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ABSTRACT: Antenna 3D pattern measurement can be a tedious and time-consuming task even 
for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by 
scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this 
paper, with the aim of minimum duration of the flight, a test scenario using unmanned aerial vehicles 
(UAV) is proposed. A practically optimal scanning strategy is presented. The suggested techniques are 
beneficial particularly for the case of large directive antennas. The UAV follows a predefined trajectory 
in the scanning windows around the AUT and reads the field strength. Then, using compressed sensing 
(CS) method, the antenna pattern is reconstructed. It is shown that applying Bayesian CS algorithm to 
the samples of field intensity gathered by UAV can efficiently reconstruct the pattern. Discrete Cosine 
Transform (DCT) is utilized for sparsifying the antenna patterns. Performance is evaluated by obtaining 
the reconstructed patterns for different antenna types. The effects of the antenna type and area of scanning 
are analyzed. It is shown that satisfying performance can be achieved by  measuring about 50 percent of 
the total pattern samples. The reconstruction error of different CS implementations is computed and the 
superiority of Bayesian CS is illustrated.
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1- Introduction
The radiation pattern of an antenna under test is generally 
measured in anechoic chambers. This is the preferred test set 
up due to its good accuracy, its control over environmental 
conditions and being less prone to electromagnetic 
interference.  Both near field and far field measurements may 
be conducted [1]. For electrically large antennas, outdoor 
range or compact ranges may be the choice [2, 3]. In some 
situations, evaluation of the electrical behavior of AUT in 
its operational conditions is required [4, 5]. Characterization 
of an antenna mounted on an aircraft or antennas in an 
antenna farm are some examples of these conditions. In these 
situations, in-situ measurements are performed.
Quadcopters and drones are unmanned aerial vehicles 
(UAVs) that can potentially be used for onsite measurements. 
Similar to the anechoic chamber test scenarios, practical UAV 
measurements can be performed in the near field (NF) or far 
field (FF) regions [6, 7]. 
In NF methods, the measurements are performed in the 
proximity of AUT [8]. Then equivalent surface currents 
are computed based on the measured data [9]. Knowing 
the equivalent surface currents, the desired FF pattern is 
obtained. The accuracy of the reconstructed pattern depends 
on the accuracy of the positioning mechanism. Normally, 
computing the equivalent surface currents is easier if both 
amplitude and phase information exist.  However, in most 
outdoor range cases it is not practical to perform phase 
measurements. Therefore, only the field strength is measured 
and the phase information of the equivalent currents is 
retrieved numerically. In iterative phase retrieval techniques, 

