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Uncertainty in vertical extrapolation of measured wind speed via shear 5 

Summary 

This report provides formulations for estimation of uncertainties involved in vertical extrapolation 
of winds, as well as the total uncertainty incurred when winds observed at one height are 
extrapolated to turbine hub height for wind resource assessment. This includes new derivations 
for uncertainties inherent in determination of (wind) shear exponents in both low-shear 
(offshore) and varying onshore regimes, and subsequent vertical extrapolation of wind speeds. 
An uncertainty-model validation and check of the constants is also documented, using roughly 
80 commercial sites, using objective statistical methods.  
  A primary motivation for—and part of—this work is the creation of a standard for uncertainty 
estimation and reporting, which is known as the IEC 61400-15. The authors are actively 
contributing to this emerging standard, and the work herein thus far constitutes (most of) the 
vertical extrapolation portion of the IEC 61400-15 draft. 
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6 Uncertainty in vertical extrapolation of measured wind speed via shear 

1. Methodology for calculation of uncertainty due to 
vertical extrapolation of wind speed 

The present methodology to calculate vertical extrapolation uncertainty is limited to vertical 
extrapolation of observed wind speed (e.g. mean wind speed, Weibull-A parameter or reference 
wind speed) from one (or more) height(s) above ground level, to some height(s) above the 
measurements. Vertical extrapolation of distribution shape (Weibull-k), wind direction, and 
turbulence intensity are not considered here. For vertical profiles of Weibull-k parameter, the 
reader is directed to e.g. Kelly et al. (2014), Troen et al. (1987), and Wieringa (1989). 
 
The methodology assumes that vertical extrapolation uncertainty is statistically independent of 
other uncertainties; i.e., there is no correlation with uncertainties due to horizontal extrapolation, 
long-term corrections, etc. It can also be assumed that vertical extrapolation uncertainty is 
normally distributed (Gaussian), allowing combination with other uncertainties and consistent 
with the Central Limit Theorem.  It is recommended to use the appropriate measurement levels 
that represent the desired calculated variables (hub height wind speed, equivalent rotor wind 
speed or shear profile across the rotor). 
 
Three methods of vertical extrapolation are commonly used in wind energy (at present, 2019):  

• power-law modelling of wind speed profile; 
• surface-based wind profile modelling, including surface roughness and the European 

Wind Atlas (EWA) method; and 
• computational fluid dynamics (CFD) modelling via Reynolds-Averaged Navier-

Stokes (RANS) solvers. 
The first is the most common, and the uncertainty inherent in its use is described in the 
subsections below. Regardless of the method chosen, a general expression for vertical 
extrapolation uncertainty should be compatible with the general form 

 𝜎"!,#$% ≃	𝑘&,'()𝜎"!!"#
% 	+	𝑘),*'+$,	𝜎"./+% 	 (0) 

where 𝜎"!,#$ is the total dimensionless uncertainty associated with vertical extrapolation of wind 
speed from some height above ground level (observation height) to another (prediction height); 
the tildes denote dimensionless values (i.e., normalized by expected mean wind speed U, 
expressible in %). On the right-hand side, 𝜎"!!"# 	is the wind speed measurement uncertainty, 
𝜎"./+	 is the part of model uncertainty that is independent of the input (measurement) uncertainty, 
and 𝑘),*'+$, is a coefficient based on the model sensitivity to (one or more) input parameters.  
 
The uncertainty 𝜎"./+	 is part of the (total) model uncertainty, which can be decomposed as  

   𝜎*'+$,% 	= 𝜎./+% 	+	𝜎*'+,'(%  ;    (1) 

here 𝜎*'+,'( is the observation-dependent part; the coefficient 𝑘),'() in (0) thus includes 
sensitivity of the model to measured wind speed. The other contribution 𝜎./+ is any remaining 
model uncertainty that is independent of 𝜎"!!"#. 
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1.1 Power-law modelling  
 
The mean wind shear exponent (a), defined through the power law wind profile 

 𝑈(𝑧) = 𝑈(𝑧0) ,
𝑧
𝑧𝑟-

1
, (2) 

is most directly expressed (e.g. Irwin, 1979; Mikhail, 1985) as 

 𝛼 = 𝑑𝑈 𝑑𝑧⁄
𝑈 𝑧⁄ 	. (3) 

Note a mean α is specified1, to vertically extrapolate mean wind speed U; this mean is typically 
defined over 10-minute intervals.2  We begin by assuming measurements covering an integer 
number of years.  If using a fractional number of years, modification is needed to account for 
seasonal biases where the latter will tend to increase the uncertainty; the uncertainty in such 
procedures (e.g. gap-filling and MCP methods) is additional to what we consider here, and can 
be added within the observational uncertainty used here.   

Starting for the simplest case of two measurement heights (𝑧3, 𝑧%), the centered and theoretically 
exact formulation (3) is compatible with the commonly used practical form of calculation  

 𝛼 = ln4𝑈2 𝑈15 6

ln4𝑧2 𝑧1⁄ 6
	. (4) 

Wind shear exponents are assumed to be calculated via (4), using wind speeds averaged over 
a fixed time interval (standard is 10 minutes, but 30-minutes or more is allowable3). These α 
tend to follow a particular distribution 𝑃(𝛼|𝑈) conditional on wind speed, and depend on the 
height above ground relative to the effective surface roughness (i.e. including terrain complexity; 
c.f. Kelly et al., 2014a).  Regarding the heights used for measurements, it is recommended that 
they are located within the same atmospheric regime (e.g. above the surface layer in shallow 
nighttime ABLs, or within the surface-layer for unstable conditions); for subdivision of data into 
winter/night-time over land, heights above ~30 m are recommended. The heights used should 
not be much smaller than the local scale of terrain elevation changes (i.e., the anemometers 
should not be blocked by hills in commonly occurring wind directions). 
 
