UMTS Release 99 (2000)

- Based on GSM,
 - Backward compatible with GSM,
 - Interoperation between UMTS and GSM,
- Definition of the UTRAN
- □ UTRA
 - UMTS FDD (W-CDMA)

UMTS Release 4 (2001)

- Separation of user data flows and control mechanisms,
- UMTS TDD Time Division CDMA (TD-CDMA),
 - High data rate with UMTS TDD 3.84 Mchips/s,
 - Narrowband TDD with 1.28 Mchips/s,
- □ Position location functionality.

Mobile Communication

Wireless Telecommunication 90

UMTS Standardization

UMTS Release 5 (2002)

- End-to-end packet switching based on IP (IMS)
- Downlink data rate of over 10 Mbps (HSDPA),
- GSM EDGE Radio Access Network (GERAN).

UMTS Release 6 (2004)

- □ IMS "Phase 2" (IMS messaging, conferencing and Group Management),
- □ High Speed Uplink (HSUPA) ,
- D Multimedia Broadcast / Multicast Service (MBMS) ,
- UWLAN interworking .

Mobile Communication

Wireless Telecommunication 91

UMTS Standardization

UMTS Release 7 (2007)

- D Enhanced Uplink, other spectrum,
- □ Multiple Input Multiple Output antennas (MIMO),
- □ IMS Emergency Call handling.

3GPP Release 8 (2009)

- GODE CONTINUES AND A STREAM OF CONTINUES
- □ Successor to UMTS,
- □ Sometimes called 3.9G.

3GPP Release 10 (expected in 2011)

- Long Term Evolution Advanced 4G,
- □ Full ITU-R 4G requirement compliant (peak download rate 1Gbit/s)
- Dessible technologies: Scalable spectrum 20-100Mhz, Cognitive Radio ...

HSPA

High Speed Packet Access

- An extension with increased data rates for UMTS consisting of HSDPA and HSUPA
- Optimization is achieved by:
 - Up to 14 Mbps downlink and 5.8 Mbps uplink
 - Lower delay (latency)
- HSPA can usually be achieved through a software upgrade to existing UMTS networks
- Most GSM/UMTS network operators have already introduced HSPA.

Mobile Communication

Wireless Telecommunication 93

HSDPA

High Speed Downlink Packet Access

- Enables in current specification of UTRAN up to 14 Mbit/s downlink data rates
- First, network operators offered a 3.6 Mbit / s version
- Since 2008, network operators also offer 7.2 Mbit / s
- Part of Release 5 of 3GPP
- Can be used for UTRAN FDD and TDD
- Uses the 16QAM modulation scheme
- HSDPA requires a 5 MHz band (already used in Germany for UMTS)
- Transmission power in a whole cell is optimized and the data rate adjusted accordingly, rather than just for one channel, all possible channels are used for data transmission
- Voice traffic has always higher priority

Mobile Communication

Wireless Telecommunication 94

HSDPA

Modulation	FEC coding	5 channels	10 channels	15 channels
QSPK	1/4	0,6 Mbit/s	1,2 Mbit/s	1,8 Mbit/s
	2/4	1,2 Mbit/s	2,4 Mbit/s	3,6 Mbit/s
	3/4	1,8 Mbit/s	3,6 Mbit/s	5,4 Mbit/s
16QAM	2/4	2,4 Mbit/s	4,8 Mbit/s	7,2 Mbit/s
	3/4	3,6 Mbit/s	7,2 Mbit/s	10,7 Mbit/s
	4/4	4,8 Mbit/s	9,6 Mbit/s	14,4 Mbit/s

Mobile Communication

HSUPA

High Speed Uplink Packet Access

- Part of 3GPP Release 6
- Increases the maximum uplink rate of UMTS up to 5.8 Mbps
- Employs up to 6 codes simultaneously
- Less error-prone BSPK is used

Mobile Communication

Wireless Telecommunication 96

HSPA

UMTS	2004	Downlink	0,384 Mbit/s	
		Uplink	0,064 Mbit/s	
HSPA	2006	Downlink	1,8 Mbit/s	
		Uplink	0,384 Mbit/s	
HSPA	2007	Downlink	3,6 Mbit/s	
		Uplink	1,8 Mbit/s	
HSPA	2008	Downlink	7,2 Mbit/s	
		Uplink	3,6 Mbit/s	

Mobile Communication

Wireless Telecommunication 97

HSPA

Latency (ping) comparison

GPRS	600 ms and more	
EDGE (EGPRS)	400 to 500 ms	
UMTS	200 to 300 ms	
UMTS with HSPA	100 to 200 ms	

