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ABSTRACT 

 

Adequate assessment of the uncertainties in modeling and simulation is becoming an integral 

part of the simulation based engineering design. The goal of this study is to demonstrate the 

application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in 

multiphase (gas-solid) flows with experimental and simulation data, as part of our research 

efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier.  UQ 

analysis was first performed on the available experimental data.  Global sensitivity analysis 

performed as part of the UQ analysis shows that among the three operating factors, steam to 

oxygen ratio has the most influence on syngas composition in the bench-scale gasifier 

experiments. An analysis for forward propagation of uncertainties was performed and results 

show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a 

decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis 

performed in the reference experimental study. Another contribution in addition to the UQ 

analysis is the optimization-based approach to guide to identify next best set of additional 

experimental samples, should the possibility arise for additional experiments. Hence, the 

surrogate models constructed as part of the UQ analysis is employed to improve the information 

gain and make incremental recommendation, should the possibility to add more experiments 

arise. 

 

In the second step, series of simulations were carried out with the open-source computational 

fluid dynamics software MFiX to reproduce the experimental conditions, where three operating 

factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were 

systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis 

was performed on the numerical results.  As part of Bayesian UQ analysis, a global sensitivity 

analysis was performed based on the simulation results, which shows that the predicted syngas 

composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in 

experiments as well) but also by variation in the coal flow rate and particle diameter (which was 

not observed in experiments).  The carbon monoxide mole fraction is underpredicted at lower 

steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is 

observed for the carbon dioxide mole fraction. These discrepancies are attributed to either 

excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the 

selection of reaction models, where different reaction models and kinetics can lead to different 

syngas compositions throughout the gasifier. 

 

To improve quality of numerical models used, the effect that uncertainties in reaction models for 

gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the 

syngas composition at different grid resolution, along with bed temperature were investigated.  

The global sensitivity analysis showed that among various reaction models employed for water 

gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the 

greatest influence on syngas composition, with gasification reaction model being second. Syngas 

composition also shows a small sensitivity to temperature of the bed. The hydrodynamic 

behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. 

However, the syngas concentration continued to be affected by the grid resolution as low as 9 
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times the particle diameter. This is due to a better resolution of the phasic interface between the 

gases and solid that leads to stronger heterogeneous reactions. 

 

This report is a compilation of three manuscripts published in peer-reviewed journals for the 

series of studies mentioned above. 
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1. INTRODUCTION 

The development of advanced clean technologies to enable the continued use of abundant and 

affordable fossil energy such as coal resources across the United States for power generation is 

one of the critical missions of the National Energy Technology Laboratory (NETL) of the U.S. 

Department of Energy [1]. One such technology is carbon feedstock gasification, which promises 

to couple high efficiency, with low pollutant for power generation and chemical production. An 

integrated approach that combines theory, computational modeling, experimentation, and 

industrial feedback to develop physics-based methods, models, and tools to support the 

development and deployment of advanced gasification-based reactors and systems is critical for 

the development of next generation clean energy technologies. Hence, objective assessment of 

the reliability and predictive capability of computational modeling tools such as computational 

fluid dynamics (CFD), which can simulate complex flows in coal gasifiers will play an important 

role for reducing design cycle and faster time-to market. 

The need for this objective assessment of prediction credibility is even greater in multiphase gas-

solid flow CFD modeling, since the solid phase flow field can fluctuate both spatially and 

temporally with amplitudes of the order of the mean flow [2]. To address this need, uncertainty 

quantification (UQ) techniques and analysis have been employed in the recent years by many 

researchers. Hence, uncertainty quantification methods are being used at NETL in order to assess 

diverse sources of uncertainties encountered in reacting multiphase flow modeling of advanced 

gasifiers. This was achieved by first exploring the applicability of uncertainty quantification 

methods for multiphase flows to an existing experimental dataset. For this purpose, the 

experiment results from a bench-scale fluidized bed gasifier obtained from Karimipour et al. [3] 

was used. Bayesian UQ methods were used to better understand the governing physics and 

sensitivities of the operating conditions varied during experiments on the quantities of interest 

such as the syngas composition obtained from the author [4]. 

Once the applicability of Bayesian UQ methods to experimental data from the bench scale 

fluidized bed gasifier was established, the UQ methodology was applied to simulation results of 

the same fluidized bed gasifier conducted with CFD open source software MFiX [5]. Aside from 

uncertainties associated with numerical approximations that are inherently present in any 

simulation, multiphase flow modelers have to account for additional uncertainties due to the 

various closure models that are based on empirical observation and constitutive relationships, 

(Lane et al. [6]). Additionally, accounting for the heat and mass transfer between the gaseous and 

solid phases that takes place in reacting flows further complicates simulations by introducing 

more sources of error and uncertainty with chemical reaction time scales that can be a few orders 

of magnitude smaller than the hydrodynamic time scale of the flow. In the current study the 

effect that reaction models for gasification, char oxidation, carbon monoxide oxidation and water 

gas shift will have on the syngas composition at different grid resolution, along with bed 

temperature, which affects the reactions have been also studied. 
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2. BENCH SCALE FLUIDIZED BED GASIFIER EXPERIMENT 

The experimental study performed by Karimipour et al. [3] for a bench-scale fluidized bed 

gasifier was selected for exploring the applicability of various uncertainty quantification methods 

in reacting multiphase flows. Karimipour et al. [3] performed series of gasification experiments 

to characterize the effect of coal feed rate (will be referred as Factor #1, which was varied 

between 0.036 g/s and 0.063 g/s), coal particle size (Factor #2 varied between 70 µm and 500 

µm) and steam to oxygen ratio (Factor #3 varied between 0.5 and 1.0) on the quality of syngas 

generated. These three operating factors were identified as the most important parameters and a 

Central Composite Design (CCD) based sampling methodology was employed to vary them at 

three distinct levels in a systematic way.  The relationship between operating variables and the 

quantities of interest in the experiment were approximated with Response Surface Methodology 

(RSM). This experimental study was unique in a way that extensive experimental data was 

generated as the identified parameters were varied in a systematic manner by employing 

statistical design of experiments methods to construct a response surface, which was then used to 

assess the effect of these operating conditions on the response parameters (a.k.a. quantities of 

interest) such as H2/CO ratio. However, the original study was limited to a basic analysis of 

variance (ANOVA) investigation of the experimental results. In our study, an uncertainty 

quantification analysis was performed with the experimental data obtained from [3] prior to our 

CFD simulation campaign for the same configuration and the follow-up UQ analysis [7]. For 

example, forward propagation of uncertainties was performed with the experimental data 

acquired to better quantify the potential effect of uncertainties in the operating factors. Also in 

the original published study, the response variables or quantities of interest were limited to 

derived quantities such as carbon conversion, gasification efficiency or ratio of select species 

mass fractions. To avoid performing UQ analysis with the derived quantities, all analysis was 

performed with species mole fractions (e.g., CH4, CO etc.). Error! Reference source not found. 

shows the mole fraction of key components of the syngas measured by Karimipour et al. [4]. 