In order to minimize the impact and propagation of systematic errors (biases) in the vertical 
extrapolation process, we recommend the following best practices.  
• Use of boom-mounted anemometers   

o do not use anemometers from different sides of the mast to calculate a, to avoid bias 
due to tower influence (see section below on correlated systematic errors); 

o do not use a ‘mix’ of top-mounted and boom-mounted anemometers, since mast-top 
anemometers encounter different flow distortion, leading to bias in calculated a. 

• Calibrate all anemometers used (at least on each side of the mast) in the same facility, to 
avoid bias in the a calculation due to tunnel variability. 

 
1 The shear exponent and associated analysis here is meant for vertical extrapolation, in contrast with a prescribed for 
site suitability and loads calculations (e.g. IEC 61400-1).  
2 Industrial practice has arrived at an optimal usage of (2), whereby mean wind speeds are extrapolated for each 10-
minute interval (Triviño et al., 2017); the uncertainty model herein is calibrated for such, as detailed in the next sub-
section.  One may use e.g. sector-wise and/or monthly means for the extrapolation (instead of 10-minute means), 
though these tend to result in larger uncertainty, as shown in Triviño et al. (2017). 
3 Longer intervals reduce the sampling size, and the ability to measure in different flow regimes. Periods longer than one 
hour tend to violate statistical stationarity, where the effectiveness of extrapolating each interval becomes degraded.   
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• All anemometers used (on the same side of the tower should be the same brand and 
model, to avoid bias in a due to different anemometer responses. 

 

When measurements deviate from the above best practices, the vertical extrapolation 
uncertainty model will implicitly penalize such arrangements, through propagation of systematic 
uncertainties. 

For the more general case where measurements are available from three or more heights, 
a can be derived from a least-squares fitting of the mean-wind speed measurements at the 
different heights. Following the power-law character of (2) this is most directly accomplished in 
ln(𝑉) space: a linear fit of ln(𝑉) versus ln(𝑧) gives a slope equal to 𝛼.   

We do not consider changes in the shape of the wind distribution with height (such as Weibull-k 
profile, c.f. Kelly et al. 2014b) when doing shear-extrapolation; uncertainty in wind power density 
or AEP is assumed to be treated implicitly via shear calculation per 10-minute sample for power 
calculations (i.e., through the conditional distribution 𝑃(𝛼|𝑈)).  

 
Consistent with Eq.1 for 𝜎*'+$,, the uncertainty in modelling the (mean) wind shear exponent a 
at heights above measurements may be expressed as 

 	𝜎1% 	= 	𝜎7$8% + 𝜎187'8% + 𝜎19.:% 	 ; (5) 

derivation of this is detailed further below (Eqns.13–15).  The different terms in (5) account for 
the representativity of the power law profile, propagation of measurement uncertainty, and 
potential fitting of the power-law profile to measurements, respectively.  Specifically,  

• 𝜎7$8	% 	characterizes the effect of how well the power law profile—namely its wind shear 
exponent 𝛼 derived from observations at some heights—is expected to represent the real 
wind profile at some prediction height 𝑧87$+ above the observation heights;  

• 𝜎187'8%  is the propagated uncertainty of observations through 𝛼;  

• 𝜎19.:%  is the uncertainty arising, if fitting the power-law profile (2) to measurements at 
three or more heights.  Monte Carlo simulation can be used to estimate this model-related 
fitting uncertainty.  

Note that (5) also includes the assumption that the fit and representativity are independent of 
each other; this becomes clearer with the full derivation later. 

 

A preliminary, basic form for 𝜎7$87 follows from the difference between 𝛼(𝑧'()) and 𝛼(𝑧) for 
generalized ln(𝑧/𝑧;,$99) wind-speed dependence above the surface layer (e.g. Kelly et al., 
2014a).  For the basic power law profile (2), this uncertainty depends primarily upon (𝑧87$+/𝑧'()) 
and	(𝑧87$+/𝑧;,$99)	, where 𝑧87$+ is the prediction height, 

   𝑧'() = exp[	∑ (ln 𝑧<)=
< 𝑛⁄ ] 	= 	 (	∏ 𝑧<=

< 	)3/=  (6) 

is the geometric-mean observation height (e.g. 𝑧'() = √𝑧3𝑧%  for 2 heights), and 𝑧;,$99	 is an 
effective roughness length corresponding to the terrain over which the shear was measured.  By 
adapting the roughness-change length scale of Fourier 𝑧;-response modelling (Astrup & Larsen, 
1999), using 𝜎? as the effective surrogate for the outer spectral scale, one has   
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  𝑧;,$99	 = [𝑧;(𝜎? + 𝑧;)%]3/@   (7a) 

where 𝑧;	is the surface roughness length, and 𝜎? is the standard deviation of terrain elevation 
extending 3 km upwind4.  If lacking 𝜎?, the crude relation RIX ∼ 𝑎A ln(1 + 𝜎?	/	Δ	𝑧7$9) can be 
employed to relate RIX (in %) to 𝜎?, where the constant 𝑎A	≈ 30% and Δ𝑧7$9	≈ 100m for a range 
of complex-to-moderate terrain types; then an effective roughness length can be calculated via  

   z;,$99 ≃ z;K1 + Δz7$9	(eBCD E$⁄ − 1) z;⁄ M% @⁄  .     (7b) 

