Unbiased and Targeted Mass Spectrometry Provides Insight into Huntington's Disease Pathogenesis

<u>Todd Greco</u>, Joel Federspiel, Jaime Hutton, Jeff Cantle, Jeff Carroll, & Ileana Cristea

May 27th, 2020

Huntington's Disease: A Polyglutamine Expansion Disorder

- Monogenic neurogenerative disorder
 → Huntingtin (Htt) gene
- Htt gene \rightarrow Increased CAG repeat \rightarrow Expanded polyQ

- Massive cell loss in striatum and cortex
- Liver also selective target in HD

Normal

Huntington's Disease

Nat Rev Dis Primers (2015).

Questions

Biology of huntingtin (Htt) \rightarrow Consequence of Htt lowering therapies?

Pathophysiology of polyQ expansion (mHTT) \rightarrow Gain/loss of function?

Tissue-selective pathology \rightarrow Proteome signatures of HD?

Approaches

Identification of proximal disease-modifiers using discovery-based and targeted MS

Proteome dysfunction in the liver

Altered protein interaction dynamics in the brain

Defining Protein Markers of HD in Liver using Targeted MS

- Goal: Define liver proteome signatures for expanded polyQ Htt or loss of Htt
- Protein candidate selection
 - Unbiased liver proteome analysis (collected by Carroll lab & Evotec)
 - Genetic variants linked to age of disease onset (GeM-HD Consortium)
 - Diverse roles, including metabolism (34), cell adhesion (14), RNA processing/transport (16)
- Approach: Design targeted relative quantification 1D-LC assays using Skyline
 - Experimental spectra supplemented with Prosit predicted spectra (Gessulat et al., 2019)

+/+ Q111/+
 Striatal protein
 marker showing
 (16) cell loss

Kovalenko et al., (2018). J Huntingtons Dis. 7(1).

Dysregulated proteins in metabolism in PolyQ and KO

Dysregulated protein involved in DNA repair in Liver KO

MSH2

Dysregulation of proteins in cell adhesion and actin cytoskeleton in Liver KO

HAP40, a known Htt PPI, is reduced in PolyQ and LKO mice

Guo et al. (2019). Nature. 555(7694):117-120

Immunoaffinity Purification MS to prioritize PolyQ-dependent interactions in the

Altered protein interaction dynamics in the brain

PolyQ shift in PPI profile

Age and PolyQ-dependent Htt Interactions Have Distinct Functional Classes

Distinct PolyQ-dependent Htt Interactions in Pre-symptomatic & HD Mice

Contribution of proteome abundance?

PolyQ-dependent Interactions are not Driven by Proteome Abundance

18:S92-S113

• Similarly low overlap at the transcriptome level

Parallel Isotope-labeled IP-MS Integrates PolyQ-dependent interaction stability

Interaction Relative Stabilities are PolyQ and Age Dependent

- Age-dependent decrease in stability
- PolyQ-dependent increase in stability

How to classify PPIs stabilities versus interaction levels?

PolyQ-dependent Htt Interaction Dynamics

- Differential proteins > Late disease
- Differential protein + increased stability

> Early disease

• Suggests functional divergence within SNARE complex at stability level

HD is a whole-body disease

Biology of normal huntingtin (Htt) \rightarrow Consequence of Htt lowering therapies?

- Reinforce role of Htt in DNA repair
- Cell adhesion proteins in normal Htt function?
- Highlight proteome-interactome relationship (HAP40)

Pathophysiology of polyQ expansion (mHTT) \rightarrow Gain/loss of function?

- Potential for metabolic protein dysregulation, e.g. in fatty acid synthesis
- Distinct regulation of Htt PPIs in early and late state disease lacksquare
 - Differential effects of PolyQ on SNARE protein interaction levels and stability

Tissue-selective pathology \rightarrow Proteome signatures of HD?

Continued application of targeted MS assays across tissues (proteome, metabolome, and lipidome)

Skyline

Dr. Ileana Cristea

Acknowledgments

Dr. Joel Federspiel Dr. Jaime Hutton Dr. Joshua Justice Xinlei Sheng Bokai Song Laura Murray-Nerger Cora Betsinger Katelyn Cook **Timothy Howard** Michelle Kennedy Dawei Liu William Hofstadter Matthew Tyl Pranav Rekapalli Caroline Taber Elene Tsopurashvili Julia Edgar **Brett Phelan**

Emily Cheng

Collaborators

Dr. Jeff Carroll Dr. Jeff Cantle

Dr. Scott Zeitlin