Karimipour et al. [3] used the CCD sampling method, depicted in Figure 1, to come up with 15 

distinct experimental conditions by varying factors 1 to 3 at the same time in a systematic way to 

capture their effect on the response variables. One of the experimental conditions, was replicated 

6 times. Although statistical design of experiments techniques strongly recommends 

randomization and replication of all samples to increase the confidence in experimental 

measurements, the physical experiments were not conducted completely following these 

principles. The replication runs, which were performed for the center point were the experiments 

conducted with coal flow rate = 0.0495 g/s, coal particle size = 285 µm, steam to oxygen ratio = 

0.75. In addition to the experiments performed based on CCD based grid sampling, 4 additional 

experiments were conducted for validation purposes where the steam to oxygen ratio was kept at 

0.75 but other two factors were varied at the upper and lower limits. In our study, the available 

replications of the same experimental condition were useful in assessing and estimating the 

experimental errors, and the additional 4 experiments were used in assessing the quality of the 
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surrogate model constructed with Gaussian Process model approach, which is discussed in the 

following sections. 

Figure 1 Central Composite Design (CCD) illustration [8] 
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                              Uncertain Input Parameters/Factors                    Secondary Quantities of Interest (Karimipour [4]) 

Actual Experiment 

Run Order 
Factor 1 Factor 2 Factor 3 Response 6 Response 7 Response 8 Response 9 Response 10 

Coal Flow Rate 

(g/s) 
Particle 

Size (µm) 
H2O/O2 Ratio 

in syngas 
CH4 mole 

fraction 
CO mole 

fraction 
CO2 mole 

fraction 
H2 mole 

fraction 
N2 mole 

fraction 

1 0.063 70 0.5 0.0074 0.1427 0.1306 0.1149 0.5793 

2 0.063 70 1 0.0073 0.1115 0.1562 0.1393 0.5590 

3 0.0495 70 0.75 0.0076 0.1296 0.1431 0.1353 0.5576 

4 0.036 70 0.5 0.0081 0.1500 0.1256 0.1218 0.5683 

5 0.036 70 1 0.0078 0.1215 0.1491 0.1512 0.5427 

6 0.063 285 0.75 0.0078 0.1316 0.1394 0.1349 0.5592 

7 0.0495 285 0.5 0.0077 0.1448 0.1300 0.1172 0.5752 

8 0.0495 285 0.75 0.0080 0.1357 0.1382 0.1349 0.5562 

9 0.0495 285 0.75 0.0078 0.1357 0.1376 0.1359 0.5559 

10 0.0495 285 0.75 0.0079 0.1333 0.1396 0.1330 0.5597 

11 0.0495 285 0.75 0.0084 0.1414 0.1354 0.1426 0.5448 

12 0.0495 285 0.75 0.0080 0.1352 0.1378 0.1371 0.5552 

13 0.0495 285 0.75 0.0079 0.1345 0.1383 0.1344 0.5586 

14 0.0495 285 1 0.0074 0.1143 0.1534 0.1395 0.5588 

15 0.036 285 0.75 0.0077 0.1322 0.1393 0.1352 0.5587 

16 0.063 500 0.5 0.0079 0.1395 0.1330 0.1168 0.5781 

17 0.063 500 1 0.0076 0.1119 0.1557 0.1419 0.5556 

18 0.0495 500 0.75 0.0079 0.1272 0.1441 0.1299 0.5660 

19 0.036 500 0.5 0.0080 0.1500 0.1262 0.1143 0.5767 

20 0.036 500 1 0.0080 0.1243 0.1487 0.1502 0.5419 

 

Table 1 Tabulated data for input and secondary quantities of interest (response) from 

experiments [4] 
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3. BAYESIAN UNCERTAINTY QUANTIFICATION ANALYSIS METHOD 

General Electric Bayesian Hybrid Modeling (GEBHM), first proposed by Kennedy and O’Hagan 

[9] and jointly developed by Los Alamos National Laboratory (LANL) and General Electric 

(GE), is a generalized technique for probabilistic calibration of simulation models under 

uncertain conditions. Conceptually, the principle of Bayesian Hybrid Modeling (BHM) can be 

expressed as, 

𝒚(𝒙𝒊)  ±  𝝐(𝒙𝒊) =  𝜼(𝜽, 𝒙𝒊) +  𝜹(𝒙𝒊);     𝒊 = 𝟏…𝒏    (1) 

 

where, n is the number of experimental observations, y(x) denote the observation from the 

experiments, η (xi,θ) denote the high fidelity simulator (such as the CFD model), with x being the 

controllable design parameters (with variability), and θˆbeing the true values of the additional 

un-observable model parameters (referred to as calibration or tuning parameters), δ(x) is the 

discrepancy between the calibrated simulator η and the experimental observation, and  are the 

well-characterized observation errors (an input to the Bayesian framework) as shown in Figure 2. 

GE has co-developed the GEBHM framework for the Bayesian calibration of large-scale (100+ 

parameters) industrial applications. The unique feature of this technique is the explicit 

formulation where the high-fidelity physics model is considered to be potentially deficient and 

thus the discrepancy model is included during the calibration phase. This means that the 

calibration of the model parameters and the computation of the discrepancy occur 

simultaneously. This prevents the model from being over-tuned because the Bayesian framework 

favors solutions where both the calibration parameters and the discrepancy term are highly likely 

and thus automatically filters one-off over-tuned results. This ensures that the physics model is 

predictive over the entire design space. 
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Figure 2 Bayesian Hybrid Method illustration 

 

These techniques have been successfully applied within GE for calibrating complex nonlinear 

systems under uncertain conditions such as engine system-level thermal model calibration and 

validation (with more than 100 parameters involved), global sensitivity and optimization for 

design and improved model predictive capability for combustion dynamics, thermo-mechanical 

design, alloy design, etc. ( [10], [11]). 

In general, the high fidelity simulator results are not always available at the experimental setting, 

but rather on a set of m design and calibration parameter combinations η(xj,θj) for j = 1,2,...m. 

