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Abstract

Probabilistic Seismic Hazard Analysis (PSHA) has been used widely over the last 50 years by seis-
mologist and engineers to quantify seismic hazard level and develop building code requirements to build
safer buildings for the future. Other applications include determining earthquake insurance rates, decid-
ing safety criteria for nuclear power plants and making official national hazards maps for future safety.
Aftermath the recent 2015 Gorkha earthquake in Nepal(a highly seismic prone country), two different
PSHA studies (McNamara et al., 2017; Rahman Bai, 2018) were conducted to improve seismic research
and these have resulted in better characterization of geometry of the Main Himalayan Thrust (MHT),
more complex method of delineating seismic sources and more robust seismic hazard maps by employing
recent seismic catalogue. Despite PSHA’s popular use, some sources of uncertainty in the framework
are present hence the need to fully encompass the uncertainties through further studies. In this paper,
uncertainty deriving from ’b’ value will be studied in a scenario based format. Similar to that of mon-
tecarlo simulation, ’b’ values are sampled and their relation with final rate of exceedance is studied to
understand it’s uncertainty contribution.
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1 Introduction

Nepal is a landlocked country lying in the middle of the Himalayan belt between China to the North
and India to the south. The east-west length of the country lies along the Himalayan range and is about
800km whereas the width of the narrow north-south is roughly 190km. Nepal is known globally as the home
of the Mount Everest. It is also known as one of the most active seismic zones in the world. The convergence
of two continental plates namely Indian plate and Eurasian plate is the prime reason for frequent occurrence
of earthquakes in Nepal. These plates converge at a relative rate of 40-50mm per year, resulting in the net
uplift of the Himalayan mountain ranges by roughly 18mm per year (EERI, 2016). Such continuous tectonic
activity has resulted in a long history of strong earthquakes hitting the region. So far, six large earthquakes
(1255, 1408, 1505, 1833, 1934 and 2015) with magnitudes exceeding 7.5 has affected the region. Out of
these earthquakes, the Great Nepal-Bihar earthquake in 1934 with Mw 8.7 was recorded as the strongest
earthquake, magnitude wise. The epicenter of the earthquake was about 200km east from Kathmandu,
but severe damage was experienced in Kathmandu Valley. It was estimated to have caused around 10,600
fatalities, severe damage of more than 126,000 houses and complete collapse of more than 80,000 buildings
in the three main cities of the valley: Kathmandu, Bhaktapur and Patan (EERI, 2016).

In 2015, the catastrophic earthquake with moment magnitude Mw 7.8 hit Gorkha, Nepal on April 25
and followed by another strong aftershock of magnitude 7.3 on May 12 to the east of the initial epicentral
area. 8,790 lives were lost, 22,300 people were injured and about 100,000 people were displaced as their
houses were severely damaged by the earthquake and subsequent earthquake shocks. The total economic
and financial loss incurred by the disaster was estimated to be 7 billion USD according to the post disaster
assessment by Nepal’s National Planning Commission (NPC). This is about half of Nepal’s annual GDP! It
was also reported that almost all sectors were severely affected by this unfortunate disaster.

Figure 1: Map of Nepal District Boundaries, with an inset map of Nepal’s location on a world map (source:
EERI, 2016)

Therefore earthquake mitigation, preparedness and planning is a priority in Nepal. One of the fun-
damental step towards a more resilient community against hazard is understanding the hazard itself. This
includes producing hazard maps that identifies the prone areas and design building structure that can with-
stand future earthquakes. Probablistic Seismic Hazard Analysis (PSHA) is the standard method used by
earthquake scientists and researchers in an effort to understand the hazard. In 2013, Ram and Guoxin (Ram
Wang, 2013) for the first time used PSHA to determine hazard map by delineating the entire country into
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23 seismic source zones. Similar studies were conducted with fragility function to understand risk as well
(Chaulagain et al., 2015). After 2015 earthquake, numerous studies were conducted to continue the work of
building resiliency against seismic risk in the future. Two studies in particular (Stevens et al., 2018; Rahman
et al., 2018) used PSHA along with other techniques such as multiple seismic source models, logic tree (to
reduce epistemic uncertainty), better characterization of the geometry of the Main Himalayan Thrust (MHT)
to reach new understanding.

However, the current framework of PSHA has some sources of uncertainties that requires better charac-
terization. One such source of error is ’b’ value used in Guttenberg Richter Recurrence law which determines
the probability distribution of earthquake magnitude. These ’b’ values are obtained from earthquake cata-
logues. Therefore, an alternative way to study the uncertainty of ’b’ and it’s relation with the exceedance
value is presented in this paper.