the samples are collected on two or more acquisition surfaces. 
The spatial variation of the field distribution against distance 
in the AUT NF region is necessary to provide enough 
equations for the successful deployment of phase recovery 
algorithms [9]. The main drawback of the phase retrieval 
algorithms is their tendency to be trapped in local minima.
In FF measurement methods, the field is sampled in the 
Fraunhofer region. Measurements, in this case, are less 
prone to positioning errors. NF to FF is not required, as well. 
However, the FF measurements suffer longer flight paths 
which entail more flights. 
With today’s technology, cheap drones with stable navigation 
exist, but the flight duration, maximum tolerable weight, and 
battery usage are the limitations. Due to these limitations, 3D 
far field pattern cannot be measured by scanning the 4π [sr] 
solid angle around the AUT. Hence, the efficient sampling 
procedure is needed together with an efficient algorithm 
which is able to reconstruct the pattern with a minimum 
number of samples. It is shown that the compressed sensing 
method with properly selected basis functions can play this 
role. 
Sparse signal recovery has been widely used in various areas 
in recent years. If we are able to find a sparse representation of 
the desired signal in a basis domain, we can save the resources 
by reconstructing the original signal from a small number 
of measured samples. This is the idea behind Compressed 
Sensing (CS) techniques [10, 11]. Many applications 
ranging from image reconstruction, radar imaging and target 
detection, sensor networks and in general, data compression 
methods may benefit from CS [23-30]. 
The CS is applied to FF samples; hence, it reconstructs the 
pattern from the phaseless data. Consequently, it requires Corresponding author, E-mail: 
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lower computational resources compared to those methods 
which need to perform phase retrieval algorithms. Also, 
it does not trap in local minima. Here, we propose to use 
Bayesian CS (BCS). Bayesian approach assumes a prior 
probability distribution for the unknown parameters of the 
model. The observations are supposed to be generated from a 
known probability distribution conditioned on the unknown 
parameters. Thus,  the unknown parameters’ posterior 
probability distributions are inferred through Maximum  A 
Posteriori (MAP) estimation. This way, instead of point 
estimation, a probability distribution is acquired for unknown 
parameters which can give us the capability to adaptively fit 
the model to data, select the model order or complexity and 
obtain the error estimation which can be exploited to optimize 
the model.
Bayesian version of the CS model is applied to the problem 
of antenna pattern reconstruction due to several benefits of 
Bayesian modeling mentioned above. Bayesian compressed 
sensing technique is used to construct the FF pattern from 
a small number of measurements. The performance of the 
Bayesian framework is studied and the results are analyzed 
and compared with classical CS reconstruction techniques. 
The remainder of this paper is organized as follows. In 
section 2, the main idea of Bayesian CS is explained. In 
section 3, the scanning strategy of the UAV and the test 
scenario are described. The results of the reconstructed 
patterns for different antenna types are presented in section 4. 
In section 5, the performance of two distinct implementations 
of the reconstruction algorithm is explored. Some conclusive 
remarks are presented in section 6.

2- Sparse reconstruction techniques
Suppose that we have a data vector 1n×x  which can be sparsely 
represented in the Discrete Fourier Transform (DFT) basis:

,x s= Φ 					              (1)

where n n×Φ  is the DFT matrix and 1n×s  is a sparse vector 
with k n<<  non-zero elements. Now we can sample the data 
vector x  by the measurement matrix m n×A  and obtain the 
measured vector with dimension m  which is significantly 
smaller than the data size n :

1 .my Ax A s s× = = Φ = Ψ  			                          (2)

Here, m n×Ψ = ΑΦ  contains the rows of the basis matrix Φ 
corresponding to the measured samples. Thus,  the samples 
in y   can be a subset of size m  of the samples in x or a linear 
combination of these m  samples. In a typical CS model, the 
observation vector y  is affected by measurement noise, 
as well. The noise effect can be considered as an additive 
Gaussian noise vector ε with a zero-mean:

.y s ε= Ψ +  				                            (3)
Our objective is to reconstruct the original data x  from the 
measured samples in y . In other words, we desire to solve the 
following optimization problem:

{ }2

2 0
ˆ arg min - ,

s
s y s sλ= Ψ + 		                        (4)

where 
0

sλ  is the regularization term imposing the sparsity 
to the solution. Since the above problem with l0-norm 
constraint is NP-hard, we simplify it by applying l1-norm 
instead:

{ }2

2 1
ˆ arg min - .

s
s y s sλ= Ψ + 		                           (5)

Subsequently, the reconstructed signal x̂   can be achieved 
through multiplying the sparse vector ŝ  by the inverse DFT 
matrix Φ-1: 

1 ˆˆ .x s−= Φ 				                               (6)