Using lnN𝑧 𝑧;,$99⁄ O = ln(𝑧 𝑧'()⁄ ) + lnN𝑧'() 𝑧;,$99⁄ O = ln(𝑧 𝑧'()⁄ ) + 𝛼'()F3  , one obtains a simple 
estimate for the dimensionless uncertainty due to (lack of) representativeness of the observed 
shear exponent 𝛼'() at a height 𝑧 different than observation height 𝑧'() :  

   𝜎"7$8 =	
1!"#F1%&&4?,?',%&&6

1%&&4?,?',%&&6
= 𝛼'() lnN𝑧pred 𝑧obs⁄ O	.    

In the above and hereafter, the over-tilde denotes non-dimensional quantities; i.e., normalized 
by the (predicted) mean variable described by the 𝜎 (in this case wind speed), expressible also 
as a percentage divided by 100.   
 
The above expression for 𝜎"7$8 does not account for complex flow conditions, where the shear 
can be significantly decreased due to e.g. hill-induced mixing: when the observed shear 
exponent is small such that 𝛼(z'()) ≪ 1 lnNz'() z;,$99⁄ O⁄ , then the measurements are in effect too 
close to the ground (relative to the local variations in terrain elevation) to do reliable shear-
based extrapolation, and 𝛼 varies significantly with height z.  In such cases the estimate for 𝜎"7$8 
above results in underestimation. Thus, to estimate 𝜎"7$8 we use a heuristic model to account for 
the increase in uncertainty over complex terrain, via the factor  

  𝐵G: =
H)

,/IJK*+%,K!"# K',%&&5 L
 ;  (8) 

this gives 

 𝜎"7$8 ≃		𝐵G:	α ln R
𝑧pred
𝑧obs

S = 	 𝑐0
𝛼	 lnI𝑧pred 𝑧obs⁄ L	

lnTU𝑧pred𝑧obs 𝑧0,eff5 X
 .  (9) 

The coefficient 𝑐0 is expected to be of order 1; initially we empirically find 𝑐0~2, through analysis 
of data from several dozen sites of different complexity.  
 
However, for offshore conditions (and some less common land cases) the observed shear 
exponent may be so small (especially 𝛼 ≲ 0.1) that (9) underpredicts 𝜎"7$8 due to advective and 
top-down (finite-ABL)5 effects. For example, in these regimes, for measurement heights above 
50 m and hub heights of 100 m over water, (9) predicts 𝜎"7$8 < 1%; this is contrary to observed 
errors.   

 
4 The adaptation of spectral roughness-change length scale is also consistent with e.g. Anderson & Meneveau (2011). 
The calculation limit of 3 km upwind corresponds to both the scale of 3.5 km in the empirical definition of RIX, and the 
scale separating terrain-spectra regimes (Beljaars, 2004); a spatial weighting function could allow calculating 𝜎? over a 
larger area, but this is an active area of research.  
5 The finite depth of the atmospheric boundary layer (ABL), when low enough to be comparable turbine upper-tip 
heights (e.g. winter or night-time), can cause both high and low shear anomalies through e,g, the high shear above and 
jets associated with such.  
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A low-shear correction of the form 𝑒F1/1+%& follows observed extrapolation statistics and could be 
added to (9), but since the contribution due to 𝜎"7$8 will be multiplied by 𝛼 lnN𝑧87$+ 𝑧'()⁄ O in the 
total uncertainty (as seen below), the corrective form must be made practical such that the 
contribution to total uncertainty does not vanish as 𝛼 → 0.  A correction satisfying these criteria 
(equivalent to  𝑒F1/1+%& for 𝛼 ≳ 𝛼7$9 but better-behaved) is  

   𝐵Y&[1 + tanh	(−𝛼 𝛼7$9⁄ )] × |𝛼|F3. 

The representativeness uncertainty subcomponent can thus be written accounting for both low-
shear and complex-terrain conditions as  

   𝜎"7$8 ≃		𝐵HZ𝛼 ln b
?*+%,
?!"#

c	+ 𝐵Y&|𝛼|F3[1 + tanh(−𝛼 𝛼7$9⁄ )] .  (10)   

Initial tests over low-shear sites suggested 𝛼7$9 = 0.2; validating expression (10) against ~80 
sites including both low- and high-shear wind climates in various offshore and onshore locations 
with different complexity, we further find that 𝐵Y& = 0.04 is optimal along with  𝑐0 ≃ 2 in Eq.8.  
Details of the validation are shown in the next subsection.   
 