1.1 Background

This paper is part of a research initiative of increasing the understanding of seismic risk in Nepal. It
is a collaborative research project started by Institute of Engineering, Pulchowk Campus, Nepal and Duke
University, US in the summer of 2019. Currently, students from both institutions are researching on Hazard
Analysis and Ground Motion Prediction Equations with an aim to build an earthquake early warning system
for Kathmandu Valley in the future.

2 Theory

Probablistic Seismic Hazard Analysis (PSHA) is a method that aims to quantify uncertainties as-
sociated with location, size, shake intensities of future earthquakes and combine them to understand the
distribution of future shaking that may occur at a site (Baker, 2015). PSHA was first formalized by Cornell
(1968) and further studied and popularized by McGuire, 1976, Bender and Perkins, 1987. Now PSHA is
widely practiced as a standard part of the process for designing and building critical structure (Mulargia et
al., 2017).

At the basic level, PSHA is composed of five steps according to Baker (2015). They are:

• Identify all earthquake sources capable of producing damaging ground motions.

• Characterize the distribution of earthquake magnitudes (the rates at which earthquakes of various
magnitudes are expected to occur)

• Characterize the distribution of source-to-site distances associated with potential earthquakes.

• Predict the resulting distribution of ground motion intensity as a function of earthquake magnitude,
distance, etc.

• Combine uncertainties in earthquake size, location and ground motion intensity, using a calculation
known as the total probability theorem.

Using this framework, the probability of exceedance for different Peak Ground Acceleration (PGA)
values are calculated as PGA measures the level of ground shaking intensity. This probability approach is
different from deterministic approach where ”worst-case” ground motion are needed to be identified for a
fault source or an area source even. In this paper, the basic concept of each step are detailed in the following
subsections.

2.1 Magnitude Distribution

Sources of earthquake can be categorized into two: line source and area source. Line source typ-
ically represent fault lines that passes through the site whereas area source incorporates the background
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seismic activity in the region. Depending on the sources, the probability distribution of the magnitudes are
calculated.

For tectonic faults or line source, Gutenberg-Richter recurrence law is used to determine the rate of
earthquakes greater than some threshold m. The relationship is defined as follows:

log10 λm = a+ bm (1)

Note that the constant values a and b are empirically derived from the past earthquake catalogues.
The values vary depending on the tectonic fault as each of them are capable of producing earthquakes of
various sizes.

Based on the G-R law, the cumulative distribution function for the magnitudes of earthquakes that
are larger than m and smaller than M is as follows.

FM (m) = 1− 10−b(m−mmin)

1− 10−b(mmax−mmin) ,mmin < m < mmax (2)

Finally, these CDF values are discretized to find the corresponding probabilities for each m value.

2.2 Distance Distribution

To predict ground shaking at a site, modeling the distribution of distance from earthquake to site
is essential. It is generally assumed that earthquakes will occur with equal probability at any location on
the fault (Bakers, 2015). This assumption of uniform distribution of earthquake occurrences simplifies the
process of identifying the distance distribution as it is dependent on the geometry of the source. Note that
the distribution varies depending on the sources: line source and area source.

For area source, consider a site located in the area source as shown in the figure below. The probability
of an epicenter being located at a distance of less than r is equal to the area of a circle of radius r, divided
by the area of circle of radius 100km (the value 100km can be changed).

Figure 2: An example of a area source with r as the varying distance (source: Baker, 2015)

FR(r) = P (R ≤ r) (3)

= area of circle with radius r
area of circle with radius 100 (4)
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= πr2

π(100)2 = r2

10, 000 (5)

It is important to note that equation 5 however is limited to the distance (r) between 0km and
100km. For the line source, several assumptions are made to simplify the formula to calculate it. One such
assumption is the position of the site at a certain distance r from the center of the fault. Following formula
computes the distance distribution for line source or fault lines and the figure illustrates the location of site
with respect to the fault. Note that equation (8) holds true for r values between 10km and 51km as stated
in the example.

Figure 3: An example of a line source (source: Baker, 2015)

FR(r) = P (R ≤ r) (6)

= length of fault within distance r
total length of fault (7)

= 2
√
r2 − 102

100 (8)

This cumulative distribution function will be discretized and used to calculate the corresponding
probability distribution in MATLAB.

