uintl6é t *ROI X,
uintl6 t *ROI _Y);

This function returns the ROI width (X) and height (Y).

7.35 SetROICenter

VL53L1X ERROR VL53L1X SetROICenter (uintlé_t dev, uint8 t ROICenter);

This function programs the new user ROI center. Please note that there is no check in this function. If the ROI
center vs the ROI size is outside the border, the ranging function returns an error #13.

7.36 GetROICenter

VL53L1X ERROR VL53L1X GetROICenter (uintlé t dev, uint8 t *ROICenter);

This function returns the current user ROI center.

7.37 SetSignalThreshold

VL53L1X ERROR VL53L1X SetSignalThreshold(uintl6é t dev,
uintlé_t signal);

This function programs a new signal threshold in kcps where the default is 1024 kcps.

7.38 GetSignalThreshold

VL53L1X_ERROR VL53L1X GetSignalThreshold(uintl6_t dev,
uintlé t *signal);

This function returns the current signal threshold in kcps.

7.39 SetSigmaThreshold

VL53L1X ERROR VL53L1X SetSigmaThreshold(uintl6_t dev,
uintlé_t sigma);

This function programs a new sigma threshold in mm. The default value is 15 mm.

7.40 GetSigmaThreshold

VL53L1X ERROR VL53L1X GetSigmaThreshold(uintl6 t dev,
uintlé_t *signal);

This function returns the current sigma threshold in mm.

UM2510 - Rev 6 page 20/27



UM2510

StartTemperatureUpdate

3

7.41 StartTemperatureUpdate

VL53L1X_ERROR VL53L1X StartTemperatureUpdate (uintl6_t dev);

This function performs the temperature calibration.

If the sensor has been stopped for a long time, it is recommended to perform the temperature update prior to
restarting the ranging.

By default, the sensor can adequately handle any temperature change as long as it is running, but if the sensor is
stopped for an extended period of time, a temperature compensation is advised.

UM2510 - Rev 6 page 21/27



UM2510

API structure

3

8 API structure

The APl is composed of four files:

. VL53L1X_api.c (mandatory)

. VL53L1X_api.h (mandatory)

. VL53L1X_calibration.c (optional)

. VL53L1X_calibration.h (optional)

The VL53L1X_api.c and VL53L1X_api.h files contain all the required functions to initialize the sensor, to change
the default settings, to perform ranging, and to get ranging data.

The VL53L1X_calibration.c and VL53L1X_calibration.h files contain two calibration functions and can be excluded
from the software project if no device-to-device calibrations are required to optimize the code size.

UM2510 - Rev 6 page 22/27



m UM2510

Revision history

Table 3. Document revision history

I T S

06-Dec-2018 1 Initial release
Updated Table 1. Main differences between VL53L1X APl and VL53L1X ULD
API.

09-May-2019 2 Section 7 Function descriptions: updated "dev" type from a structure to a

simple "uint16_t" which is the device 12C address.
Added Section 7.35 SetROICenter and Section 7.36 GetROICenter.

Section 3.6.3 Setting the timing budget: updated the "Note" of this section.

08-Apr-2019 3
Section 7.2 Setl2CAddress: updated the code of this section.

15-Apr-2020 4 Date of version 3 is 08-Apr-2020

09-Nov-2020 5 Section 3.6.4 St?ltting threshold and detection mode: updated "IntOnNoTarget
is no longer used" from 1 to 0.

29-Jun-2021 6 Section 7.17 GetSensorld: updated value OXEEAC to OXEACC.

