
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

UML Class Diagrams

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• Designing classes

• Overview of UML

• UML class diagrams
• Syntax and semantics

• Examples

designdesign phase: from requirements to code

Software design

4

Software design

4

• Design: specifying the structure of how a
software system will be written and function,
without actually writing the complete
implementation

Software design

4

• Design: specifying the structure of how a
software system will be written and function,
without actually writing the complete
implementation

• A transition from "what" the system must do, to
"how" the system will do it

• What classes will we need to implement a system
that meets our requirements?

• What fields and methods will each class have?

• How will the classes interact with each other?

How to design classes?

5

Identify classes and interactions from
project requirements:

• Nouns are potential classes, objects,
and fields

• Verbs are potential methods or
responsibilities of a class

• Relationships between nouns are
potential interactions (containment,
generalization, dependence, etc.)

• Which nouns in your project
should be classes?

• Which ones are fields?

• What verbs should be methods?

• What are potential interactions
between your classes?

Describing designs with CRC cards

6

CRC (class-responsibility-collaborators) cards
• on top of the card, write down the name of the class

• below the name, list the following:

• responsibilities: problems to be solved; short verb phrases

• collaborators: other classes that are sent messages by this class

Describing designs with UML diagrams

7

• Class diagram (today)
• Shows classes and relationships among them.

• A static view of the system, displaying what interacts
but not what happens when they do interact.

• Sequence diagram (next lecture)
• A dynamic view of the system, describing how objects

collaborate: what messages are sent and when.

basicsdescribing designs with UML: an overview

What is UML?

9

What is UML?

9

• Pictures or views of an OO system
• Programming languages are not abstract enough for OO design

• UML is an open standard; lots of companies use it

What is UML?

9

• Pictures or views of an OO system
• Programming languages are not abstract enough for OO design

• UML is an open standard; lots of companies use it

• What is legal UML?
• A descriptive language: rigid formal syntax (like programming)

• A prescriptive language: shaped by usage and convention

• It's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

UML: Unified Modeling Language

10

• Union of Many Languages
• Use case diagrams

• Class diagrams

• Object diagrams

• Sequence diagrams

• Collaboration diagrams

• Statechart diagrams

• Activity diagrams

• Component diagrams

• Deployment diagrams

• ….

A very big language!

Uses for UML

11

Uses for UML

11

• As a sketch: to communicate aspects of system
• Forward design: doing UML before coding

• Backward design: doing UML after coding as documentation

• Often done on whiteboard or paper

• Used to get rough selective ideas

Uses for UML

11

• As a sketch: to communicate aspects of system
• Forward design: doing UML before coding

• Backward design: doing UML after coding as documentation

• Often done on whiteboard or paper

• Used to get rough selective ideas

• As a blueprint: a complete design to be implemented
• Sometimes done with CASE (Computer-Aided Software

Engineering) tools

Uses for UML

11

• As a sketch: to communicate aspects of system
• Forward design: doing UML before coding

• Backward design: doing UML after coding as documentation

• Often done on whiteboard or paper

• Used to get rough selective ideas

• As a blueprint: a complete design to be implemented
• Sometimes done with CASE (Computer-Aided Software

Engineering) tools

• As a programming language: with the right tools,
code can be auto-generated and executed from UML

• Only good if this is faster than coding in a "real" language

learnUML class diagrams

What is a UML class diagram?

13

• A UML class diagram is a picture of
• the classes in an OO system

• their fields and methods

• connections between the classes that interact or
inherit from each other

• Not represented in a UML class diagram:
• details of how the classes interact with each other

• algorithmic details; how a particular behavior is
implemented

Diagram of a single class

14

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

Diagram of a single class

14

• Class name
• write «interface» on top of interfaces' names

• use italics for an abstract class name

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

Diagram of a single class

14

• Class name
• write «interface» on top of interfaces' names

• use italics for an abstract class name

• Attributes (optional)
• fields of the class

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

Diagram of a single class

14

• Class name
• write «interface» on top of interfaces' names

• use italics for an abstract class name

• Attributes (optional)
• fields of the class

• Operations / methods (optional)
• may omit trivial (get/set) methods

• but don't omit any methods from an interface!