2.3 Ground Motion Prediction Equation

Ground motion prediction equation or GMPE sheds light on how much the ground shakes during
an earthquake. It predicts the probability distribution of ground motion intensity, as a function of many
predictor variables such as the earthquake’s magnitude, distance, faulting mechanism, the near-surface site
conditions, the potential presence of directivity effects, etc (Baker, 2015). At present, Nepal doesn’t have
a region specific GMPE, rather it uses GMPE developed by neighbouring countries such as China (Ram
Wang, 2013).

Generally, prediction models take this form for probability distribution of intensity.

lnIM = lnIM(M,R, θ) + σ(M,R, θ).ε (9)

where lnIM is the natural log of the ground motion intensity measure of interest such as PGA (Peak
Ground Acceleration) used in this paper. The predicted mean and standard deviation in the (9) are outputs
of the ground motion prediction model. For the following example, GMPE proposed by Cornell et al. (1979)
will be used to illustrate how it calculates the distribution of the ground motion intensity.

lnPGA = −0.152 + 0.859M − 1.803ln(R+ 25) (10)
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Using the output of mean and standard deviation from GMPE, the probability of exceeding any PGA
level is calculated as follows since then natural logarithm of PGA was seen to be normally distributed.

P (PGA > x|m, r) = 1− φ
(
lnx− lnPGA
σlnPGA

)
(11)

That’s how the probability of exceeding any PGA value is calculated using GMPE.

2.4 Total Probability Theorem

Total Probability Theorem (TTP) is a probability concept that combines conditional probability with
it’s associated probability. In PSHA, TTP combines the conditional probability of exceedance (P (IM >
x|mj , rk) with distance and magnitude probability distribution (P (Ri = rk) and P (Mi = mj)) to find the
probability of intensity measure (IM) i.e. PGA exceeding a threshold pga P (IM > x). The equation is as
follows:

P (IM > x) =
∫ mmax

mmin

∫ rmax

0
P (IM > x|m, r)fM (m)fR(r)drdm (12)

In the equation (13), integration symbol is used to solve for the total probability. However, it is needed
to be discretized to solve easily in MATLAB. Following is the discretized version of the TTP. Additional
variable introduced in equation (13) is the annual rate of earthquake occurrence denoted by λ(M > mmin).

λ(X > x) = λ(M > mmin)
nM∑
j=1

nR∑
k=1

P (IM > x|mj , rk)P (Mi = mj)P (Ri = rk) (13)

This is how PSHA determines the probability of ground motion shake at a particular site during an
earthquake using earthquake magnitude value, source site distance and GMPE. This method is the main
framework upon which uncertainty of ’b’ value is studied.

3 Data and Methodology

3.1 Introducing uncertainty in G-R relationship

In the usual Probabilistic Seismic Hazard Analysis, a and b values of the G-R recurrence law are
derived from earthquake catalogues using maximum likelihood method. In the latest research on PSHA in
Nepal using multiple seismic model (Rahman et al., 2018), total of 23 different b values were determined
for each seismic sources delineated and identified in the paper. The b values ranged from 0.5 to 0.9. The
b-values were then used throughout PSHA method to calculate the final exceedance probability. This shows
that the value b could be one source of uncertainty in this seismic analysis framework.

The value ’b’ is obtained empirically from earthquake catalogues. These earthquake catalogue changes
over time as more seismic record would be collected over time. For some catalogues, aftershock seismic data
are removed by declustering method and for others, aftershock data are kept intact. These varying methods
affects the b value in addition to the types of sources and faults on which the catalogues are based. Therefore,
in this paper, a distribution of b values are considered to study the impact of these changing b values to the
final exceedance value.

In this study, the b values with an interval of 0.05 were sampled and they are assumed to have log
normal distribution. To find the probability of the value, the mean and the standard deviation of the sample
should be given. In reality, the mean (m) of the b values fall close to 1 and standard deviation (std) can
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be assumed to be 0.2. Based on these values, the probability distribution of the b values are calculated as
follows:

µlnB = ln(median of B) (14)

σlnB = ln

(
1 +

(
σB
µB

)2
)

(15)

FB(b) = φ

(
lnb− µlnB
σlnB

)
(16)

In equation 5, the cumulative distribution of the b values are found. They are discretized to find the
corresponding probability distribution. The probability distribution of ’b’ value is then used throughout the
PSHA framework to find the rate of exceedance for a given PGA value.