The optimal simulations are usually chosen based on an experimental design procedure. As 

proposed by Kennedy & O’Hagan [20], and as described by Higdon et al. [12], the simulator 

output and model discrepancy are modeled as Gaussian Processes (GP). The GP models become 

the priors for the simulator outputs, discrepancy and outputs y, which can be expressed in the 

following way: 

�̂�(𝒙𝒊)  ±  𝝐(𝒙𝒊) =  𝜼(𝜽, 𝒙𝒊) +  𝜹(𝒙𝒊);     𝒊 = 𝟏…𝒏    (2) 

 

The simulator outputs at m design locations (xj,θj) are known. The simulator η is approximated 

as a GP model with a zero mean, and covariance matrix given by a block diagonal matrix (each 

block of size m × m). The non-zero terms of the covariance matrix are given below. 
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∑  
𝜼𝒌
𝒊𝒋 = 

𝟏

𝝀𝜼𝒛
𝐞𝐱𝐩(𝜷𝜼𝒌|𝑿𝒊 − 𝑿𝒋|

𝟐) + 𝑰
𝟏

𝝀𝜼𝒔
     (3) 

for i,j=1,...,m and k=1,...,N. 

where the X is the combined vector of design and calibration parameters (X = (x,θ)) used to 

generate the simulation outputs, the parameters ληz and λetas characterize the marginal data 

variance captured by the model and by the residuals, respectively, βηk characterizes the strength 

of dependence of kth output on the design (x) and calibration (θ) parameters. The exponent 2 

ensures the GP model is smooth, and is infinitely differentiable. The experimental output y is 

also modeled through a similar GP. 

The posterior distributions of the calibration parameters and the hyperparameters of the GP 

models are evaluated using the Markov Chain Monte Carlo (MCMC) approach. A modified 

version of Metropolis-Hastings algorithm was used with univariate proposal distributions for the 

MCMC posterior updates. The initial values of the covariance matrices are updated with current 

realizations of the hyperparameters at every MCMC step. Realizations from the posterior 

distributions of the hyperparameters are produced using MCMC. This customized version of 

MCMC was specifically modified to enable parallel execution for optimized performance, which 

makes GEBHM approach unique as compared to other available Bayesian codes [11]. In the first 

part of the study global sensitivity analysis, and forward propagation of uncertainties are 

demonstrated using the GEBHM by utilizing the experimental data only. Hence, for the purposes 

of the initial part of the study presented no CFD simulation data was employed with the GEBHM 

analysis. A brief summary of the theory behind computing global sensitivity analysis is provided 

below section to provide insight for the reader on the methodology employed. 

3.1 GLOBAL SENSITIVITY ANALYSIS 

One of the fundamental analysis employed as part of the uncertainty quantification assessment is 

the global sensitivity analysis. It aims to answer the question of which input factors have the 

most influence on the variability observed for the quantities of interest for a given parameter 

space and accordingly limited resources can be allocated to reduce the uncertainty in those input 

factors. In other words, it attempts to answer the question of which set of input factor(s) drive the 

variability observed in the quantities of interest and to what extent in the entire design space. In 

traditional sensitivity analysis, the gradients at a fixed point in the design space (typically at the 

mean) are used to assess sensitivity of individual factors. In non-linear systems with several 

parameters, this provides a very limited view of sensitivity. Hence, global sensitivity offers a 

holistic view of sensitivity in the full design space and thus provides a complete coverage for 

design. After the construction of the GPM based emulator from the available experimental data, 

global sensitivity analysis was performed utilizing the GEBHM framework. 

Let us consider a response y that is a function of n variables: 

𝒚 = 𝒈(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏),   𝒘𝒉𝒆𝒓𝒆  𝒙𝒊  ∈ [𝟎, 𝟏]     (4) 

 

Variance based global sensitivity analysis use Sobol’ indices to denote relative significance of 

variables. The Sobol’ decomposition of y is given by: 
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𝒚 = 𝒇𝟎 + ∑ 𝒇𝒊 (𝒙𝒊) 
𝒏
𝒊=𝟏 + ∑ 𝒇𝒊𝒋(𝒙𝒊𝟏≤𝒊≤𝒋≤𝒏  , 𝒙𝒋) + ⋯ 𝒇𝟏,𝟐,…,𝒏(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) 

          (5) 

The effect functions f is defined as shown below. 

 

𝒇𝟎 = 𝑴𝒆𝒂𝒏 [𝒚] =  ∫𝒈(𝒙)𝒅𝒙      (6) 

 

The main effect functions are defined as the integrated effect of all inputs except xi. 

 

𝒇𝒙(𝒙𝒊) =  ∫𝒈(𝒙)~𝒊  𝒅𝒙 − 𝒇𝟎       (7) 

 

Two-way interaction effect functions are computed by integrating g(x) with all inputs except the 

inputs xi and xj and subtract the main effect functions of xi and xj and the mean of g(x). Higher 

order interaction effects can be written in a similar fashion. Using the above main and interaction 

effect functions we can compute the Sobol’ indices.  Let D denote the variance of the true 

function g(x). 

 

𝑫 = 𝑽𝒂𝒓 [𝒈(𝒙)] =  ∫𝒈𝟐(𝒙) − 𝒇𝟎
𝟐      (8) 

 

By integrating the square of Equation 1 and invoking the orthogonality property, we can write: 

 

𝑫 = ∑ 𝑫𝒊
𝒏
𝒊=𝟏 + ∑ 𝑫𝒊𝒋𝟏≤𝒊≤𝒋≤𝒏 + ⋯+ 𝑫𝟏,𝟐,…,𝒏     (9) 

 

Where 𝐷𝑖 = ∫ 𝑓𝑖
2 (𝑥𝑖) 𝑑𝑥𝑖 

Sobol’ indices are then defined as below: 

Main effects: 

𝑺𝒊 = 
𝑫𝒊

𝑫
         (10) 

Two-way interaction effects: 

𝑺𝒊 = 
𝑫𝒊𝒋

𝑫
         (11) 

All the Sobol’ indices sum to 1, i.e., 

∑ 𝑺𝒊
𝒏
𝒊=𝟏 + ∑ 𝑺𝒊𝒋𝒊𝒋 + ⋯+ 𝑺𝟏,𝟐,…,𝒏 = 𝟏     (12) 
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Each Sobol’ index is a sensitivity measure describing which amount of the total variance is due 

to the uncertainties in the set of input parameters. The first order indices Si give the influence of 

each parameter taken alone whereas the higher order indices account for possible mixed 

influence of various parameters. The Sobol’ indices are known to be good descriptors of the 

sensitivity of the model to its input parameters, since they do not suppose any kind of linearity or 

monotonicity in the model. 
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4. BAYESIAN UNCERTAINTY QUANTIFICATION ANALYSIS OF EXPERIMENTAL 