UM2510 - Rev 6 page 23/27



m UM2510

Contents

Contents
1 Acronyms and abbreviations ........... ... i i i 2
2 VLS3LAX System OVerVIeW .........uuuiiiii it iinan e i a s s nannnnnnnannannns 3
3 Ranging API functional description ..............oi i e 4
3.1 Distance ranging descCription . . .. ... ... 4
3.2 Distance threshold detection description . .......... ... ... .. . 4
3.3 TimiNg CoONSIderations. . . .. .. .. 4
3.4  APlfunction call flow. . . ... . e 5
3.41 Calibration flow . . . . ... 5
3.4.2 Ranging flow . . . .. 6
3.5 Mandatory functions . . ... ... . . . e 6
3.5.1 SENSOr boOt . . . 6
3.5.2 SENSOr NIt . o 6
3.5.3 Startameasurement. . . .. ... 6
3.54 Wait for notification rangingdatatobeready ......... ... ... .. ... ... . L. 7
3.5.5 Getranging data. . . ... 7
3.5.6 Clearinterrupt. . ... e 7
3.5.7 Stop the measurement . . .. ... ... e 7
3.6 Optional fUNCLIONS . . ... . 7
3.6.1 Setting distance mode. . . . .. ... e 7
3.6.2 Inter-measurement period. . . . ... .. 7
3.6.3 Setting the timing budget . . ... ... . 7
3.6.4 Setting threshold and detectionmode. . . ... ... ... . . . 8
3.6.5 Setting RO . . .. 8
3.7 Ranging example pseudo code. . . ... ... . 9
4 Calibration functions ... i ittt 10
4.1 Offset calibration . . ... .. . 10
411 Offset calibration procedure . .. ... .. 10
41.2 Getting offset calibration . . . .. ... ... . 10
41.3 Setting offset calibration . . ... ... ... 10
4.2 Crosstalk calibration . .. ... . e 10

UM2510 - Rev 6 page 24/27



m UM2510

Contents

4.21 Crosstalk calibration function . ...... ... ... . 10

42.2 Crosstalk calibration procedure. . . . ... . . 11

4.2.3 Crosstalk calibration distance characterization . . ............. .. ... .. ... .. ... ... 1

42.4 Getting crosstalk calibrationdata .. ........... .. . 1"

4.2.5 Setting crosstalk calibrationdata. . . ........ .. ... 12

5 Range status interpretation............ ... i e 13
6 Reducing the driver size to its absolute minimum ................................. 14
7 Function descriptions ...ttt i it ee st eaaatnannarannnnns 15
7.1 GetS WV ErSION . . 15
7.2 Setl2CAdAressS . . ... 15
7.3 SeNSOrINit. . oo 15
7.4 VLS3L1X Clearinterrupt . . ... oo e 15
7.5 SetinterruptPolarity . . .. ... e 15
7.6 GetlnterruptPolarity. . . .. ... 15
7.7 StartRaNgINg . . ... e 16
7.8 StOPRANGING . . ..o 16
7.9 CheckForDataReady .. ...... ... . e e e 16
7.10  SetTimingBudgetinMs . .. ... 16
741 GetTimingBudgetinMs . .. ... 16
742 SetDistanceMode . . ... ... 16
713 GetDistanceMode . . . .. ... 16
7.14  SetinterMeasurementinMs. . .. ... .. 17
715 GetinterMeasurementinMs . .. ... .. 17
746 BootState . ... ... 17
TAT  GetSensorld. . ... 17
TA8  GetDistanCe . . . ..o e 17
719  GetSignalPerSpad . ... ..o 17
7.20 GetAmbientPerSpad. .. ... ... . . 17
7.21  GetSignalRate . . ... ... 18
7.22  GetSpadND . ... 18
7.23  GetAmbientRate . . ... .. 18