CS reconstruction error depends on the sparsity level of x  
and on the incoherency among the sparsity basis vectors Φ 
and the measurement matrix A  [11]. It has been shown that 
randomly sampled matrices have low coherency with most 
of the representation bases, hence  they can be utilized to 
achieve minimum reconstruction error [10, 11]. In [12, 13], 
some deterministic techniques are introduced to  determine  
the sampling matrix A .
Many approaches have been proposed in the literature to  
solve  the above optimization problem, including linear 
programming algorithms, basis-pursuit, matching-pursuit, 
etc. [5-9].  
 In [19-22], compressed sensing problem is formulated in a 
Bayesian framework which is more effective in many aspects. 
Bayesian approach assumes that the elements of the vector 
s are random variables drawn from an assigned sparse prior 
distribution to impose sparsity to the solution. Therefore, 
the observation vector y  is also random with conditional 
distribution ( | , )nP y s Σ  where ∑n is the noise variance. 
Variational Bayesian techniques or sampling Markov 
Chain Monte Carlo (MCMC) method can be employed 
to infer the unknown parameters and estimate the sparse 
vector s.  Bayesian approach has many advantages over 
deterministic formulation. The main advantage is that instead 
of point estimation, we obtain a distribution for the unknown 
elements of s  via MAP estimation which is more accurate; 
this can give us an estimation of the reconstruction error and 
help in optimizing the measurement matrix to reduce the 
uncertainty of the estimated sparse vector. Furthermore, noise 
posterior distribution can be inferred. As can be observed in 
the experiments, the Bayesian method outperforms other 
formulations in terms of the reconstruction error. Regarding 
the above advantages, we propose a pattern reconstruction 
technique based on Bayesian compressed sensing. We adopt 
the formulation proposed in [19] where a hierarchical form 
of Laplace distribution is assumed as a sparse prior imposed 
on s :

1
( | ) exp( ),

2 2
P λ λλ −

=s s 			                         (7) 

where λ controls the sparsity level. It is obvious that 
choosing the Laplace prior and obtaining the MAP estimation 
is equivalent to l1 regularization in the non-Bayesian 
framework. The observation noise is supposed to be a 
zero-mean Gaussian with the variance of 1β − . Hence, the 
generative model of the observed vector y  is as follows [19]:

1( | , ) ( | , ).P y s N y sβ β −= Ψ  	  	                            (8)

A Gamma prior distribution is enforced on β  parameter 
which again imposes sparsity. Bayesian inference update 
equations can be found in [19].
The comparison among different CS techniques is presented 
in the experiments section and will exhibit the superior 
performance of the Bayesian method.
Different applications make use of various transforms for the 
purpose of sparse representation. For example, DFT matrix 
can be exploited as a linear transform to make the data sparse 
as explained above. Another common basis matrix is Discrete 
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Cosine Transform (DCT) which contains real basis functions 
in contrast to the DFT with complex values. Wavelet is an 
example of a non-linear transform which is commonly 
deployed for sparse representation in some applications. For 
the current problem of antenna pattern reconstruction, we 
prefer the DCT basis matrix rather than the other mentioned 
transforms due to its better results proven empirically.   

3- Implementation
Drones are good candidates to sample the field strength in 
space, however, they suffer from some limitations that make 
their usage for antenna pattern measurements problematic. 
To obtain the antenna pattern, samples on the surface of a 
fictitious sphere around AUT in the far field should be 
collected. But drones are more controllable in horizontal 
planes rather than spherical surfaces. This makes the scanning 
strategy, together with the positioning system, the key factors 
of acquiring accurate measurements. 
From electromagnetic theory it is known that in the far field, 
the Sommerfeld radiation condition is satisfied [1]:

0( , , ) ( , ) ,
jkrer

r
θ ϕ θ ϕ

−

=E E 				           (9)

where E  is the electric field vector and k is the wave number 
in free space. In our notations, vectors are indicated in 
boldface letters. The radiation intensity then is defined as:

2 2 22 0 01( , ) ( , , ) ( , ) ( , ) .
2 2
rU r E Eθ ϕθ ϕ θ ϕ θ ϕ θ ϕ
η η

 = = +  
E 	       (10)

The data collection strategy is depicted in Fig. 1a and 1b. Fig. 
1a shows the horizontal planes where the UAV reads the field 
strength and Fig. 1b illustrates the trajectory of UAV on that 
plane. Suppose that 2mE is the field strength at the observation 
point m on nth measurement plane. With respect to the global 
coordinate system defined in Fig.1, the observation vector has 
xm, ym and zm components. Correspondingly, in a spherical 
coordinate system this vector consists of rm, θm, φm elements:

2 2 2
2( , ) ( , , ) .