DATA 

The non-intrusive Bayesian uncertainty quantification method introduced in section 3 was used 

to analyze the results obtained from experiments before proceeding with the simulations. The 

typical approach involves the following steps: 

1. Identify the set of operating factors or input parameters as uncertain parameters, and 

quantities of interest (QoI) variables (i.e., response parameters) 

2. Using statistical design of experiments principles based sampling techniques, design an 

experiment test matrix to carry out the physical experiments or computational simulations 

3. Create surrogate models for the QoIs based on the data generated from step (2) if the 

experiments or computational models are expensive to run 

4. Perform global sensitivity analysis to quantify, which operating factor has the most 

influence in the variability observed for QoIs 

5. Conduct Monte Carlo simulations for forward propagation of input uncertainties by using 

random drawings from the probability density functions (PDF) that characterize the input 

uncertainties, and function evaluations of the surrogate models to obtain histograms for 

QoIs. 

Steps (1) and (2) have already been determined by the experimental work of Karimipour et al. 

[3]. The next step is the construction of the appropriate surrogate model. The original study ( [3]) 

relied on a simple polynomial regression based response surface, which is typically used in 

traditional physical design of experiments setup rather than UQ analysis. The QoIs were mostly 

derived QoIs (e.g., gasification efficiency). In the current study, the additional quantities of 

interest based on mole fractions such as CO, H2 and CO2 mole fractions are also included. These 

QoIs are directly obtained from the author of original study [4]. 

The tabulated experimental conditions and measured quantities of interest variables for 20 

physical experiments in [3] were used as input for the GEBHM analysis. The first step in the 

GEBHM framework is to construct a Gaussian Process Model (GPM) based surrogate model 

(a.k.a. the emulator) of the responses, which is capable of modeling nonlinear responses 

accurately as compared to the simple polynomial regression based response surfaces generated in 

the original study [3]. However, GPM based emulators, which were used in our study, possess a 

unique feature that is not available in regression based response surface methods, i.e., an 

assessment of the uncertainty of the emulator constructed without any additional computation. 

This is shown in the color contours of the 3D surface plots for the emulators constructed for CO, 

H2 and CO2 mole fractions as shown in Figure 3 through Figure 5. The color legend shows the 

uncertainty in the emulator based on the given set of experimental data points. A practical way to 

interpret the uncertainty pattern observed in the color contours is based on the fact that the CCD 

sampling design contains data points on the corners of a cube and faces, the uncertainty is lower 

around these sampling points and increases as one gets further away, which is shown with the 

yellow color range. 

In these surface plots, the steam to oxygen ratio and coal particle size are shown in x and y axis 

respectively for each quantity of interest. The third operating factor, coal flow rate was kept at 

nominal setting corresponding to the mid-point value in the plots for evaluation purposes. It is 
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noted that in the original study by Karimipour et al., similar plots for the quantities of interest 

were also generated based on the polynomial regression based response surface constructed but 

they were primarily for the derived quantities of interest such as gasification efficiency excluding 

the two ratios, i.e., H2/CO and CH4/H2. In the current study, as discussed earlier, standalone mole 

fractions for the species of interest were considered and used throughout the analysis. Figure 6 

was provided for qualitative comparison of GPM based emulator with respect to polynomial 

regression based response surface for the same quantity of interest, i.e., H2/CO. Similar 

conclusions can be derived from the GPM based emulators constructed, i.e., as shown in Figure 

3 through Figure 5 the production of syngas species CO, H2 and CO2 increases as the ratio of 

steam to O2 increases with coal particle diameters having no effect on variability of syngas 

composition. This indicates that the fluidization behavior is not effected by particle size range 

used in the experiment. The remainder UQ analysis such as global sensitivity analysis was based 

on the GPM based emulators constructed from the experimental dataset (Figure 3 through Figure 

5). 

4.1 ASSESSMENT OF SURROGATE MODEL QUALITY 

Assessment of the quality of the emulator is a key step in non-intrusive UQ analysis process as 

the rest of the UQ analysis heavily relies on the quality of the emulator constructed in lieu of the 

CFD simulations.  Figure 7 shows a comparison of the actual and predicted values from the 

GEBHM emulator for each of the responses. Ideally, the model predictions should be as close as 

possible to the experimentally observed values, i.e., have points along the diagonal in the plot. 

Any deviations from the diagonal is related to the model approximation and experimental errors. 

As shown in Figure 7, the GEBHM surrogate models predict all quantities of interest accurately. 

In the case of the five repeats in the experimental data for center point conditions, the emulator 

predicts the mean of the repeated experimental points accurately and the uncertainty of the 

prediction reflects the uncertainty introduced by the variation in the repeated results. 

Another approach to assess the quality of the surrogate model was predicting the validation runs 

in the experiment with the surrogate model. For this purpose, the four additional experiments 

listed in [3] under validation runs were predicted with the Gaussian Process Model based 

surrogate model. The results of the discrepancy are shown in Table 2. Comparison between 

actual experiment data for H2/CO and predictions from emulator, shows a maximum discrepancy 

of 4.5%. This is particularly good given that the original dataset was not a space-filling design of 

experiments such as Latin hypercube based sampling. GP models prefer the input data to be 

distributed throughout the entire design space rather than be sampled with traditional Central 

Composite Design based grid sampling. In spite of this limitation, it can be seen that the model 

captures the main effects well as seen by the good predictions. The lack of space filling 

distributed points in the input space might restrict the model to main effects and minimal 

interactions. 
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Figure 3 CO surrogate model (emulator) behavior. Color represents % 

uncertainty in the surrogate model primarily due to sampling method and 

samples 

 

Figure 4 H2 surrogate model (emulator). Color represents % uncertainty 

in the surrogate model primarily due to sampling method and samples 
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Figure 5 CO2 surrogate model (emulator). Color represents % 

uncertainty in the surrogate model primarily due to sampling method and 

samples 

 

Figure 6 Surface plot showing the surrogate model (emulator). Color 

represents % uncertainty in the surrogate model primarily due to sampling 

method and samples 
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Coal Flow 

Rate (g/s) 

Particle Size 

(µm) 
Steam/O2 

H2/CO 

experiments 

H2/CO 

emulator 
Discrepancy 

0.063 500 0.75 1.065 1.0173 -4.5% 

0.036 500 0.75 1.013 1.0059 -0.7% 

0.63 70 0.75 1.009 1.0256 1.6% 

0.036 70 0.75 1.003 1.0333 3.0% 

Table 2 Comparison of Additional Validation Runs with respect to 

Surrogate Model (emulator) Predictions 

 

 

 

 

Figure 7 GEBHM surrogate model (emulator) quality for each QoI 

 



Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized 

Bed Gasifier 

 

17 

4.2 GLOBAL SENSITIVITY ANALYSIS 

As part of the uncertainty quantification assessment, a global sensitivity analysis, which aims to 

understand the relative effect of input parameters on the variability observed in the quantities of 

interest was performed with GEBHM. A brief summary of the theory behind computing global 

sensitivity analysis is provided in section 3.1, the results of the sensitivity analysis when applied 

to the available experimental data is presented in this section. 

