UNCERTAINTY ESTIMATION FOR PHOSPHORUS DETERMINATION IN STANDARD AND WASTEWATER SLUDGE SAMPLES

<u>Camelia DRAGHICI¹</u>, Cristina JELESCU², Carmen DIMA², Mihaela SICA¹

 ¹Transilvania University of Brasov, Chemistry Department, Brasov, Romania, <u>c.draghici@unitbv.ro</u>
 ²Compania Apa Brasov (Water Company), Wastewater Laboratory, Brasov, Romania

Wastewater treated sludge

- is a non-wood waste materials
- contains valuable nutrients: N and P in inorganic and organic compounds
- possible valorisation as fertiliser for agricultural purpose
 - consequently, the quality control of the wastewater sludge production is of great interest for any wastewater treatment plant laboratory

Study aim and objectives

Study aim

- analytical methods validation and uncertainty
 estimation for the measurement of total phosphorus (P_t)
- **Objectives**
 - methods validation for P_t determination in standard solutions
 - uncertainty estimation associated to the P_t in standard solutions
 - uncertainty estimation associated to the P_t in wastewaters treated sludge samples
 - **NEW and not yet imposed by Romanian legislation**

Why validation and uncertainty estimation?

We need

trustful and reliable results

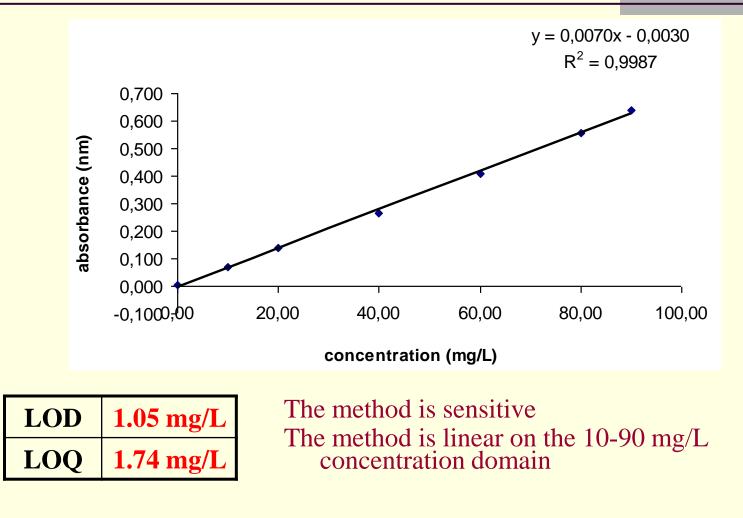
- not only sensitive methods (equipment)
- but transparent results (trust interval)

• $C = 11.002 \pm 0.1655 \text{ (mg/L)}$

trustful and transparent laboratories
R = C ± U

Validation procedure

- Concentration domain (linearity)
- Limit of detection (LOD) $x_{LOQ} = \overline{x}_{blank} + 6 \cdot s_{blank}$
- Limita of quantitation (LOQ) $x_{LOD} = x_{blank} + 3 \cdot s_{blank}$
- Precision
 - repeatability
 - intermediate precision
- Accuracy recovery test


 $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}} \quad s_x = \frac{s}{\sqrt{n}}$

$$RSD\% = \frac{s}{x} \cdot 100 \quad x \pm t \cdot s_x$$
$$R\% = \frac{CF - CU}{CA} 100$$

Robusness – against an influencing parameter

[&]quot;Analytical methods for non-wood raw materials and their products and processes", COST FP0901 meeting, Hamburg, August 19-21, 2010

Concentration domain, LOD, LOQ

Precision – by repeatability and intermediate precision

[P _t] _{theor}	$\begin{bmatrix} P_t \end{bmatrix}_{\text{theor}}$ Precision n Average RSD		RSD	S _x	Tolerance (t=2)		
[P _t] _{theor} (mg/L)	TTECISION	(mg/L) (%)	(%)	0 _x	real conc.	trust interval	
11	repeatability (RSD _r)	5	11.002	2.3784	0.0827	11.002 ±	0.1655
11	interim precision (RSD _{ip})	3x5	10.931	2.6450	0.0914	10.931 ±	0.1829

- **RSD**_r < **RSD**_{ip}
- The method is precise

Accuracy – by recovery test

Volume (mL)	Initial conc. (CU) (mg/L)	Added conc. (CA) (mg/L)	Final conc. (CF) (mg/L)	Recovery (R%)	
2	10	10	20.50	104.97	
4	10	20	30.34	103.43	
8	10	40	50.35	103.53	

- Requirements: 85% < R% < 105%</p>
- The method is accurate

Robusness

V _{ac 10%} (mL)	[Pt] _{theor} (mg/L)	[Pt] _{real} (mg/L)	Colour		
0	11	12.58	blue-grey		
8	11	11.30	blue		
16	11	2.08	incolor		

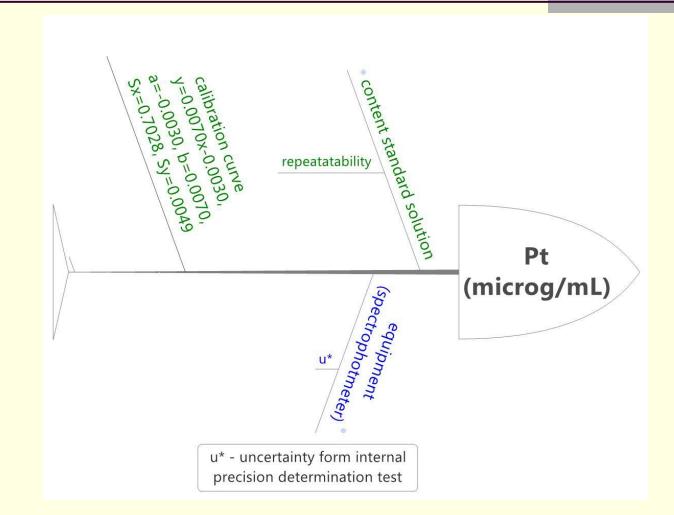
- Robustness relative to the volume of the acidic solution (10%) used for the complex formation (8 mL is the volume required by the standard)
 The method is not achieved assigned the sequence of the solution.
- The method is not robust against the volume of the acidic solution