For measurements at 2 heights, an approximate dimensionless form can be derived for the 
propagation of measurement uncertainty in the determination of 𝛼, via the differential of (4) and 
standard error propagation analysis (e.g. GUM):  

    𝛿 ln𝛼 ≃ [(,/!-F,/!.)
1 ,/(?- ?.⁄ )   

ignoring the uncertainty in measurement heights, which leads to 

 𝜎"187'8 ≃	
&'(^,_`a

b |cd*'(^,_`a
b |cb

+ ,-(/b//d)
	≈ 2e

,-(/b//d)
'(^,_`a
+

		.  (11) 

Again, the tildes denote normalized/non-dimensional quantities (i.e. percentage divided by 100), 
and 𝜎"!!"#	 is the normalized uncertainty in observation (calculated elsewhere). The coefficient 𝑐f 
is monotonic in the correlation between observational uncertainty at the different anemometers; 
it can also be adjusted to account for special conditions where the mean wind profile is known 
to deviate significantly from logarithmic or power-law forms. Assuming the same uncertainty for 
each anemometer and no correlated observational uncertainties between anemometers, then 
𝑐f = √2 for the case of two anemometers.  Note that the sub-component 𝜎"87'8%  is part of the 
measurement uncertainty term 𝑘),'()𝜎"!!"#

%  in the general uncertainty form (0). 
 
1.1.1 Using 3 or more heights for extrapolation 
 
The propagation term (11) was derived for 2 heights. When one uses more than 2 
measurement heights, the wind shear exponent can be derived from fitting the wind speed 
measurements at the different heights. This is directly accomplished via least-squares fitting in 
{ln(𝑧) , ln(𝑉)} space: a linear fit of ln(𝑉) versus ln	(𝑧), where the slope is then 𝛼.  Then an 
alternate to (11) is needed, as well as the uncertainty 𝜎19.:%  in fitting the shear-profile.  The 
representativeness term σj7$8 is again calculated by (6), where the effective observation height 
𝑧'() for n heights is given by6  

 
6 For n heights, assuming each observation height has equal weight in the Monte-Carlo profile fitting. For unequal 
weights, (12) can be modified by replacing 1/n with the individual weights 𝑤!.  
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                                                	𝑧'() = exp ,3
=
∑ ln 𝑧g=
g - 	= 	 (∏ 𝑧g=

g )3/=.   (12) 

A Monte Carlo simulation (or similar method) can also be used to estimate the fitting uncertainty 
σh9.:% , as well as the observational uncertainty propagation; the latter replaces (11).  From Monte-
Carlo simulations based on the measurement uncertainties at the different heights, following 
GUM (JCGM 100, JCGM 101), the normalized uncertainty 𝜎"19.: is that due to fitting the mean 
profile. This can be calculated using least-squares fitting of ln[V] versus ln[z] (e.g. JCGM 101).   
Then, instead of using 𝑘&,'() from (11) , the first term 𝑘&,'()σj!!"#

%  in (0) is replaced by the 
component of Monte-Carlo output variance due to propagated random observational uncertainty 
(i.e., 𝑘&,'() is in effect the ratio of dimensionless propagated variance to square of aggregate 
measurement uncertainty).  The Monte-Carlo estimate of the propagation term for 𝑛 ≥ 3 tends 
to be smaller than the 𝑛 = 2 estimate from (11), compensating for the addition of the profile-fit 
uncertainty 𝜎"19.:, but use of more than 2 heights can either decrease or increase the uncertainty, 
particularly because lower measurement heights tend to contribute less representative 
information with regard to hub-height prediction.7   
Without doing Monte-Carlo calculations, a cruder adjustment for 3–5 heights is to simply 
multiply the result of (11) by m2 𝑛⁄ , where n is the number of measurement heights.  
 
 
1.2 Total extrapolation uncertainty 
 
To obtain the uncertainty in power law profile extrapolation of mean wind speed, the 
propagation of measurement uncertainty must be incorporated properly with the uncertainty of 
modelling the wind shear exponent.  Applying (2) for extrapolating 𝑈'() to 𝑈87$+ and taking the 
differential, one obtains   

                    𝛿𝑈%&'( =
𝑈pred
𝑈obs

𝛿𝑈)*+ 	+ 	𝑈%&'( ln (
zpred
𝑧obs

) 𝛿𝛼 + 𝛼 +,-!"#$𝑧pred
− ,-%&'

𝑧obs
,𝑈%&'(	 .  (13) 

Rewriting this non-dimensionally as  

  𝛿 ln𝑈87$+ = 𝛿 ln𝑈'() + lnN𝑧87$+/𝑧'()O 𝛿𝛼 + 𝛼N𝛿 ln 𝑧87$+ − 𝛿 ln 𝑧'()O ,  

then squaring and retaining lowest-order terms (i.e. excluding cross-correlation terms as well), 
leads to an expression for non-dimensional uncertainty (𝜎"!*+%,, i.e. fraction of 𝑈87$+) in mean 

wind speed due to power-law profile extrapolation. Noting that 𝑈(𝑧7$9) is actually 𝑈(𝑧=) for the 
case of n measurement heights, the total normalized uncertainty is expressed in terms of 
dimensionless component uncertainties as  

  𝜎%(*+%,
) ≃	𝜎%(!"#,0

) 	+ 𝛼2𝜎%*)(ln)z+,-. 𝑧/01⁄ ,-2 + 𝛼2𝜎%2!"#
)  .  (14) 

The first term on the right-hand side of (14) is the ‘directly’ propagated uncertainty in wind 
measurement at the top height (e.g. 𝜎"!!"#,-