Table 3 shows the global sensitivity analysis results for the experimental data. The results show 

that the sensitivity is primarily due to main factors (i.e., three operating factors varied during the 

experiments) rather than their interactions with each other being more influential on the 

quantities of interest. There may be governing physics where interaction of certain main factors 

plays a key role in the variability observed for quantities of interest. The global sensitivity 

analysis can isolate the contribution from main factors versus interaction of the main effect 

factors (i.e., coal flow rate and steam to oxygen ratio at the same time). Among the three main 

factors considered in the experiment, steam to oxygen ratio appears to have the most pronounced 

effect on CO, H2 and CO2 mole fractions as shown in the bottom row of Table 3 in tabulated 

format. For example, the variability observed in CO mole fraction at the monitoring location of 

the gasifier is primarily (97%) due to steam to oxygen ratio and 1.6% due to coal flow rate. 

Among the interaction of main effects, only the interaction of coal flow rate with steam to 

oxygen ratio appears to be above 1 % (as shown in the off-diagonal cells), which is insignificant 

compared to the effect of steam to oxygen ratio standalone. Similar situation is observed with the 

remaining QoIs. This type of insight is quite critical in understanding the effect of uncertainty in 

certain input parameters on the quantities of interest and support decision making such as in 

allocating more resources for focused experiments to reduce the uncertainty in these input 

parameters. 

It is worth noting that the results of the sensitivity analysis are skewed by the sampling method 

that was employed for varying the inputs. By design, Central Composite Design sampling 

prevents exploring higher order interactions. Thus, the lack of interactions seen in the 

experimental data should not be taken as evidence that interaction effects are minimal. 

Interrogating the system with space filling designs such as Optimal Latin Hypercube (OLH) 

sampling is required to accurately quantify interaction effects. We investigated this as part of a 

study which is carried out through computational fluid dynamics simulations of the same 

fluidized bed gasifier [13]. 

The variance in global sensitivity for each QoI is shown in Figure 8. These plots show the overall 

sensitivity of each factor or operating variable to the corresponding quantity of interest. The 

median of the sensitivity is shown as a red line in the box plot. A sensitivity value close to zero 

indicates low sensitivity and close to one indicates very high sensitivity [14]. For every QoI, the 

steam to oxygen ratio is identified as the most sensitive parameter. However, since the variance 

in sensitivity for this parameter ranges from 0 to 1, the sensitivity varies significantly depending 

on the location in the design space, i.e., depending on where the other two variables are set, the 

steam ratio could be very sensitive or completely insensitive. Hence, although coal flow rate and 

particle size don’t effect syngas composition directly, they are still very important since they 

influence steam to oxygen ratio, which is the most sensitive parameter.  Application of Bayesian 
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UQ analysis for the experimental data clearly shows that steam to oxygen ratio has the most 

pronounced effect on all quantities of interest under consideration. 

4.3 FORWARD UNCERTAINTY PROPAGATION 

The forward propagation of uncertainties analyzes the effect of input variables’ uncertainty on 

the quantities of interest parameters. The GEBHM models were used for forward uncertainty 

propagation of input variables for various different cases, which are presented in this section and 

summarized in Table 4. It is noteworthy that the objective of this section is to illustrate the utility 

of forward uncertainty propagation for performance analysis of a gasifier. For that reason, the 

parameters in Table 4, along with their distribution are meant to be examples rather than what 

has been observed in the bench scale gasifier under study. For this purpose, each factor was 

either kept constant at a setting or considered to be uncertain with a probability density function 

(PDF) assigned to it. For example, in case # 2 the coal particle size was considered to be 

uncertain and characterized with a Gaussian probability density function (PDF) based 

distribution, which had a mean of 285 microns and standard deviation of 28.5 microns (denoted 

as ∼N(285,28.5)). 

Coal particle size was chosen as the uncertain operating parameter for forward propagation due 

to the fact that coal diameter variability in batches of coal is one of the common observations in 

commercial scale operations.  The fundamental idea is to identify a set of input or operating 

parameters to be considered as uncertain and characterize the associated uncertainty through 

probability density function (PDF) for aleatory uncertainties. 

The GPM emulator was used with random samples from the associated PDF to compute the 

quantities of interest, e.g., species mole fraction CO, H2 and their ratio each time. A sample size 

of 10,000 was used to propagate uncertainty through the GEBHM model. Further information on 

different types of uncertainties and how forward propagation of input parameters can be 

performed is presented in Roy et al. [15] and Gel et al. [16]. 

The mean and standard deviation for the histograms of quantities of interest are provided in 

Table 5. As seen in the Table 5, the sample mean and standard deviation used in each case is 

listed in a tabulated format, which might be difficult to interpret standalone. Hence, the empirical 

cumulative density function (eCDF) plot for each QoI and for all UQ cases have been compiled 

to facilitate easier interpretation of the results obtained and relative comparison through 

likelihood readings for observation of certain values of the QoIs.  Figure 9 through Figure 12 

show the eCDF plots where results obtained from cases 1 to 4 are superimposed in the same 

eCDF plot for each quantity of interest. Similarly, Figure 13 through Figure 16 show the eCDF 

plots where results obtained from cases 5 to 9. 
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 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: Coal flow rate (g/s) 1.6% 0.05% 1.1% 

PS: Particle size (µm)  0.2% 0.1% 

H2O/O2 ratio in syngas   96.9% 

% Contribution of variability seen in CO mole fraction 

 

 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: Coal flow rate (g/s) 0.9% 0.32% 1.7% 

PS: Particle size (µm)  1.4% 0.4% 

H2O/O2 ratio in syngas   95.3% 

% Contribution of variability seen in H2 mole fraction 

 

 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: Coal flow rate (g/s) 1.0% 0.01% 0.6% 

PS: Particle size (µm)  0.1% 0.1% 

H2O/O2 ratio in syngas   98.3% 

% Contribution of variability seen in CO2 mole fraction 

Table 3 Global Sensitivity of Quantities of Interest (QoI) with respect 

operating variables. 