Uncertainty estimation steps

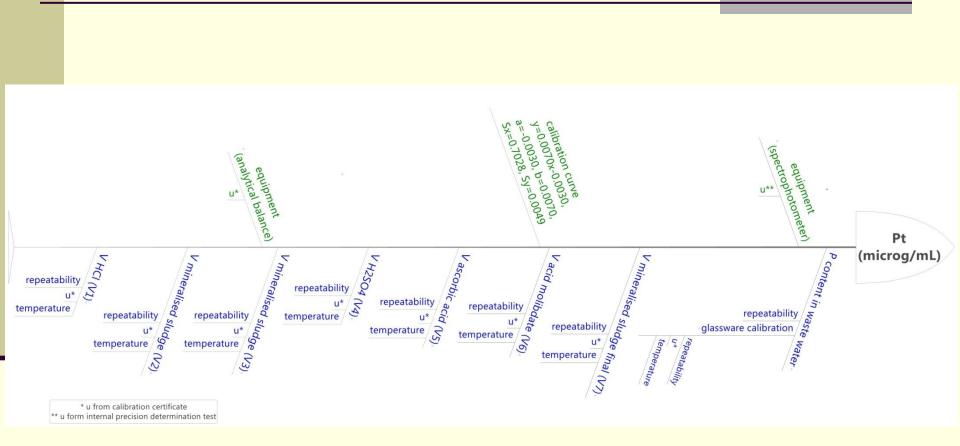
 (\mathbf{u}_r)

(U)

1. Uncertainty sources identification


Ishikawa diagrams

2. Different uncertainty types calculation


- standard uncertainty (u_x)
- relative standard uncertainty
- combined relative standard uncertainty (u_c)
- extended standard uncertainty

3. Result announcement: $\mathbf{R} = \mathbf{C} \pm \mathbf{U}$

Ishikawa diagram for the standard solution

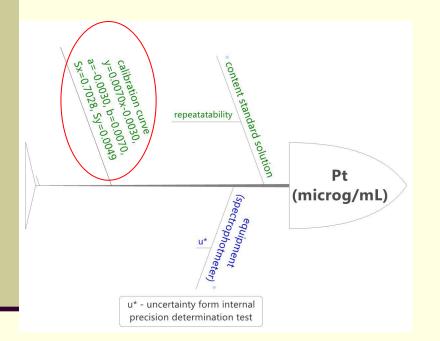
Ishikawa diagram for the wastewater treated sludge sample

Uncertainty types calculation

1. standard uncertainty (u_x)

2. relative standard uncertainty (u_r)

3. combined relative standard uncertainty (u_c)


$$u_c = \sqrt{\sum u_r^2}$$

 $u_r = \frac{u_x}{2}$

 $u_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$

4. extended standard uncertainty (U) (k=2, P=95%) $U = u_c \cdot k \cdot 100$

U estimation of P_t determined in standard solution

U source	x [P _t] (mg/L)	u _x	u _r	
Repeatability (n=5)	11.00	0.26	0.02	
Calibration curve	11.00	0.70	0.06	
Equipment	11.00	0.04	0,0006	

u _c	U (mg/L)	U (%)	Result		
0.75	1.5	13.6	11 ± 1.5 (mg/L)		

The higher contribution to the U is given by the calibration curve

U estimation of P_t determined in the wastewater treated sludge

	Pt (astance of the second of										
U source	analytical balance	repeata -bility (n=3)	V1	V2	V3	V4	V5	V6	V7	Calib. curve	Specto- photom.
x	200 mg	65.85 mg/L	25 mI	100 mL	5 mL	8 mL	1 mL	2 mL	100 mL	65.85 mg/L	65.85 mg/L
u _x	u _x 0.2 9.4373 0.0437 0.1488		0.0074	0.0154	4 0.0074	0.0074	0.1488	0.7028	0.0409		
u _r	0.0010	0.1433	0.0017	7 0.0015	0.0015	0.0019	9 0.0074	0.0037	0.0015	0.0107	0.0006
u _c	U (mg/I	L) U	(%)	Result		1.5 < 18.96 (mg/L); 13.6 < 28.80				(%)	
9.4824	18.96	28	3.80	65.85 ± 18.96 (mg/L)			$\mathbf{U}_{\mathrm{standard}} < \mathbf{U}_{\mathrm{wastewater sludge}}$				

The higher contribution to the U is given by the repeatability

Conclusions

1. The method was validated for the concentration interval required by the Romanian standard

- linear, sensitive, precise, accurate
- not robust (relative to the acidic solution concentration)
- **2. The uncertainty was estimated** for the P_t determination from standard solution and from wastewater treated sludge samples

 $U_{standard} < U_{wastewater sludge}$

- 3. Further work will be done for the U estimation
 - calibration curve new equipment
 - **repeatability** analize more samples, in order to control RSD%
 - **U estimation** different wastewater sludge samples (untreated and treated)
 - **U estimation** wastewater samples (untreated and treated)
 - expected: $U_{standard} < U_{wastewater} < U_{wastewater sludge}$