• should not include inherited methods

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

Class attributes (fields, instance variables)

15

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name : type [count] = default_value

Class attributes (fields, instance variables)

15

• visibility
+ public

protected

- private

~ package (default)

/ derived

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name : type [count] = default_value

Class attributes (fields, instance variables)

15

• visibility
+ public

protected

- private

~ package (default)

/ derived

• underline static attributes

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name : type [count] = default_value

Class attributes (fields, instance variables)

15

• visibility
+ public

protected

- private

~ package (default)

/ derived

• underline static attributes

• derived attribute: not stored, but can  
be computed from other attribute values

• “specification fields” from CSE 331

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name : type [count] = default_value

Class operations / methods

16

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name(parameters) : return_type

• visibility
+ public

protected

- private

~ package (default)

Class operations / methods

16

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name(parameters) : return_type

• visibility
+ public

protected

- private

~ package (default)

• underline static methods

Class operations / methods

16

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name(parameters) : return_type

• visibility
+ public

protected

- private

~ package (default)

• underline static methods

• parameters listed as name : type

Class operations / methods

16

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name(parameters) : return_type

• visibility
+ public

protected

- private

~ package (default)

• underline static methods

• parameters listed as name : type

• omit return_type on constructors and 
when return type is void

Class operations / methods

16

Rectangle

- width: int
- height: int
/ area: double

+ Rectangle(w: int, h: int)
+ distance(r: Rectangle): double

Student

- name: String
- id: int
- totalStudents: int

getID(): int
~ getEmail(): String

visibility name(parameters) : return_type

Comments

17

«interface»
Cloneable

Represented as a folded note, attached to the
appropriate class/method/etc by a dashed line

Cloneable is a tagging
interface with no
methods. The clone()
methods is defined in
the Object class.

Relationships between classes

18

• Generalization: an inheritance relationship
• inheritance between classes

• interface implementation

• Association: a usage relationship
• dependency

• aggregation

• composition

Generalization relationships

19

Rectangle

- x: int
- y: int

+ Rectangle(x: int, y: int)
+ distance(r: Rectangle): double

RectangularShape

- width: int
- height: int
/ area: double

+ contains(x: int, y: int): boolean
+ getArea(): double

«interface»
Shape

+ getArea(): double

Generalization relationships

19

• Hierarchies drawn top-down

Rectangle

- x: int
- y: int

+ Rectangle(x: int, y: int)
+ distance(r: Rectangle): double

RectangularShape

- width: int
- height: int
/ area: double

+ contains(x: int, y: int): boolean
+ getArea(): double

«interface»
Shape

+ getArea(): double

Generalization relationships

19

• Hierarchies drawn top-down

• Arrows point upward to parent

Rectangle

- x: int
- y: int

+ Rectangle(x: int, y: int)
+ distance(r: Rectangle): double

RectangularShape

- width: int
- height: int
/ area: double

+ contains(x: int, y: int): boolean
+ getArea(): double

«interface»
Shape

+ getArea(): double

Generalization relationships

19

• Hierarchies drawn top-down

• Arrows point upward to parent

• Line/arrow styles indicate if parent is a(n):
• class: solid line, black arrow

• abstract class: solid line, white arrow

• interface: dashed line, white arrow

Rectangle

- x: int
- y: int

+ Rectangle(x: int, y: int)
+ distance(r: Rectangle): double

RectangularShape

- width: int
- height: int
/ area: double

+ contains(x: int, y: int): boolean
+ getArea(): double

«interface»
Shape

+ getArea(): double

Generalization relationships

19

• Hierarchies drawn top-down

• Arrows point upward to parent

• Line/arrow styles indicate if parent is a(n):
• class: solid line, black arrow

• abstract class: solid line, white arrow

• interface: dashed line, white arrow

• Often omit trivial / obvious generalization
relationships, such as drawing the Object class
as a parent

Rectangle

- x: int
- y: int

+ Rectangle(x: int, y: int)
+ distance(r: Rectangle): double

RectangularShape

- width: int
- height: int
/ area: double

+ contains(x: int, y: int): boolean
+ getArea(): double

«interface»
Shape

+ getArea(): double

Associational (usage) relationships

20

Class A Class B

contains

1..* k

Associational (usage) relationships

20

1. Multiplicity (how many are used)
• * (zero or more)

• 1 (exactly one)