Mobile Communication

Transmission technologies for more effizient spectrum utilization

- 64QAM in downlink
- 16QAM in uplink
- MIMO (Multiple Input Multiple Output)
- Introduction by T-Mobile, Vodafone and O2 in 2009 in Germany and Spain

Spezifikation	HSDPA (Downstream)	HSUPA (Upstream)	
HSPA+ Release 7	28,0 MBit/s	11,5 MBit/s	
HSPA+ Release 8	42,2 MBit/s	11,5 MBit/s	
HSPA+ Release 9	84 MBit/s	11,5 MBit/s	

Mobile Communication

Wireless Telecommunication 99

LTE - Long Term Evolution

Innovations

- 20MHz-wide channels (UMTS only 5 MHz) in 2.6 GHz band
- Frequency allocation in 2010
- OFDMA with 64QAM
- MIMO (such as HSPA + and 802.11n)
- Target real-world data rates of 100 Mbps downlink and 50 Mbps.
- Theoretically 326.4 Mb/s for 4x4 antennas and 172.8 Mbit/s for 2x2 antennas are possible on a 20 Mhz band.
- easy integration into existing UMTS / GSM networks and simple architecture with self-configuring base stations

Mobile Communication

Wireless Telecommunication 100

Femtocells: Small UMTS "customer premesis, BTS

- short-range, for example 10-20 m
- Increased service provision in buildings,
- Decreased spectrum pollution of regular (macro) cells by indoor users.
- although operated by the mobile network operator (MNO), the femto cell conects through the user's private DSL/Cable as backhaul to the MNOs core network.

- Alternative to WiFi at homes of private customers, but due to usage of licensed spectrum, only available as a MNO service.
- Advantages:
 - homogeneous network infrastructure facilitates uninterrupted handover
 - no dual-mode (WLAN / UMTS) terminals required
- Challenges:
 - femto-femto interference an femto-macro interference
 - Dual-mode handsets (smartphones) are highly prevalent as of 2010
- Recent discussion:
 - Instead of femto cells, available 802.11 networks can be used with dual mode handsets to carry encapsulated UMTS packets via IP tunnel to MNOs core network.
 - Similar (macro) cell offloading effect

Mobile Communication

Wireless Telecommunication 102

Fourth-generation cellular networks (4G)

The term 4G is associated with the integration of WLAN, WiMAX and LTE in cellular networks and the availability of much higher bandwidth (100-1000 Mb/s in real terms)

ITU (International Telecommunication Union) defines 4G as follows:

- □ 100 Mb / s, fully mobile use
- □ 1 Gbit / s in nomadic use

The spectrum for 4G was set by WRC (World Radiocommunication Conference) in October 2007

http://www.itu.int/newsroom/press_releases/2007/36.html

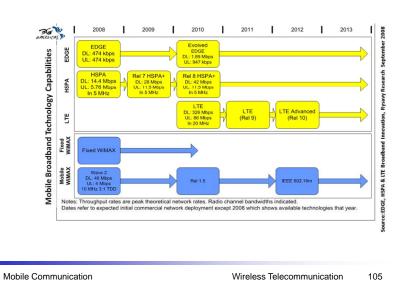
Samsung demonstrated in 2006 at a 4G Forum in Jeju Island, Korea a 4G bus with 100 Mbit/s at 60 km/h and 1 Gbit/s nomadic throughput.

Competing technologies: WiMAX and 3GPP LTE

Mobile Communication

Wireless Telecommunication 103

Comparison of 3G and 4G


3G

- Backward compatible to 2G
- Circuit and Packet Switched Network
- Combination of existing & evolved equipment
- Data rate up to 2Mbps

4G

- Convergence of WLAN with cellular networks
- completely Packet Switched Network (All-IP)
- All network elements are digital
- Higher bandwidth, for example 100-1000Mbps
- Expansion of 3G capacity
- With LTE possibly backwards compatible elements of 3G networks

Generation 4 (4G) evolution paths to 4G

Innovations for 4G

- Modulation and multiple access techniques
 Particular combination of OFDM with CDMA and TDMA
- Multiple antenna techniques
 - Minimization of multipath and similar problems by using multiple antennas at base stations and mobile stations
- All IP networks
 - □ Starting point: many private wireless access networks, usually based on 802.11, etc.
 - □ IP as a common platform
 - Commercial use based on AAA protocols (Authentication, Authorization and Accounting)
- News on 4G e.g. <u>http://www.4g.co.uk/</u>

Mobile Communication

Wireless Telecommunication 106

Innovations for 4G

- Components of 4G Standardization:
 - 🗆 UWB
 - 🗆 802.11n
 - SDR
 - □ 802.16-2005 (formerly 802.16e)
 - 🗆 802.16m
 - □ 3GPP LTE (evolution of UMTS)

- 5G is a research term, not currently used for a certain specification,
- It is expected in year 2020 with following possible properties
 - □ All IPv6
 - One unified global standard
 - □ Seamless Vertical handover (5G WLAN/WPAN)
 - Multiple concurrent data transfer paths
 - □ High Altitude stratospheric Platform Stations (HAPS)
 - Quasi stationary aircrafts at ~ 20 km altitude
 - High throughput mobile data services.
 - Mesh like interconnection of HAPS
 - □ Lower cost than satellites and shorter round trip time.