 



Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized 

Bed Gasifier 

 

20 

 

 

CO 

 

H2 

 

CO2 

Figure 8   Variance of global sensitivity for each QoI. 
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 Coal Flow Rate (g/s) Coal Particle Size (µm) Steam/O2 

Ratio 
Case 

1 0.0495 ∼U(70,500) 0.75 

2 0.0495 ∼N(285,28.5) 0.75 

3 0.0495 285 ∼N(0.75,0.075) 

4 0.0495 ∼N(285,28.5) ∼N(0.75,0.075) 

5 ∼N(0.0495,0.00495) ∼N(285,28.5) ∼N(0.75,0.075) 

6 ∼N(0.0495,0.00495) ∼N(285,28.5) ∼N(0.5,0.075) 

7 ∼N(0.0495,0.00495) ∼N(400,28.5) ∼N(0.75,0.075) 

8 ∼N(0.0495,0.00495) ∼N(285,28.5) ∼N(1.0,0.075) 

9 ∼N(0.063,0.0063) ∼N(285,28.5) ∼N(0.75,0.075) 

Table 4 Input uncertainty forward propagation cases analyzed 

 

 CO H2 CO2 H2/CO 

Case µ σ µ σ µ σ µ σ 

1 0.13386 3.84e-4 0.13528 1.09e-3 0.13931 2.04e-4 1.01078 5.99e-3 

2 0.13386 8.78e-5 0.13527 2.5e-4 0.13931 4.67e-5 1.01066 1.37e-3 

3 0.13349 6.26e-3 0.13455 5.4e-3 0.13948 4.77e-3 1.01047 7.92e-2 

4 0.13344 6.14e-3 0.13463 5.3e-3 0.13951 4.68e-3 1.01122 7.7e-2 

5 0.13331 6.13e-3 0.13467 5.3e-3 0.13950 4.6e-3 1.01134 7.78e-2 

6 0.14464 2.09e-3 0.11817 2.99e-3 0.12983 1.5e-3 0.81633 3.1e-2 

7 0.13306 6.e-2 0.13367 5.6e-2 0.13963 4.64e-3 1.00506 7.8e-2 

8 0.11723 3.1e-3 0.14302 2.e-3 0.15199 2.3e-3 1.21754 3.6e-2 

9 0.13146 6.2e-3 0.13426 5.e-3 0.13997 4.8e-3 1.02465 8.1e-2 

Table 5 Summary sample mean (µ) and standard deviation (σ) for 

quantities of interest for all input uncertainty forward propagation cases 
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Figure 9 Empirical CDF of posterior distribution of CO mole fraction for 

UQ cases 1-4 

 

 

Figure 10 Empirical CDF of posterior distribution of H2 mole fraction for 

UQ cases 1-4 
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Figure 11 Empirical CDF of posterior distribution of CO2 mole fraction 

for UQ cases 1-4 

 

 

Figure 12 Empirical CDF of posterior distribution of H2/CO for UQ cases 

1-4 
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Figure 13 Empirical CDF of posterior distribution of CO mole fraction for 

UQ cases 5-9 

 

 

Figure 14 Empirical CDF of posterior distribution of H2 mole fraction for 

UQ cases 5-9 
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Figure 15 Empirical CDF of posterior distribution of CO2 mole fraction 

for UQ cases 5-9 

 

 

Figure 16 Empirical CDF of posterior distribution of H2/CO for UQ cases 

5-9 
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It can be observed from Table 5 and Figure 9 through Figure 16 that steam to oxygen ratio has a 

major impact on syngas composition and the H2/CO increases with increasing steam to oxygen 

ratio (cases 6, 5 and 8). For example, if we were to assess the probability of achieving CO mole 

fraction of 0.1325 or less given the prescribed operating variable uncertainties based on the input 

uncertainty propagation results shown in Figure 9 through Figure 16, we get different 

probabilities with small shifts in the mean. Using the eCDF plots for cases 5, 6 and 8, the results 

can be interpreted in the following way. 

For Case 5 (where the mean of steam to oxygen ratio is at the experiment conditions), the 

probability of observing CO mole fraction less than equal to 0.1325 is about 45%. 

For Case 6 where the mean of steam to oxygen ratio was reduced to 0.5 (−30% shift in the 

mean), the likelihood of achieving same or less CO mole fraction, under the prescribed operating 

parameter uncertainties, is about 0%. 

For Case 8 where the mean of steam to oxygen ratio was is increased to 1.0, the likelihood of 

achieving same or less CO mole fraction, under the prescribed operating parameter uncertainties, 

is about 100%. 

Additionally, cases 5 and 7 show that increasing the particle size slightly decreases H2/CO and 

increasing the coal flow rate (cases 5 and 9) slightly increases H2/CO.  Similar findings were also 

reported by Karimipour et al. [3]. 

 

4.4 IDENTIFICATION OF BEST CANDIDATES FOR NEW EXPERIEMNTS 

The preliminary UQ analysis has shown that the choice of sampling method for the experiments 

have substantial impact in the results and how UQ methods are employed. Given this insight one 

could probably construct the experimentation plan with different sampling methodology. 

However, considering the investment already made with the existing experiments by Karimipour 

et al. [3], we asked the question if we were to update the experimental plan with additional 

experiments in an incrementally adaptive fashion then what additional sampling locations would 

be useful? 

To answer this question, we framed it as an optimization problem with single objective function, 

i.e., identify new sampling points for coal flow rate (x1), coal particle size (x2) and steam to 

oxygen ratio (x3) in the original parameter space such that the uncertainty in CO, H2 and CO2 

emulators collectively are maximum [7]. The motivation is to add more sample at such locations 

to reduce the uncertainty. To solve this problem, the objective function for the optimization was 

set as the collective standard deviation of the three variables. The optimization problem can be 

represented mathematically as shown in  
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𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆
𝒙

      

            𝒇(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) =  √𝝈𝑪𝑶
𝟐  (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) + 𝝈𝑯𝟐

𝟐  (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) + 𝝈𝑪𝑶𝟐
𝟐  (𝒙𝟏, 𝒙𝟐, 𝒙𝟑)   

          13 

 

subject to:   0.036 ≤  𝑥1  ≤ 0.063            70 ≤  𝑥2  ≤ 500            0.5 ≤  𝑥3  ≤ 1.0 

A multi-point particle swarm optimizer was used to perform the optimization. The optimization 

parameters were chosen such that 10 most likely locations with highest objectives could be 

identified simultaneously in the design space. 