%  if using 2 heights) due to the latter appearing outside 
of 𝛼 in (2); again, 𝜎1% = 𝛼%𝜎"1% = 𝛼%(𝜎7$8% + 𝜎h87'8% + 𝜎19.:% ) is the dimensional squared uncertainty 

 
7 The representativity expression (6) will tend to compensate for the effect of using more heights which are lower, 
because the shear tends to increase approaching the ground (at least over simpler terrain). However, the uncertainty 
model is not explicitly designed to account for the possibility of increased uncertainty due to using more heights.   
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of obtaining the shear exponent following (4)8. The final term of (14) is the contribution from 
uncertainty in measurement heights.  Using (11) for 𝜎h87'8% , and neglecting the dimensionless 

uncertainty in measurement height, the total vertical extrapolation uncertainty can be expanded 
and re-written for the case of 2 measurement heights as  

  𝜎"!*+%,
% ≃	𝜎"!!"#

% n1 + o𝑐f
lnIzpred 𝑧obs⁄ L

ln4𝑧2/𝑧16
p
%

q 	+ 𝛼%𝜎"7$8% KlnNzpred 𝑧obs⁄ OM%  , (15) 

again with 𝜎7$8%  from (10). The contribution due to uncertainty in measurement heights (𝛼(𝜎"𝑧obs
2 ) 

is neglected because it is typically much smaller than the other terms: 𝜎"?!"# rarely exceeds 1%, 
and	𝛼% ≪ 1 for conditions where shear-extrapolation can be used. One possible exception is 
displaced flow over e.g. forests, where 𝜎"?!"# might be on the order of 10% in effect, though 𝛼 
still tends to be small enough to neglect 𝜎"?!"# unless the local climate is heavily dominated by 
stable conditions.9  
 
Thus far the component uncertainties have been considered to be random.  However, the 
measurement uncertainty may contain a systematic component, i.e., measurement bias; the 
square of this (𝑏s!'()% ) can be added to (15).  In contrast to the random uncertainties, due to the 
character of upward extrapolation via the power law, for the case of uncorrelated biases across 

anemometers an additional systematic uncertainty 2𝑏s!% t
ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
u
2
 is propagated (see 

Appendix A.2 for details).  Thus the propagation term 𝜎h87'8%  simply has an additional 
component resembling the random component, but with 2𝑏s!'()%  instead of 𝑐f%𝜎"!!"#

% .  
 
Within the context of the generic formulation (0), which partitions the total vertical extrapolation 
uncertainty into an observation-related component 𝑘&,'()𝜎"!!"#

%  and an independent component 
𝑘),*'+$,	𝜎"./+% , comparing with (15) we can write the respective sensitivity coefficients for the 
random uncertainty as  

  𝑘&,'() ≃	o𝑐f
lnIzpred 𝑧obs⁄ L

ln4𝑧2/𝑧16
p
%

					 ; 					𝑘),*'+$,	 = K𝛼 lnNzpred 𝑧obs⁄ OM%  , (16) 

with 𝜎"./+% = 𝜎"7$8%  in (0).  
 
Overall, the approach outlined here can be applied per sector, summing frequency- or energy-
weighted 𝜎"!*+%,

% . Further, such weighted calculations can also be used on a seasonal or diurnal 
basis.  
 
 
 

 
8 One could also include the Weibull-weighted effect of the mean wind-speed dependence that arises from the width of 
P(α|U) being inversely proportional to U [Kelly et al., 2014a]; this is appropriate if using yearly-mean (not 10-minute) α.  
9 There are also situations where remote-sensing devices (such as lidar, sodar, or radar) can have non-negligible 
𝛼"𝜎0#!"#

" ; however, such measurements are usually used at hub-height, not for extrapolation.  One may add this piece if 
using e.g. lidar with extrapolation, if it is significant. 
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2. Validation 

There are two constants within the representativeness subcomponent, which needed to be 
tuned empirically; these are the coefficient 𝑐0 in the complex-terrain correction factor  𝐵G: (8), 
and the constant 𝐵Y& within the low-shear/well-mixed site adjustment going into (10).   Without 
the low-shear adjustment, we found 𝑐0 ≃ 2, but expected this to potentially change due to 
addition of the low-shear correction.   
 
  Including the low-shear correction, we find the optimal values 𝐵Y& = 0.04 and again 𝑐0 ≃ 2. 
Figure 1 displays the difference between dimensionless estimated uncertainty 𝜎"!*+%,

%  from (14) 

and absolute extrapolation error |𝜖!̃| for these {𝐵Y&, 𝑐0} and the ~80 sites analyzed. Figure 1 also 
includes 𝜖!̃ itself, to show the general trend of extrapolation error versus shear. The figure 
basically shows the performance of the uncertainty estimation model, with the difference 
between predicted uncertainty (not error) and absolute error being smaller than the error at 
most sites; for Gaussian-distributed errors, the constants should be calibrated such that roughly 
4 sites should have errors which exceed the uncertainty predictions (see Appendix).  
 

 
Figure 1. Difference between estimated uncertainty 𝝈𝑼 from (14) and observed absolute wind-speed 
error |𝝐𝑼| due to shear extrapolation (blue triangles) versus shear exponent; yellow dots show 𝝐𝑼. 
 