2
m m m

m m m m m m m

x y z
U x y zθ ϕ

η

 + + = E 	       (11)

Our goal is to reconstruct the antenna pattern from a small 
number of field strength measurements. The CS idea 
discussed in section II can be well adapted with the problem at 
hand. We first need  to determine the strategy of scanning and 
data acquisition. Suppose that in each flight the drone collects 
samples from the sector of x y∆ ×∆  on the horizontal plane 
with the height of zm. Each point on the scanning plane can 
be mapped on the radiation sphere around the AUT. Equation 

(10) can be used to find the radiation intensity in that specific 
direction. Therefore, each scanning plane determines a sector 
of Δθ×Δφ in space. 
Ultimately, a matrix of collected data can be constructed. Fig 2 
demonstrates the image like the representation of this matrix. 
The bright rectangles define the areas that are sampled by 
the drone during each flight. The dark areas indicate regions 
with no sample collected. In this example, it is supposed that 
we can only take samples on every 3 degrees. This means 
that the total number of points in Fig.2 is 121 61×  where the 
first dimension corresponds to swiping values of ϕ  and the 
second one denotes θ  variations. Thus,  the size of the data 
vector x  to be reconstructed is 7381. As mentioned before, 
the trajectory of the drone in each rectangular area can be a 
path like the one depicted in Fig.1. 
Generally, x, y, z components of Cartesian coordinate can 
be readily transferred to , ,r θ ϕ   components of spherical 
coordinate: 2 2 2 1 1, cos / , tan /r x y z z r y xθ ϕ− −= + + = = .
The scanning planes are linearly sampled by the trajectories 
depicted in Fig.1b. Then, these samples are mapped on the 
spherical surface as shown in the left-hand side of Fig. 1. This 
makes the sampling on spherical coordinate non-uniform. 
However, these non-uniform samples in spherical coordinate 
are located in bright windows of Fig. 2. In other words, 
scanning planes defined by Δx.Δy are mapped to the bright 
Δθ.Δφ windows.
The CS algorithm may be applied to this image-like 
representation of a filled matrix in two different ways. In the 
first approach, the sample values are rearranged and stacked in 

                           
(a)                                                                                         (b)

Fig. 1. (a) Scanning planes (b) The trajectory of UAV

Fig. 2. Image-like representation of collected data
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a vector. Then, the CS algorithm tries to find the field strength 
at the points that have no measured data. In other words, the 
field strengths at the dark sectors in Fig.2 are reconstructed.
In the second approach, CS is applied to the individual columns 
and rows of the data matrix instead of stacking the matrix and 
applying the algorithm to a large vector. In the first stage, 
we try to estimate the missed samples at each column. Then, 
utilizing the reconstructed values of the previous stage, we 
apply CS to the individual rows of the matrix. These two steps 
can be executed iteratively for the purpose of diminishing the 
reconstruction error. It is demonstrated in section IV that the 
second approach can lead to a better performance in terms of 
the reconstruction error when the number of measurements 
exceeds a certain limit. The reason is that in this approach the 
spatial information of the data matrix is preserved in contrast 
to the first approach in which the adjacency information of 
the sampled values is disregarded by stacking the whole 
samples in a vector. Moreover, we generally are interested to 
know the pattern in specific cuts of φ = const. or θ = const. 
The second approach can be used to reconstruct the pattern 
on that specific cut. Hence, it is not required to collect data 
and perform measurements in other points.
It should be noted that the order in which the missed samples 
are reconstructed, i.e. starting by columns or rows, depends 
on the known prior information about the pattern shape. 
For instance, when the pattern variations in an image like 
representation are sharper in rows, the algorithm should start 
with rows.
To clarify the proposed pattern measurement and 
reconstruction process, a flowchart of the methodology 
is illustrated in Fig. 3. Performance of the proposed CS 
technique is examined by simulating three antennas using 
the available commercial software packages. The proposed 
method can be used for measuring the radiation pattern of 
all types of antennas ;however, for high gain antennas or 
beam shaped antennas choosing the scanning planes needs 
more attention. Supposing that the drone is only able to get 
samples on the bright rectangles demonstrated in Fig.2, 2700 
measured points are collected. Therefore, the CS algorithms 
have to find the field strength at the remaining 4681 points 
based on the information gathered from those 2700 samples. 
Referring to the notations used in section II, we first apply 
DCT transform to the data vector x  to acquire the sparse 
vector s , this is done by multiplying the data vector x  by 
the DCT matrix. DCT is preferred over DFT since the applied 
CS techniques deal with real data. Subsequently, m samples 
out of n are measured in the vector y . Therefore, the matrix 
Ø  is made by picking m corresponding rows of the inverse 
DCT matrix. The results are reported for three antenna types. 