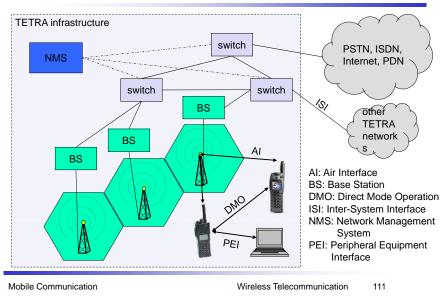
Mobile Communication

Wireless Telecommunication 108

5th Generation – Examples of HAPS

Mobile Communication

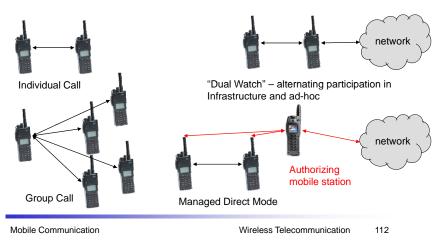
Wireless Telecommunication 109


TETRA - Terrestrial Trunked Radio

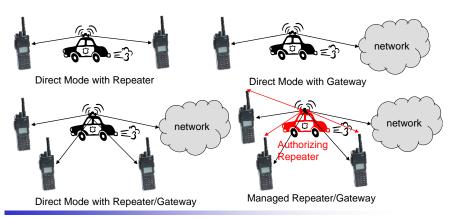
Trunked radio systems

- many different radio carriers
- assign single carrier for a short period to one user/group of users
- □ taxi service, fleet management, rescue teams
- □ interfaces to public networks, voice and data services
- □ very reliable, fast call setup, local operation

TETRA - ETSI standard


- □ formerly: Trans European Trunked Radio
- □ point-to-point and point-to-multipoint
- encryption (end-to-end, air interface), authentication of devices, users and networks
- group call, broadcast, sub-second group-call setup
- □ ad-hoc ("direct mode"), relay and infrastructure networks
- □ call queuing with pre-emptive priorities

TETRA – Network Architecture


TETRA – Direct Mode I

Direct Mode enables ad-hoc operation and is one of the most important differences to pure infrastructure-based networks such as GSM, cdma2000 or UMTS.

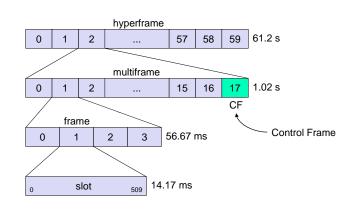
TETRA – Direct Mode II

An additional repeater may increase the transmission range (e.g. police car)

Mobile Communication

Services

- □ Voice+Data (V+D) and Packet Data Optimized (PDO)
- □ Short data service (SDS)


Frequencies

- Duplex: FDD, Modulation: DQPSK
- □ Europe (in MHz, not all available yet)
 - 380-390 UL / 390-400 DL; 410-420 UL / 420-430 DL, 450-460 UL / 460-470 DL; 870-876 UL / 915-921 DL
- Other countries
 - 380-390 UL / 390-400 DL; 410-420 UL / 420-430 DL, 806-821 UL / 851-866 DL

Mobile Communication

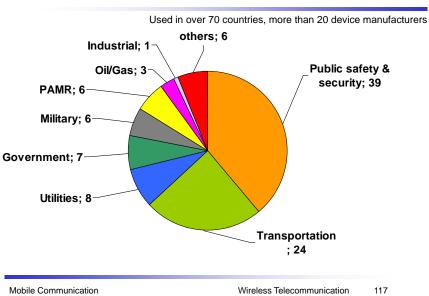
Wireless Telecommunication 114

TDMA structure of the voice+data system

Mobile Communication

Wireless Telecommunication 115

TETRA – Data Rates


Infrastructure mode, V+D in kbit/s					
No. of time slots	1	2	3	4	
No protection	7.2	14.4	21.6	28.8	
Low protection	4.8	9.6	14.4	19.2	
High protection	2.4	4.8	7.2	9.6	

TETRA Release 2 - Supporting higher data rates

□ TEDS (TETRA Enhanced Data Service)

□ up to 100 kbit/s

□ backward compatibility

TETRA – Contracts by Sector (percentage)