3.2 Calculating standard deviation of Rate of Exceedance

Using Theorem of Total Probability (TTP), varying probabilities of the b values can be incorporated
in the PSHA methodology. Referring back to the equation of theorem of total probability in the theory
section,

λ(X > x) = λ(M > mmin)
nM∑
j=1

nR∑
k=1

P (IM > x|mj , rk)P (Mi = mj)P (Ri = rk) (17)

The P (B = bi) can be introduced easily to this fundamental framework as follows:

λ(X > x) = λ(M > mmin)
nB∑
l=1

nM∑
j=1

nR∑
k=1

P (IM > x|mj , rk, bl)P (Mi = mj)P (Ri = rk)P (Bi = bl) (18)

The simplified version of the above equation is

λ(X > x) =
∑
l

λ(X > x|B = bl)P (B = bl) (19)

Assuming the simplified equation 8 is similar to the following equation of finding expected value of a
distribution where the conditional probability λ(X > x|B = b1) is considered to be a value ai found in the
equation below.

E[A] =
∑
i

aiP [A = ai] (20)

If this is assumed, then the corresponding variance can be calculate as follows.

E[A] =
∑
i

aiP [A = ai] (21)

E[A2] =
∑
i

a2
iP [A = ai] (22)
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σ2
A = E[A2]− E[A]2 (23)

Therefore, the variance of rate of exceedance for varying b value can be calculated as follows.

E[λ(X > x)] =
∑
i

λ(X > x|B = bi)P (B = bi) (24)

E[λ2(X > x)] =
∑
i

(λ(X > x|B = bi))2P (B = bi) (25)

σ2
λ = E[λ2]− (E[λ])2 (26)

Following is a figure that depicts how variance can help us explain the impact of changing b value on
the final value - rate of exceedance for each PGA value.

Figure 4: Rate of Exceedance of PGA values with variance

3.3 Simplifying codes: Matrix Multiplication

MATLAB is primarily used to run PSHA. The MATLAB code is written by the author based on
Baker’s Introduction to Probablistic Seismic Hazard Analysis paper. For MATLAB calculation, multiple
loops are needed to run some parts of the analysis. Here’s an example:

When Theorem of Total Probability is applied, the probability of exceedance P (X > x|m, r) is multi-
plied by corresponding probabilities of P (M = m) and P (R = r). For this multiplication, for loops are used
initially to compute the values.
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Figure 5: Different MATLAB codes to compute P (X > x) for each possibility

Multiple use of for-loop is an inefficient method of computing the needed value as it is time consuming
especially when the sample size is large. This process can be simplified and made more efficient by using
matrix multiplication. As observed in the simplified version code of the figure 2, the P (M = m) and
P (R = r) are transformed into matrix instead of a single array.

Figure 6: Written note on the process of using matrix for code simplification

4 Results and Discussion

Seismic hazard is generally quantified to understand the severity and intensity based on different
factors such as site location, distance from faults and etc. Probabilistic Seismic Hazard Analysis (PSHA) is
one such framework that quantifies seismic hazard by determining the annual rate of exceedance for different
peak ground acceleration (PGA) values i.e. when the rate of exceedance for 0.2g is 0.02, this means that
the annual rate of ground shake above 0.2g is 0.02. Following is a plot of the rate of exceedance for different
PGA values.
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Figure 7: Plot of rate of exceedance vs. PGA values

In figure 7, it is observed that the rate of exceedance λ(PGA > pga) decreases with the increase in
PGA values. This observation makes sense as higher PGA values corresponds to higher magnitude which
has smaller probability of it’s occurrence, hence the lower rate of exceedance.

4.1 Varying ’b’ values

The value ’b’ is one of the factors that can affect the resulting rate of exceedance values. This value
is based on the seismic fault as it’s catalogues are used to derive ’b’. Determining the correct ’b’ value is
hard as it is always changing as faults move and has multiple factors that might influence it’s final value.
Therefore, a sample of b values are considered to study it’s sensitivity to the final value of PSHA: the rate
of exceedance for different PGA values. The figure on the left is a plot of rate of exceedance for different
PGA values with multiple b values whereas the right figure overlays the plot the general rate of exceedance
(figure 7) with the plot of rate of exceedance for multiple b values on the left.

Figure 8: Plot of rate of exceedance for multiple PGA values with varying b values

From figure 8, a clear difference between two plots can be observed. The left photo shows the rate
of exceedance plot for the sample b values. On the right side, the hazard curve from Figure 4 is plotted
on the same plot as in the left. Before plotting, it was assumed that the additional hazard curve would
lie among the cluster of lines formed by different b values such that the variance can be studied. However,
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the original hazard curve turned out to have larger values than the rest of the lines from b values. The
possible explanation for this observation is that the b values used in the sample are distributed with varying
probabilities hence, each of the hazard lines are weighted accordingly. Therefore, the impact of varying
b-value on the rate of exceedance can’t be interpreted in the above plot.