  Over all (~80) the sites analyzed, the distribution of mismatch between predicted uncertainty 
and error in predicted wind speed via shear extrapolation (𝜎"!,l&Z% − |𝜖!̃|, shown versus 𝛼 in 
Figure 1) is displayed in Figure 2 as a histogram, again for the optimal parameters 𝐵Y& = 0.04 
and 𝑐0 = 2.   
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Figure 2.  Histogram of difference between estimated uncertainty using (14) and observed absolute 
error in wind speed due to shear extrapolation, for the optimal parameters 𝑩𝒐𝒔 = 𝟎. 𝟎𝟒 and 𝒄𝒓 = 𝟐.   
 
One can see in Figure 2 that the most common values of the difference between estimated 
uncertainty and absolute error are centered around 0, but slightly positive (< 0.3%); the positivity 
compensates for several underpredicted ‘outliers’.  The main justification for the choice of 
extrapolation-uncertainty model parameters is based on minimizing the mean difference 
between modelled uncertainty and observed absolute error (𝜎"!,l&Z% − |𝜖!̃|). 

 

Further justification for the choice of optimal parameters is seen in Figure 3, which displays the 
magnitude of the mean of the ‘mismatch’ (𝜎"!,l&Z% − |𝜖!̃|) over all sites, for different values of 𝐵Y& 
and 𝑐0; it corresponds to taking the mean of thousands of distributions like that shown in Figure 
2, for 𝐵Y& spanning a range from 0.01 to 0.08 and 𝑐0 ranging from 0.5 to 3.0.   
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Figure 3. Magnitude of mean difference between uncertainty estimate and observed absolute error 
in vertical extrapolation, for different values of the uncertainty-model constants.   
 
One can see in Figure 3 that a curve of {𝐵Y&	, 𝑐0} gives minimal mismatch between estimated 
uncertainty and absolute extrapolation error; e.g. for values 𝐵Y& = 0.05 and 𝑐0 ≃ 1.5 one obtains 
similar mean errors, though this does not handle low-shear outliers as well.  Although it is also 
possible to calibrate these constants to e.g. the median of (𝜎"m,$): − |𝜖!̃|), we avoid doing so; 
since the median is focused on the most common values, it tends to discount the effect of 
(ignore) the high-error projects.   
 
Regarding the outliers and calibration of the constants, one can also consider the width of the 
dimensionless error distribution 𝑝(𝜖!̃), which has been assumed to be Gaussian.  This was first 
done for the single constant 𝐵Y& in the low-shear adjustment, as shown in the Appendix. 
Basically, for a Gaussian error distribution, one expects the error to sometimes randomly 
exceed the uncertainty; i.e. one expects the error 𝜖!̃ to exceed 𝜎no: for 31.7% of cases, and one 
expects a 10% exceedance rate for a value of 𝜖!̃ that is 1.28 times this.  The low-shear 
cases (Appendix) gave the value 𝐵Y& = 0.04 for uncertainty estimates of the 90th percentile; from 
Figure 3 one can see 𝑐0 = 2 follows.10 
One can also see that our choice of constants minimizes error in uncertainty prediction, by 
examining the standard deviation of (𝜎"m,$): − |𝜖!̃|) over all cases, again using large ranges of 𝑐0 
and 𝐵Y&	; this displayed in Figure 4.   
 

 
10Alternately a larger value of 𝐵$% = 0.055 is obtained for the 68th [“1𝜎”] percentile, and then 𝑐& ≃ 1.5.  
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Figure 4. Standard deviation of difference between estimated uncertainty using (14) and observed 
error at all sites considered, for different values of complex-terrain coefficient 𝒄𝒓 and low-shear 
constant 𝑩𝒐𝒔. 
 
Also notable from Figure 4 is that the variability of difference between dimensionless uncertainty 
and absolute observed error is smaller for the 90th-percentile uncertainty prediction (which uses 
𝐵Y& = 0.04 and 𝑐0 ≃ 2), than that obtained using the constants found for the 68th-percentile (“1 
sigma”) uncertainty prediction (𝐵Y& = 0.05 and 𝑐0 ≃ 1.5).   
 
We recommend use of the 90th-percentile coefficients, both because of the need to also account 
for some rarer cases, and also because of the improved (reduced) variability of the predicted-to-
observed difference evidenced in Figure 4. 
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A Appendices 

A.1. Correction to representativeness subcomponent in low-shear conditions  
 

From the many-site observations given by EON and GoldWind, we saw that the model was 
underpredicting uncertainty relative to the observed error at offshore low-shear sites; this is 
because the 𝜎"7$8 model is 𝛼-dependent, to account for variation of shear with height due to 

classical ‘bottom-up’ (roughness-like) effects (whereas offshore the complex-terrain part doesn’t 
matter).   
For low-shear sites (𝛼 < 0.2) the observed dimensionless error in extrapolated wind speed as a 
function of 𝛼 (left plot), and the ‘simply’ predicted uncertainty (right plot) look like:  

     
 
i.e., the ‘simply’ predicted uncertainty (<1.6%) is lower than the observed error (|𝜖̃| up to 4%).  

EON/GoldWind provided a dataset containing the shear exponent 𝛼, error 𝜖̃, the 𝜎"7$8, profile-
fitting subcomponent 𝜎"9.:, also the representativeness contribution [𝜎"7$8𝛼 lnN𝑧p0lq/𝑧Yr&O] to 

vertical extrapolation uncertainty 𝜎"#$, and finally the total estimated 𝜎"#$.  