The results of the optimization were new sampling locations (x1, x2, x3) identified, which are 

shown in  

Table 6and satisfies the objective and constraints provided above. The GEBHM surrogate model 

generated in the previous sections were used to evaluate the objective function. As expected by 

reviewing Figure 3 through Figure 6, the new sampling locations are mostly in the regions were 

the highest uncertainty in the surrogate is observed (identified with yellow color in the legend 

bar). For problems like this case with simple factorial based sampling and only few dimensions, 

one might be able to achieve this qualitatively by reviewing the surface plots as shown in Figure 

3 through Figure 6 and adding sampling locations in the regions with highest uncertainty. 

However, for more complex problems with higher dimensions of uncertain parameters, framing 

the problem as an optimization problem with single aggregate objective with equal weights (such 

as to identify the locations that maximize the aggregate standard deviation of all QoIs where 

each of the QoI can have the same or a distinct weighting factor) or multi-objective will provide 

a better systematic approach that can improve the results of the experiments. 
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Factor 1 Factor 2 Factor 3 

Coal flow rate (g/s) Particle size (µm) H2O/O2 ratio in syngas 

0.0360 70 0.831 

0.0360 70 0.670 

0.0630 76 0.835 

0.0630 500 0.810 

0.0628 74 0.663 

0.0362 493 0.657 

0.0360 268 0.580 

0.0360 264 0.918 

0.0630 302 0.576 

0.0360 326 0.584 

 

Table 6 New set of experiments operating parameters identified for 

sampling based on the assessment of the existing acquired samples 
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Figure 17   Sampling locations identified which could be used to reduce the 

uncertainty in the surrogate models if additional experiments were to be 

conducted 
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5. COMPUTATIONAL APPROACH 

5.1 SAMPLING CFD SIMULATIONS FOR NON-INTRUSIVE UQ ANALYSIS 

CFD simulation of reacting multiphase flows are computationally very demanding and require 

long duration transient simulations to reach statistically significant behavior of the quantities of 

interest. Hence, for non-intrusive UQ analysis, where a deterministic software is employed for 

sampling, it is preferred to construct a data-fitted surrogate model that adequately relates the 

inputs with the quantities of interest. The surrogate model is then used during UQ analysis 

instead of the actual CFD simulation based evaluations. For this purpose, several dedicated 

simulation campaigns were performed as part of this research effort at NETL. The simulation 

campaign employed for the purposes of this study aimed at replicating the physical experiments 

by running 3D MFIX simulations with the same set of operating conditions (i.e., coal flow rate, 

coal particle size and steam to oxygen ratio) and range of values. For the physical experiments, 

Central Composite Design based sampling approach was employed with 20 samples, where 6 of 

them were replications of the center point operating conditions. The 3D MFIX simulations 

employed in the current study are deterministic CFD simulations, which implies same results 

will be obtained when same operating conditions are simulated. Hence, only 15 samples among 

the 20-sample matrix were used by eliminating the need to perform any replication runs for the 

replicated samples due to deterministic nature of CFD simulations employed. 

The simulation campaigns were carried out on NETL’s HPC system, Joule.  However, due to the 

large number of simulations required during the simulation campaigns for the completion of this 

project, additional high performance computing resources had to be secured through one of the 

competitive DOE HPC programs.  A proposal to the 2014 ASCR Leadership Computing 

Challenge (ALCC) program of the U.S. Department of Energy’s Office of Science led to 38 

million CPU hour award at the National Energy Research Scientific Computing Center (NERSC) 

after peer review.  Moreover, a proposal under the 2015 ASCR Leadership Computing Challenge 

(ALCC) program of the U.S. Department of Energy’s Office of Science led to 111.5 million 

CPU hour award at Argonne Leadership Computing Facility (ALCF) in Argonne National 

Laboratory of the U.S. Department of Energy. 

MPI based distributed-memory implementation of MFIX Two-Fluid Model (MFIX-TFM) was 

employed to achieve a faster time-to-solution. Due to the transient nature of reacting multiphase 

flows, each of the sampling simulations were carried out until “quasi-steady state” was reached 

for the QoIs. Hence, the convergence criteria were based on the assessment for quasi-steady state 

behavior of the quantities of interest, which were written in a standalone output file at certain 

frequency. The QoIs employed in GEBHM analysis were obtained by taking the time average for 

the last user specified duration of simulated time by running a custom Python script, which was 

developed specifically for this project to handle any number of QoI files under the sampling 

simulation directories. To ensure time averaging window does not affect the reported QoIs, time 

averages with several different durations (e.g., for the last 10, 15 & 20 s) were obtained and 

compared. For example, run #7 took about 50 seconds to reach a quasi-steady state, while run # 9 

took about 120 seconds of simulated time to reach quasi-steady state. 

Hence, this convergence criteria usually resulted in variability in the total wall clock time 

required to stop the simulation for each sample under consideration. Such variability in 
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convergence poses unique challenges when conducting the simulations in a shared HPC resource 

with batch queuing systems and required several custom workflows to be generated to conduct 

these simulations efficiently. For example, for many high-performance computing sites such as 

National Energy Research Scientific Computing (NERSC) Center, which was employed in the 

current study, bundling all sampling simulations in a single batch job to request more number of 

cores and longer wall-clock execution time is preferred. 

MFiX [5], which is an open source computational fluid dynamics software suite developed and 

maintained by the U.S. Department of Energy’s National Energy Technology Laboratory, was 

used to model the bench-scale fluidized bed gasifier studied by Karimipour et al. [3]. MFiX is a 

suite of CFD solvers, which includes both the continuum approach (multi-fluid) and discrete 

approach (DEM and MPPIC) to multiphase flow modeling (such as gas-solid flows typically 

encountered in fluidized bed). In this study, the multi-fluid framework in MFiX (i.e., MFiX-TFM 

solver’s 2015-2 release version) has been used. Hence, the gaseous mixture is modeled as a gas-

phase and the particulates are modeled as interpenetrating continuous solidphase. Multiple solid-

phases can be used to describe multiple particulate materials. In this work, two distinct solid-

phases are used to describe coal and sand particles. The governing equations employed for 

conservation of mass, momentum, energy and species transport for each phase (m = g for gas 

and m = s for solid) are: 