• 2..4 (between 2 and 4, inclusive)

• 3..* (3 or more, * may be omitted)

Class A Class B

contains

1..* k

1 1

Associational (usage) relationships

20

1. Multiplicity (how many are used)
• * (zero or more)

• 1 (exactly one)

• 2..4 (between 2 and 4, inclusive)

• 3..* (3 or more, * may be omitted)

2. Name (what relationship the objects have)

Class A Class B

contains

1..* k

1

2

1

Associational (usage) relationships

20

1. Multiplicity (how many are used)
• * (zero or more)

• 1 (exactly one)

• 2..4 (between 2 and 4, inclusive)

• 3..* (3 or more, * may be omitted)

2. Name (what relationship the objects have)

3. Navigability (direction)

Class A Class B

contains

1..* k

1

2

3

1

Association multiplicities

21

• One-to-one
• Each car has exactly one engine.

• Each engine belongs to exactly one car.

• One-to-many
• Each book has many pages.

• Each page belongs to exactly one book.

Car Engine1 1

Book Page1 *

Association types

22

Car Engine1 1

Association types

22

• Aggregation: “is part of”
• symbolized by a clear white diamond

Car Engine1 1

Association types

22

• Aggregation: “is part of”
• symbolized by a clear white diamond

• Composition: “is entirely made of”
• stronger version of aggregation

• the parts live and die with the whole

• symbolized by a black diamond

Car Engine1 1

Book Page1 *

Association types

22

• Aggregation: “is part of”
• symbolized by a clear white diamond

• Composition: “is entirely made of”
• stronger version of aggregation

• the parts live and die with the whole

• symbolized by a black diamond

• Dependency: “uses temporarily”
• symbolized by dotted line

• often is an implementation detail, not
an intrinsic part of the object's state

Car Engine1 1

Book Page1 *

Lottery Random

Aggregation / composition example

23

• If the movie theater goes away
• so does the box office: composition

• but movies may still exist: aggregation

MovieTheater BoxOffice1 1

Movie

*

*

Class diagram example: video store

24

DVD VHS Game

Rental Item

Rental Invoice

1..*
1

Customer

Checkout Screen

0..1

1

Multiplicity

Aggregation

Composition
Association

Class

Abstract class

Generalization

Class diagram example: people

25

Let’s add visibility
attributes.

StudentBody

+ main (args : String[])

+ toString() : String

- firstName : String
- lastName : String
- homeAddress : Address
- schoolAddress : Address

+ toString() : String

- streetAddress : String
- city : String
- state : String
- zipCode : long

Address

Class diagram example: student

26

1 100
Student

Tools for creating UML diagrams

27

• Violet (free)
• http://horstmann.com/violet/

• Rational Rose
• http://www.rational.com/

• Visual Paradigm UML Suite (trial)
• http://www.visual-paradigm.com/

• There are many others, but most are commercial

What (not) to use class diagrams for

28

What (not) to use class diagrams for

28

• Class diagrams are great for:
• discovering related data and attributes

• getting a quick picture of the important entities in a system

• seeing whether you have too few/many classes

• seeing whether the relationships between objects are too
complex, too many in number, simple enough, etc.

• spotting dependencies between one class/object and another

What (not) to use class diagrams for

28

• Class diagrams are great for:
• discovering related data and attributes

• getting a quick picture of the important entities in a system

• seeing whether you have too few/many classes

• seeing whether the relationships between objects are too
complex, too many in number, simple enough, etc.

• spotting dependencies between one class/object and another

• Not so great for:
• discovering algorithmic (not data-driven) behavior

• finding the flow of steps for objects to solve a given problem

• understanding the app's overall control flow (event-driven?
web-based? sequential? etc.)

Summary

29

• A design specifies the structure of
how a software system will be written
and function.

• UML is a language for describing
various aspects of software designs.

• UML class diagrams present a static
view of the system, displaying classes
and relationships between them.