Recall that the vertical extrapolation uncertainty follows  

         𝜎"!;%
% ≃	

𝜎s𝑈obs
2 u

𝑧1
,/-4?*+%, ?-⁄ 6	+	𝜎s𝑈obs

2 u
𝑧2
,/-4?*+%, ?.⁄ 6

,/-(K- ?.⁄ ) 			+			𝛼%N𝜎"7$8% + 𝜎"19.:% OKlnNz87$+ 𝑧'()⁄ OM% , 

where 𝜎%(*+%,
) ≃	𝜎%(!"#

) + 𝜎%𝑈ve
2 ); this implies 𝜎"./+% = 𝜎"7$8% + 𝜎"19.:%  in the general expression for 

vertical extrapolation uncertainty from the main text, 

  	𝜎"!,#$% ≃	𝑘),'()𝜎"!!"#
% 	+	𝑘),*'+$,𝜎"./+%  , (0) 

with a sensitivity coefficient of 𝑘),*'+$, = 𝛼%KlnNz87$+ 𝑧'()⁄ OM%.   

 
For anemometers having equal measurement uncertainties and no correlated uncertainty 
between them, then the first term on the right-hand side of (11) reduces to give the effective 
measurement sensitivity coefficient of 𝑘),'() = [ln%(𝑧 𝑧%⁄ ) + ln%(𝑧 𝑧3⁄ )] ln%(𝑧% 𝑧3⁄ )⁄  following (0).  
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One can use (11) to infer 𝜎"7$8%  from 𝜎"!;%
% , given the other terms.  Here we used the ‘envelope’ of 

largest 𝜖̃ as a proxy for 𝜎"!;%
% ; note that this itself involves some uncertainty since we are thus 

taking the envelope of the dataset’s 𝜖̃ to correspond to 1 ⋅ 𝜎"!;%
% .  The data did not include explicit 

{z3,	z%}, however this was estimated by using the lnNz87$+ 𝑧'()⁄ O contained in the dataset along 
with a prediction height around 100m; thus the 𝑘),'() coefficient on 𝜎%(!"#

)  in (11) is estimated to 
be equal to 10 on average, and the equation is solved for 𝜎"7$8% . Doing so for the low-shear 

cases, we have the following result (blue dots):  
 

  
where one can see that many of the low error cases are not depicted, because the root 
becomes imaginary.  This is acceptable because we are really considering the largest error 
cases.  Crudely (and analogous to/extending e.g. Beljaars, 2004), the form exp	(−𝛼 𝛼7$9⁄ ) fits 
the largest inferred 𝜎"7$8, as shown by the yellow line in the above figure.  This form has the 
property that more negative values of shear are ‘penalized.’  However, since 𝜎"7$8 is multiplied by 

𝛼 in (11), then such a form will give spuriously zero contribution to the total as 𝛼 → 0.  A form 
which also fits but rectifies this problem is  

   𝐵Y&exp(−𝛼 𝛼7$9⁄ ) × |𝛼|F3   (A1) 

where 𝐵Y& = 0.2 and 𝛼7$9 = 0.13; this is shown by the green line.  The equivalent form without 
1/𝛼 (yellow line) is 30𝐵Y&exp(−𝛼 0.45𝛼7$9⁄ ).   

Below the two forms are shown added to the original 𝜎"7$8 (black). 
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Multiplying by 𝛼 lnN𝑧p0lq/𝑧Yr&O, we can see the functions as their contribution to 𝜎"#$, below. 
 

 
Thus one can see the second form gives a continuous contribution across zero shear, 
increasing for negative shear.  
   The result of using the new form (A1) and the simpler exponential form to calculate 𝜎"#$ are 
shown below. 
 

 
The blue dots are the observed errors in predicted (extrapolated) wind speed, the yellow 
squares are the simpler exp form, and the green squares are  𝜎"#$ using the adapted form (6a).   
One can see the green dots falling just above the most ‘extreme’ outliers for positive shear, 
while for negative shears the estimate appears more conservative. However, recall that 
negative shear is generally not expected to persist upwards with height; the 2 data points are 
likely not so extreme.  

To be less conservative (but a little more complicated), a similar form which gives ‘less 
conservative’ estimates relative to this dataset, but which also gives a smaller variation on the 
negative side (and matches the exponential form for 𝛼 > ~3𝛼7$9), is  
  𝐵Y&[1 + tanh(−𝛼 1.5𝛼7$9⁄ )] × |1.3𝛼|F3.  (A2) 
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This can be seen by the red line of the first plot below, and by the green “T” markers in the 
results plotted second. 

 
 

 

Note that the form (A2) can be made to look simpler if we do use it, by absorbing the factors 1.3 
and 1.5 into the coefficients 𝐵Y& and 𝛼7$9, i.e. updating them to 0.15 and 0.2 respectively to 
simply write 𝐵Y&[1 + tanh	(−𝛼 𝛼7$9⁄ )] × |𝛼|F3.  