The success of applying various CS techniques as well as the 
impact of the number of samples on pattern reconstruction is 
investigated. 
Bayesian CS is implemented based on the algorithm 
explained in section II. The Bayesian method is compared 
with the existing classic CS algorithms, including Matching 
Pursuit (MP) [7] and Stage-wise Orthogonal Matching 
Pursuit (StOMP) [8].

4- Experiments and results
Three types of antennas are simulated and the patterns are 
computed.  These patterns are used as the reference data sets 
and are sampled based on the sampling method described in 
section III. Afterwards, the CS algorithms are applied to these 
sampled values in order to find field strengths at the remaining  
points of interest. The constructed patterns are compared with 
the reference ones and the reconstruction errors are computed. 
Sparsity parameter of the Laplace distribution in Eq. 7 is set 
to 2λ = . Hyperparameters of Gamma distribution in Eq. 8 
are chosen 0.2 for shape parameter and 1 for scale parameter. 
The criterion of root mean square is used to  calculate the 
error. Since the patterns are normalized, the reconstruction 
errors of different antenna types are comparable. Based on 
these reconstruction errors,  successfulness of the algorithms 
is evaluated.

Fig. 3. Block diagram of the proposed methodology

Fig. 4. The shape of the pyramidal horn antenna
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a)Pyramidal Horn Antenna
As the first experiment, a horn antenna is studied. The 
geometry of this antenna is shown in Fig.4 and its 3D pattern 
is represented in Fig. 5. The horn antenna is an example of 
directive antennas. The directivity of this AUT is 9dB at 10 
GHz. The Horn antenna in this example is constructed by 
23.87mm×11.17mm rectangular waveguide terminated in 
31.5mm×18.8mm aperture. The samples are gathered based 
on the scenario described in section 2. The total number of 
samples is 121×61. 
If we need to find a pattern in a specific cut or solid angle, we 
can just measure the pattern at some points around that region 
and then find the pattern at the points in between. 
Fig. 6 compares the reconstruction error of the Bayesian CS 
algorithm with two other classical CS techniques, i.e. MP and 
StOMP. For this goal, the Root Mean Square Error (RMSE) 
is calculated versus different numbers of measured samples. 
The samples were measured in 12 rectangles with specified 
φ0, θ0. To alter the number of samples, Δφ and Δθ are varied. 
The graphs manifest the better performance of the Bayesian 
method. 
For a fixed number of measured samples, the results 
are achieved by averaging over several arrangements 
corresponding to different φ0 values for each rectangle. 
Figs. 7 and 8 exhibit the reference pattern together with 
the reconstructed ones achieved for different numbers 

of measurements at two different cuts of φ=0 and φ=90 
respectively. As can be  observed in the figures, the main lobe 
is reconstructed quite well. However, the back lobe suffers 
more degradation mainly due to lower samples gathered from 
those angles. 

Fig. 5. 3D pattern of simulated Pyramidal Horn

Fig. 7. H-plane cut of pyramidal horn.