4.2 Calculating standard deviation

Another approach is assuming the rate of exceedance λ(X > x|b) as a value and using probability
theorem to calculate the variance and standard deviation. The method of finding the associated standard
deviation is explained in the method section of the paper. The plot of the rate of exceedance curve with the
standard deviation is presented below.

Figure 9: Plot of rate of exceedance for different PGA values with standard deviation

It can be deduced from figure 9 that the variation of the rate of exceedance λ(X > x) decreases with
the increase in PGA values. This means that varying b value is more sensitive to smaller PGA than bigger
PGA value. However, this finding has relatively lower significance than it would have if large PGA values
are more sensitive. This is because seismologist and engineers care less about the smaller PGA values than
the large PGA values as larger PGA values or ground shakes would result in catastrophic effects.

5 Conclusion

In an attempt to quantify the uncertainty of ’b’ value on the PSHA final value: the rate of exceedance,
the conditional probability λ(X > x|B = b1) is considered to be a value so that the general probability
theorems of mean and variance can be applied to understand it’s spread. The main result of the approach is
that the spread is inversely related to the PGA value or the degree of ground shake. With higher PGA, the
spread of rate of exceedance due to varying ’b’ value is smaller, hence the smaller sensitivity. For smaller
PGA values, the spread is bigger which implies more uncertainty however, this finding smaller significance
in reducing seismic hazard. Moreover, in this analysis, Cornell (1976) GMPE is used instead of a GMPE
that represents Nepal better.

Moving forward, the analysis will be more robust with the region specific placement i.e. using region
specific site, GMPE and fault lines. Since this is an active area of research, present and upcoming resources
regarding the topic will be studied further.
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6 MATLAB Code

6.1 PSHA Code: Basic

1 % Uncertainty Propagation method of PSHA
2 % Last edited : Oct 19th , 2019
3 % Written by Tenzin Yangkey
4
5 % The purpose of th is scr ipt i s to study how uncertainity propagates
6 % through the Probabl ist ic Seismic Hazard Analysis (PSHA) method .
7
8 % In this code , the magnitude dis tr ibut ion is defined by the G−R relationship
9 % of the f a u l t l ine . The distance i s characterized by a l ine source