UM2510 - Rev 6 page 25/27



m UM2510

Contents
7.24 VL53L1X GetRangeStatus . ... e 18
7.25  SetOffset . ... 18
7.26  GetOffset . ... 18
T.27  SetXtalk ..o 18
7.28  GetXtalk . ... 19
7.29 SetDistanceThreshold .. ......... . 19
7.30 GetDistanceThresholdWindow . . ... ... .. e 19
7.31  GetDistanceThresholdLow. . .. ... . e 19
7.32  GetDistanceThresholdHigh ... ... . 19
7.33  SetROI .. 19
7.34  GetRO XY 20
7.35  SetROICEN el . . . 20
7.36  GetROICEN el . . .o 20
7.37 SetSignalThreshold. . .. ... . 20
7.38  GetSignalThreshold . .. ... . e e e 20
7.39  SetSigmaThreshold .. ........ .. 20
7.40 GetSigmaThreshold . ... ... . e 20
7.41 StartTemperatureUpdate . .......... . 21
8 APIStruCtUre ... i 22
ReVISION NiStOry ... . i it it ettt iees s nanasennnassnnnnasannnnns 23
L0 o T 1 =T 3 24

UM2510 - Rev 6 page 26/27



m UM2510

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2510 - Rev 6 page 27/27



http://www.st.com/trademarks

	Introduction
	1 Acronyms and abbreviations
	2 VL53L1X system overview
	3 Ranging API functional description
	3.1 Distance ranging description
	3.2 Distance threshold detection description
	3.3 Timing considerations
	3.4 API function call flow
	3.4.1 Calibration flow
	3.4.2 Ranging flow

	3.5 Mandatory functions
	3.5.1 Sensor boot
	3.5.2 Sensor init
	3.5.3 Start a measurement
	3.5.4 Wait for notification ranging data to be ready
	3.5.5 Get ranging data
	3.5.6 Clear interrupt
	3.5.7 Stop the measurement

	3.6 Optional functions
	3.6.1 Setting distance mode
	3.6.2 Inter-measurement period
	3.6.3 Setting the timing budget
	3.6.4 Setting threshold and detection mode
	3.6.5 Setting ROI

	3.7 Ranging example pseudo code

	4 Calibration functions
	4.1 Offset calibration
	4.1.1 Offset calibration procedure
	4.1.2 Getting offset calibration
	4.1.3 Setting offset calibration

	4.2 Crosstalk calibration
	4.2.1 Crosstalk calibration function
	4.2.2 Crosstalk calibration procedure
	4.2.3 Crosstalk calibration distance characterization
	4.2.4 Getting crosstalk calibration data
	4.2.5 Setting crosstalk calibration data


	5 Range status interpretation
	6 Reducing the driver size to its absolute minimum
	7 Function descriptions
	7.1 GetSWVersion
	7.2 SetI2CAddress
	7.3 SensorInit
	7.4 VL53L1X ClearInterrupt
	7.5 SetInterruptPolarity
	7.6 GetInterruptPolarity
	7.7 StartRanging
	7.8 StopRanging
	7.9 CheckForDataReady
	7.10 SetTimingBudgetInMs
	7.11 GetTimingBudgetInMs
	7.12 SetDistanceMode
	7.13 GetDistanceMode
	7.14 SetInterMeasurementInMs
	7.15 GetInterMeasurementInMs
	7.16 BootState
	7.17 GetSensorId
	7.18 GetDistance
	7.19 GetSignalPerSpad
	7.20 GetAmbientPerSpad
	7.21 GetSignalRate
	7.22 GetSpadNb
	7.23 GetAmbientRate
	7.24 VL53L1X_GetRangeStatus
	7.25 SetOffset
	7.26 GetOffset
	7.27 SetXtalk
	7.28 GetXtalk
	7.29 SetDistanceThreshold
	7.30 GetDistanceThresholdWindow
	7.31 GetDistanceThresholdLow
	7.32 GetDistanceThresholdHigh
	7.33 SetROI
	7.34 GetROI_XY
	7.35 SetROICenter
	7.36 GetROICenter
	7.37 SetSignalThreshold
	7.38 GetSignalThreshold
	7.39 SetSigmaThreshold
	7.40 GetSigmaThreshold
	7.41 StartTemperatureUpdate

	8 API structure
	Revision history
	Contents