Fig. 8.  E-plane cut of pyramidal horn.
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Fig. 6.  RMSE error of different CS techniques applied to the 
horn antenna vs the number of measurements

Fig. 9. 3D pattern of the simulated LPDA
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b) Log-Periodic Antenna
The second example is an LPDA.  The simulated 3D pattern 
is illustrated in Fig. 9. The total number of samples is 121×61, 
i.e. 7381 samples are read and fed to the CS algorithm.
Again, the performance of BCS is compared with MP and 
StOMP. Fig. 10 reveals that BCS is more successful in 
reconstructing the pattern. The outcomes of BCS algorithm 
are observed in Figs. 11 and 12 for the two cuts of φ = 0 
and θ = 90, respectively. Very good agreement exists between 
the reconstructed pattern and the main pattern even for 2590 
samples.

c) Wired Antenna
The third example is an antenna array with three-wire 
antenna elements. The effect of earth on the radiation pattern 
is simulated by deploying the Green’s function of half space 
in the model. FEKO has the feature of computing the Green’ 
function of multilayer structures. This feature is used to 
consider the effect of earth on the AUT’s radiation pattern. 
The permittivity ϵ = 5 is supposed for the ground layer. The 
3D pattern is presented in Fig.13. The range of variations of 
the elevation angle is 0<θ<90 in this case due to the presence 
of the ground. Therefore, the total number of samples is 
121×31.
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Fig. 10. RMSE error of different CS techniques applied to the 
LPDA antenna vs the number of measurements
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Fig. 11. 2D pattern cut of LPDA at φ = 0
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Fig. 12. 2D pattern cut of LPDA at θ = 90
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Fig. 14. RMSE error of different CS techniques applied to the 
wire antenna array vs the number of measurements

Fig. 15. 2D pattern cut of wire antenna array at φ = 0

Fig. 13. 3D pattern of simulated antenna array with the 
antenna topology included
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The error of reconstruction is computed for different numbers 
of samples and reported in Fig. 14. Again, the superior 
performance of the BCS method is manifested. The 2D cut of 
the reconstructed pattern at φ = 0 is demonstrated in Fig. 15 
together with the original pattern.
To examine the validity of the proposed method, several 
antenna types are considered for simulation. Horn antenna 
represents an example of high gain, directive antennas. LPDA 
exemplifies antennas with linear, horizontal polarization, and 
wire antenna array considers antenna farm problems affected 
by ground and the soil material property.

5- Discussion
In this section, we aim to compare the performance under two 
different deployment of the Bayesian CS algorithm explained 
in section III, i.e. the vectorial approach and column-row 
approach. The reconstruction error is obtained for each 
scenario and depicted against the number of measurements 
for three different antenna types discussed above. 
As can be inferred from the resulted graphs (see Figs. 16 -18), 
the column-row method is more effective when the number of 
measurements is higher than about 50% of the total number 
of samples. This can be due to the fact that under the proposed 
scanning strategy, there are very small number of measured 
samples at some rows or columns when the total number of 
measurements is smaller than 50%. The better reconstruction 
performance achieved by the column-row approach in a 
higher number of measurements can be associated with 
maintaining the spatial information in this case. 
It can be deduced that under the proposed scanning strategy, 
for the case where the number of measurements is  higher than 
a threshold (here it is obtained about 50% experimentally), 
the column-row approach leads to a better performance in 
terms of the reconstruction error criterion. We can also decide 
about the order in which we read the data samples (First rows 
or first columns) exploiting the prior information about the 
pattern, i.e. most variations occur against θ or φ.  

6- Conclusion
A pattern reconstruction technique based on Bayesian CS 
algorithm has been proposed. In this method, UAV was used 
to collect samples of field strength in the FF region of the 
AUT. The strategy of scanning has been described. The UAV 
was planned to follow the specified trajectories on horizontal 
planes. These sampling points were mapped on the surface 
of the fictitious sphere around AUT. This way, the required 
resources in terms of the time and costs of measurement have 
been reduced significantly. 
It has been illustrated in the experiments section that the 
Bayesian CS method outperforms the conventional techniques 
in terms of the reconstruction error. It was also demonstrated 
that applying the CS algorithm to the columns and rows of the 
data matrix instead of the whole data vector leads to a better 
performance because the spatial information of the samples is 
preserved in the former approach. 
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