10 % and i t i s dependent on that dis tr ibut ion . For s i t e characterist ics , we
11 % w i l l use GMPE [Eqn. 2.14] in Baker ’ s paper for the analysis
12
13 % Note that the GMPE used in th is example i s below
14 % lnPGA = −0.152 + 0.859 .∗ M − 1.803 ∗ ln (d + 25) [ Baker , Eqn. 2.14]
15
16 %% PART 1 − PROBABILITIES OF EARTHQUAKE MAGNITUDES AT A GIVEN FAULT
17 % are modeled by the Guttenberg Richter (G−R) relationship
18
19 % In this model , we are assuming that the f a u l t l ines are known in case of
20 % Kathmandu val ley . We w i l l account for i t ’ s uncertainity f i r s t .
21
22 m = [5 : 0.25 : 8]; % A set of earthquake magnitude exceedance thresholds
23 b = 1; % The G−R paramter from log (lambda M>m) = a − b∗m
24 rate = 0.02; % ”base rate” of magnitudes exceeding the smallest magnitude being considered
25 nM = length(m); % FM(m) CDF of earthquake magnitudes from bounded G−R [ Baker , Eqn. 2.4]
26 FM = (1 - 10.ˆ( -b * (m - m (1)))) ./ (1 - 10.ˆ( -b * (m(end) - m (1))));
27
28 % Discretization of CDF to find P(M = m( i )) means P[m( i ) < M < m( i +1)]
29 PM = FM (2: length(FM )) - FM (1: length(FM ) -1); % [ Baker , Eqn. 2.6]
30
31 %% PART 2: DISTRIBUTION OF DISTANCES (Line source considered )
32
33 % LINE SOURCE − l e t ’ s assume that the nearest si te−source distance is 10km and longest distance i s 51km.
34 % This means that the overal l f a u l t length is 2∗ sqrt (51ˆ2 − 10ˆ2) = 100km
35
36 rmin = 10;
37 rmax = 51;
38 fault_length = 100;
39
40 r = [rmin: 2 : rmax ]; % Viable radii between a s i t e and a l ine f a u l t
41 nR = length(r);
42
43 % FRL( r ) = CDF of l ine source−s i t e distances
44 FRL = 2 * sqrt( r .ˆ 2 - rmin ˆ 2 ) / fault_length ; % [ Baker , Eqn. 2.11]
45
46 % Discretization of the CDF of distance : P(R = r ( i )) means P[ r ( i ) < R < r ( i +1)]
47 PR = FRL (2: length(FRL )) - FRL (1: length(FRL ) -1);
48
49 %% PART 3: GMPE EQUATION TO FIND THE EXCEEDANCE RATE
50
51 % using GMPE Cornell 1979 as a function
52 [meanlnPGA , sdlnPGA ] = GMPE_Cornell_1979 (m,r);
53
54 % A range of peak ground acceleration (PGA) exceedance thresholds
55 pga = [0.2:0.2:1];
56 PExc_mk = zeros(length(pga),length(PM),length(PR )); % i n i t i a l i z i n g Probabi l i ty of Exceedance matrix
57
58 % i n i t i a l i z e
59 Deg = zeros(length(pga),length(PM),length(PR )); % Deaggregation matrix
60 lamda_pga = zeros(1,length(pga )); % lamda(x > pga)
61
62 for k = 1: length(pga)
63
64 % Evaluate Exceedance Rates for the set of pga thresholds speci f ied above
65
66 zk = ( log(pga(k)) - meanlnPGA (: ,:)) / sdlnPGA ; % Standardized version of the ln (PGA)
67 PExc_mr = 1 - normcdf (zk ); % Probabi l i ty of exceedance , given magnitude and distance
68 PExc_mr = PExc_mr ((1: length(m) -1) ,(1: length(r) -1)); % Re−adjust vector length
69
70 % PART 4: THEOREM OF TOTAL PROBABILITY − combines a l l parts of PSHA
71
72 % % multiply each element of PExc mk by it ’ s corresponding PM and PR values
73 % % P(IM>x) = sum(sum(P(IM>x |m, r)∗ FM(m)∗FR( r ))) % [ Baker , Eqn. 2.22]
74 %
75 % PM mat = PM’∗ones (1 , length (PR) ) ;
76 % PR mat = ones( length (PM) ,1)∗PR;
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77 % PExc mr1 = PM mat.∗PExc mr.∗PR mat; % multiplying by PM and PR at each element
78 % PExc mr annual = rate ∗ PExc mr1;
79 % lamda pga(k) = sum(sum(PExc mr annual ) ) ;
80 %
81 % % dividing the PExc mk annual by lamda helps find the weighted values
82 % Deg(k , : , : ) = PExc mr annual/lamda pga(k ) ; % Deaggregation values from 0 − 1
83 %
84 % easiest path
85 PExc_mr1 = PM* PExc_mr *PR ’; % multiplying by PM and PR at each element
86 lamda_pga (k) = rate * PExc_mr1 ;
87
88 end
89
90 % %% SOURCES
91 %
92 % % Baker , Jack W. (2015) Introduction to Probabi l i s t ic Seismic Hazard Analysis .
93 % % White Paper Version 2.1 , 77 pp .
94 %
95 % % Rachael Lau’ s Intro codes 1a , 1b , 2 , 3 and 4 on Probabl ist ic Seismic Hazard Analysis (PSHA)

6.2 Uncertainty in b

1 % Uncertainty in b−value
2 % Last edited : Dec 9th , 2019
3 % Written by Tenzin Yangkey
4
5 % In this case , the montecarlo simulation of the b value is solved via
6 % Theorem of Total Probabi l i ty method . The distr ibut ion of b value i s
7 % incorporated in the TTP i t s e l f .
8
9 %% Line Source