However, we must account for the expected error distribution width, regarding our calibration of 
the coefficient 𝐵Y&.  Some of the observed errors are rarer cases that likely occur less frequently 
than what one would expect from a normal distribution.  For normally distributed errors, one 
expects 31.7% of samples to have 𝜀̃ > 𝜎"7$8.  Since there are not a large number of samples per 

𝛼-bin, we must calibrate 𝐵Y& using all the samples. For the 40 cases here, one then expects 12 
samples to exceed 𝜎"7$8; a value of 𝐵Y& = 0.055 returns such a result, as seen in the next plot 

below.  
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The contribution to total shear looks like the plot on the previous page, but reduced to smaller 
amplitudes for low |a|: 

 
 
Noting that the amplitude (red line) is again the revised (final) form  

  𝐵Y&[1 + tanh	(−𝛼 𝛼7$9⁄ )] × |𝛼|F3   (A3) 
with  𝐵Y& = 0.055 and 𝛼7$9 = 0.2. 

I should point out again that one should not be alarmed by the seemingly large values of 𝜎"7$8 for 
zero/small shear: recall that this is dimensionless uncertainty, which will be multiplied by the 
shear-extrapolation magnitude to give uncertainty (in m/s); in the end, small shear leads to 
small dimensional vertical-extrapolation uncertainty in wind speed, despite significant 
dimensionless uncertainty.   
For a choice of 10% exceedance rate of predicted error over estimated uncertainty (i.e., 90th 
percentile), we obtain 𝐵Y& ≃ 0.4, again with 𝛼7$9 = 0.2.  
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A.2. Measurement bias: systematic uncertainty propagation 

 
The propagation contribution 𝜎"1,87'8 within the 𝛼𝜎"1 lnN𝑧87$+ 𝑧'()⁄ O term of (14) can be expressed   

  𝛼𝜎"1,87'8 lnN𝑧87$+ 𝑧'()⁄ O = 𝑐f𝜎"! lnN𝑧87$+ 𝑧'()⁄ O / ln(𝑧%/𝑧3)  

following (11), where the 𝑐f = √2 for uncorrelated observation uncertainty or 𝑐f = 2 for fully 
correlated uncertainties (assuming equal uncertainty at each measurement height).  This 
followed from 𝜕𝑈87$+ 𝜕𝛼⁄ = 𝑈87$+ lnN𝑧87$+ 𝑧'()⁄ O multiplied by   

         89
8:-

= ;<
:- =>(-./--)

       and         89
8:.

= <
:. =>(-./--)

     (A4) 

for the case of two measurement heights, where we have thus far assumed zero-mean 
Gaussian errors for this 𝜎" and all uncertainty components.  
    For systematic uncertainties in the wind speed observations (e.g. the measurement biases 
𝑏!. and 𝑏!-, in contrast with the random measurement uncertainties 𝜎!. and 𝜎!-), the 
mathematical framework we’ve developed can again be exploited. However, for correlated 
measurement bias one must account for the difference in signs of the two expressions in (A4).  
This can be seen by writing the systematic contributions, i.e. with 𝜎"! replaced by 𝑏s! in the 
above (where 𝑏s!= ≡ 𝑏!=/𝑈<), but also including the correlated bias cross-term 𝑏s:  

   𝑏s87'8% = tb
v!*+%,
v!.

c
%
𝑏!.
% + b

v!*+%,
v!-

c
%
𝑏!-
% + 2b

v!*+%,
v!.

c b
v!*+%,
v!-

c𝑏!.𝑏!-𝜌r3%u /𝑈87$+
%   

    = �b
v!*+%,
v1

v1
v!.
c
%
𝑏!.
% + Rv!*+%,

v!-
�
1
+ v!*+%,

v1
v1
v!-
S
%
𝑏!-
% + 2b

v!*+%,
v1

v1
v!.
c R

v!*+%,
v!-

�
1
+ v!*+%,

v1
v1
v!-
S 𝜌r3%𝑏!.𝑏!-� /𝑈87$+

%  

which upon re-arranging becomes  

  𝑏s87'8%  = 09:;<*+%, 2!"#⁄ >
9:(2-/2.)

1
)
(𝑏3(.
) + 𝑏3(-

) − 2𝜌AB)𝑏3(.𝑏3(-- + 𝑏3(- 0𝑏3(- + 2)𝑏3(- − 𝑏3(.,
9:;<*+%, 2!"#⁄ >

9:(2-/2.)
1        

            =	𝑏s𝑈1
2
t
ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
u
2
+ 𝑏s𝑈2

2
�1 + ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
t2 + ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
u�	   (A5)	

         −2𝑏s𝑈1𝑏s𝑈2
ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
t1 + 𝜌𝑏12

ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
u 

where 𝜌r3% is the correlation coefficient between the systematic uncertainties 𝑏!. and 𝑏!-.   
 
Thus for correlated identical measurement biases 𝑏s! = 𝑏s𝑈1 = 𝑏s𝑈2 at two heights (𝜌AB) = 1), the 
total systematic contribution can simply written in non-dimensional form as  

     𝑏s87'8% �
w>.-x3

=		 𝑏s!%  ;  

i.e. the 𝜎"1,87'8 component disappears.  On the other hand, for uncorrelated biases (𝜌r3% = 0), 
then the propagated bias is larger:  

     𝑏s87'8% �
w>.-x;

=		 𝑏s!% o1 + 2 t
ln4zpred 𝑧obs⁄ 6

ln(𝑧2/𝑧1)
u
2
p . 
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