10
11 % PART 1 − PROBABILITIES OF EARTHQUAKE MAGNITUDES AT A GIVEN FAULT
12 % are modeled by the Guttenberg Richter (G−R) relationship
13
14 % In this model , we are assuming that the f a u l t l ines are known in case of
15 % Kathmandu val ley . We w i l l account for i t ’ s uncertainity f i r s t .
16
17 mmin = 5;
18 mmax = 8.5;
19 dm = 0.25;
20 m = [mmin : dm : mmax ]; % A set of earthquake magnitude exceedance thresholds
21 n_m = length(m);
22
23 % Distribution of b values
24 b = [0.9:0.05:1.1]; % The G−R paramter from log (lambda M>m) = a − b∗m
25 n_b = length(b);
26 mu = 1; % mu = mean of b value
27 std = 0.2; % std = standard deviation of b value
28 b_mu = log(mu ); % log of the mu ( log normal dis tr ibut ion )
29 b_std = sqrt( log (1+(std/mu )ˆ2)); % log normal of the std
30 CDF_b = logncdf (b,b_mu , b_std ); % Cumulative probabi l i ty dis tr ibut ion of b values
31 PB = CDF_b (2: length( CDF_b )) - CDF_b (1: length( CDF_b ) -1); % discret izat ion of the p r o b a b i l i t i e s
32
33 % Probabi l i ty of m given b ( in a matrix format)
34 PM_b = zeros(length(PB),length(m) -1); % PM b = probabi l i ty of m given b
35 for i = 1: length(PB)
36 [PM_b(i ,:)] = magnitude (m,b(i)); % probabi l i ty of m given b
37 end
38 % Probabi l i ty of b in matrix form ( n b x n m)
39 PB1 = zeros(length(PB),length(m) -1); % I n i t i a l i z a t i o n
40 for j = 1: length(m)-1
41 PB1 (:,j) = PB; % probabi l i ty of b values
42 end
43
44 % Probabi l i ty of magnitudes
45 PM = PB*PM_b; % probabi l i ty of magnitude without varied b values − already weighted
46 PMM = PB1 .* PM_b; % probabi l i ty of magnitude with varied b values v e r t i c a l l y
47
48 % Base rate
49 rate = 0.02; % ”base rate” of magnitudes exceeding the smallest magnitude being considered
50
51 %% PART 2: DISTRIBUTION OF DISTANCES ( l ine source considered )
52
53 % LINE SOURCE − l e t ’ s assume that the nearest si te−source distance is 10km and longest distance i s 51km.
54 % This means that the overal l f a u l t length is 2∗ sqrt (51ˆ2 − 10ˆ2) = 100km
55
56 rmin = 10;

15



57 rmax = 51;
58 dr = 2;
59 r = [rmin: dr : rmax ]; % Viable radii between a s i t e and a l ine f a u l t
60 fault_length = 100;
61
62 [PR] = line_dist (r,rmin , fault_length );
63
64 %% PART 3: GMPE EQUATION TO FIND THE EXCEEDANCE RATE
65
66 % using GMPE Cornell 1979 as a function
67 [meanlnPGA , sdlnPGA ] = GMPE_Cornell_1979 (m,r);
68
69 % A range of peak ground acceleration (PGA) exceedance thresholds
70 pga = [0.2:0.2:1]; % pga values from 0.2g to 1g is considered
71
72 % I n i t i a l i z e
73 PExc_mk = zeros(length(PM),length(PR )); % i n i t i a l i z i n g Probabi l i ty of Exceedance matrix
74 lamda_pga = zeros(1,length(pga )); % lamda(x > pga ) : the original values
75 lamda_pgaB = zeros(length(pga),length(PB ));
76 lamda_pgaSQ = zeros(length(pga),length(PB ));
77
78 for k = 1: length(pga)
79
80 % Evaluate Exceedance Rates for the set of pga thresholds speci f ied above
81 zk = ( log(pga(k)) - meanlnPGA (: ,:)) / sdlnPGA ; % Standardized version of the ln (PGA)
82 PExc_mr = 1 - normcdf (zk ); % Probabi l i ty of exceedance , given magnitude and distance
83 PExc_mr = PExc_mr ((1: length(m) -1) ,(1: length(r) -1)); % Re−adjust vector length
84
85 %% PART 4: THEOREM OF TOTAL PROBABILITY − combines a l l parts of PSHA
86
87 % multiply each element of PExc mk by it ’ s corresponding PM and PR values
88 % P(IM>x) = sum(sum(P(IM>x |m, r)∗ FM(m)∗FR( r ))) % [ Baker , Eqn. 2.22]
89
90 % Part I
91 PExc_mr1 = PM* PExc_mr *PR ’; % TTP: multiplying by PM and PR at each element
92 lamda_pga (k) = rate * PExc_mr1 ; % Rate of exceedance values with varying PGA values
93
94 % Part II − maintain variation in b
95 PExc_mrv = PM_b* PExc_mr *PR ’; % P(X>x | b)
96 lamda_pga_b = rate* PExc_mrv ; % lamda(X>x | b)
97 lamda_pgaB (k ,:) = lamda_pga_b .*PB ’; % lamda(X>x) or E[ lamda(X>x ) ]
98 lamda_pgaSQ (k ,:) = ( lamda_pga_b .ˆ2).* PB ’; % lamda(X>x | b)ˆ2∗P(B=b) or E[ lamdaˆ2(X>x ) ]
99 end

100
101 %% Variance and Mean Calculation
102 var = lamda_pgaSQ - ( lamda_pgaB .ˆ2); % variance of rate with varying b and PGA values
103 var = var ’; % transpose
104 variance = sum(var ); % PGA variance across PGA values −− CAN ONE ADD VARIANCES?
105 std = variance .ˆ0.5;
106 lamda_pgaB = lamda_pgaB ’; % transpose
107 mean = sum( lamda_pgaB ); % mean of the varying b with PGA values
108
109 %% plot t ing
110
111
112 % Figure 1: Plot of rate of exceedance for di f ferent PGA values
113 figure (1)
114 plot(pga ,lamda_pga ,’k*-’)
115 t i t l e (’Plot of rate of exceedance for different PGA values ’)
116 xlabel(’pga (g)’)
117 ylabel(’\ lambda (X>x)’)
118
119 % Figure 2
120 figure (2)
121 plot(pga , lamda_pga )
122 hold on
123 plot(pga , lamda_pga +std,’k*--’)
124 hold on
125 plot(pga ,lamda_pga -std,’ko --’)
126 legend(’E[\ lambda ]’,’E[\ lambda ]+\ sigma [\ lambda ]’,’E[\ lambda ]-\ sigma [\ lambda ]’)
127 t i t l e (’Plot of rate of exceedance for different PGA values ’)
128 xlabel(’pga (g)’)
129 ylabel(’\ lambda (X>x), X = PGA and x = pga ’)
130
131 % Figure 3: Plot of rate of exceedance for di f ferent PGA values with
132 % dif ferent b values
133 figure (3)
134 plot(pga , lamda_pgaB (1 ,:) , ’kd -’)
135 hold on
136 plot(pga , lamda_pgaB (2 ,:) , ’ks -’)
137 hold on
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138 plot(pga , lamda_pgaB (3 ,:) , ’k*-’)
139 hold on
140 plot(pga , lamda_pgaB (4 ,:) , ’ko -’)
141 legend(’b = 0.9 ’,’b = 0.95 ’,’b = 1’,’b = 1.05 ’)
142 t i t l e (’Rate of exceedance vs PGA values ’)
143 xlabel(’pga(g)’)
144 ylabel(’\ lambda (X>x)’)
145
146 % Figure 4: Plot of f igure 1 and figure 3 on the same plot
147 figure (4)
148 plot(pga , lamda_pgaB (1 ,:) , ’kd -’)
149 hold on
150 plot(pga , lamda_pgaB (2 ,:) , ’ks -’)
151 hold on
152 plot(pga , lamda_pgaB (3 ,:) , ’k*-’)
153 hold on
154 plot(pga , lamda_pgaB (4 ,:) , ’ko -’)
155 hold on
156 plot(pga ,lamda_pga ,’r-’)
157 legend(’b = 0.9 ’,’b = 0.95 ’,’b = 1’,’b = 1.05 ’,’b = average ’)
158 t i t l e (’Rate of exceedance vs PGA values ’)
159 xlabel(’pga(g)’)
160 ylabel(’\ lambda (X>x)’)

6.3 Magnitude

1 % magnitude function
2
3 % This function i s used in the main code that studies uncertainty propagation method of PSHA
4 % Last edited : Oct 19th , 2019
5 % Written by Tenzin Yangkey
6
7 function [PM] = magnitude (m,b)
8 % FM(m) CDF of earthquake magnitudes from bounded G−R [ Baker , Eqn. 2.4]
9 FM = (1 - 10.ˆ( -b .* (m - m (1)))) ./ (1 - 10.ˆ( -b .* (m(end) - m (1))));

10 % Discretization of CDF to find P(M = m( i )) means P[m( i ) < M < m( i +1)]
11 PM = FM (: ,(2: length(FM ))) - FM (: ,(1: length(FM ) -1)); % [ Baker , Eqn. 2.6]
12 end

6.4 GMPE Function

1 % GMPE FUNCTION
2 % GMPE Cornell 1979
3
4 % This function i s used in the main code that studies uncertainty propagation method of PSHA
5 % Last edited : Oct 19th , 2019
6 % Written by Tenzin Yangkey
7
8 function [meanlnPGA , sdlnPGA ] = GMPE_Cornell_1979 (m,r)
9 % finding the mean log PGA to compare i t with log PGA to find the z value

10 meanlnPGA = zeros(length(m),length(r));
11 sdlnPGA = 0.57; % Standard Deviation of ln PGA
12 for i = 1: length(m) % looping over the di f ferent values of magnitude
13 for j = 1: length(r) % looping over di f ferent values of distance
14 meanlnPGA (i,j) = -0.152 + 0.859 .* m(i) - 1.803 * log(r(j) + 25); % [ Baker , Eqn. 2.14]
15 end
16 end
17 end
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