𝝏

𝝏𝒕
(𝜺𝒎𝝆𝒎) +  𝜵 . (𝜺𝒎𝝆𝒎�⃗⃗� 𝒎) =  ∑ 𝑹𝒎𝒏

𝑵
𝒏=𝟏      14 

𝝏

𝝏𝒕
(𝜺𝒎𝝆𝒎�⃗⃗� 𝒎) +  𝜵 . (𝜺𝒎𝝆𝒎�⃗⃗� 𝒎�⃗⃗� 𝒎) =  𝜵 . 𝝉𝒎̿̿ ̿̿ −  𝝐𝒎 𝜵𝑷 +  𝜺𝒎𝝆𝒎 �⃗⃗� +  ∑ 𝑰𝒎𝒏

⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒏   

          15 

𝜺𝒎𝝆𝒎𝑪𝒑𝒎  (
𝝏𝑻𝒎

𝝏𝒕
+ �⃗⃗� 𝒎 . 𝜵𝑻𝒎) =  − 𝜵 . 𝒒𝒎⃗⃗ ⃗⃗  ⃗ +  ∑ 𝜸𝒎𝒏(𝑻𝒏 − 𝑻𝒎𝒏 ) − ∆𝑯𝒓𝒎 

           

          16 

𝝏

𝝏𝒕
 (𝜺𝒎 𝝆𝒎 𝑿𝒎𝒍) +  𝜵 . (𝜺𝒎 𝝆𝒎 𝑿𝒎𝒍 �⃗⃗� 𝒎) =  𝑹𝒎𝒍    17 

 

Where subscripts m and n represent phases and l represents a species in a phase. The closure 

terms for the solid phases are obtained through kinetic granular theory with an algebraic form of 

the granular temperature equation. The Schaeffer frictional model was used in the dense regions 

and the Gunn’s correlation was used for heat transfer. 

The momentum transfer between the gas and solid phases are modeled using Gidaspow drag 

model in MFIX-TFM. Detailed information on the constitutive relations used to model 

momentum and energy exchange terms between the phases along with solid stress model used in 

MFiX can be obtained in MFiX online documentation [17], [18]. 
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5.2 REACTION MODEL 

Coal devolatilization and gasification reaction kinetics are obtained from Niksa Energy 

Associates LLC computer software PC Coal Lab [19]. PC Coal Lab provides the complete char 

conversion history of coal, along with appropriate molar stoichiometric coefficients and kinetic 

constants for devolatilization and gasification reaction rates at a user-specified reactor pressure, 

temperature & gas composition. Pyrolysis process decomposes volatile matter into various 

species with the devolatilization reaction shown in Eq. (18) with the rate given by Eq. (25) in 

Table 8. 

𝑽𝑴  →   𝒏𝑪𝑶𝟐
𝑪𝑶𝟐 + 𝒏𝑪𝑶 𝑪𝑶 + 𝒏𝑯𝟐

 𝑯𝟐  + 𝒏𝑪𝑯𝟒
 𝑪𝑯𝟒 + 𝒏𝑯𝟐𝑶 𝑯𝟐𝑶 +

𝒏𝑯𝟐𝑺 𝑯𝟐𝑺 + 𝒏𝑪𝟑𝑯𝟔
 𝑪𝟑𝑯𝟔 + 𝒏𝑯𝑪𝑵 𝑯𝑪𝑵 + 𝒏𝑪𝟐𝑯𝟔

 𝑪𝟐𝑯𝟔 + 𝒏𝑪𝟐𝑯𝟒
 𝑪𝟐𝑯𝟒 +

𝒏𝑻𝑨𝑹 𝑻𝑨𝑹          

          (18) 

The molar stoichiometric coefficients for devolatilization use in this work are 

 

𝑛𝐶𝑂2
= 0.132, 𝑛𝐶𝑂 = 0.116, 𝑛𝐻2

= 0.019, 𝑛𝐶𝐻4
= 0.107, 𝑛𝐻2𝑂 = 0.302, 𝑛𝐻2𝑆 = 0.013,

𝑛𝐶3𝐻6
= 0.012, 𝑛𝐻𝐶𝑁 = 0.005, 𝑛𝐶2𝐻6

= 0.004, 𝑛𝐶2𝐻4
= 0.023, 𝑛𝑇𝐴𝑅 = 0.064. 

 

Gasification Reactions 

Steam and carbon dioxide are used as gasification agents to produce carbon monoxide and 

hydrogen according to Eqs. (19) and (20). The gasification reaction rate expressions, Eqs. (28)  

and (29) in Table 8, are obtained from PC Coal Lab [19]. 

 

𝑪 + 𝑯𝟐𝑶  →   𝑪𝑶 +  𝑯𝟐       (19) 

𝑪 + 𝑪𝑶𝟐   →   𝟐𝑪𝑶        (20) 

 

Local gas composition inside a gasifier can vary significantly and presence of CO and H2 inhibits 

gasification reactions, the kinetic constants for the gasification reactions are obtained for a range 

of gas composition (CO, CO2, H2, H2O) at the reactor operating pressure and temperature. To 

achieve this, a design of experiment was carried out in order to construct 500 samples of PC Coal 

Lab simulations, covering the parametric space for mole fraction of CO, CO2, H2, H2O changing 

between 0 and 0.25, which is the upper range of expected mole fraction for our syngas 

composition. An analysis of the 500 set of kinetic constants generated (pre-exponent, activation 

energy, order of reaction and annealing factor) exhibits a strong correlation between the kinetic 

constants and hydrogen mole fraction. The kinetic constants in Eqs. (28) and (29) are given by 

Table 7. 
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Oxidation Reactions 

Char oxidation reaction, Eq. (21), which is an exothermic reaction, is modeled using the 

shrinking core gas-solid particle reaction model proposed by Field et al. [20] with the reaction 

rate given by Eq. (27) in Table 8. 

𝑪 +
𝟏

𝟐
𝑶𝟐 → 𝑪𝑶        (21) 

 

In Field et al. [20], Achar and Echar are given as 8,710 gm/atm-cm2-s and 35,700 cal/gmole, 

respectively. To investigate the effect of char oxidation reaction model on syngas composition, 

the kinetic reaction model of DeSai and Wen [21], where Achar and Echar oxidation are given as 

8,710 gm/atm-cm2-s and 27,000 cal/gmole respectively was also tested. Gas phase reactions are 

described using simple global reaction mechanisms. 

Carbon monoxide oxidation model, Eq. (22), is treated as a categorical uncertain model, so the 

effect of carbon monoxide oxidation on syngas composition can be investigated. The reaction 

models proposed by Howard [22], Eq. (30), and Westbrook and Dryer [23], Eq. (31), are used in 

the present work. 

𝑪𝑶 +
𝟏

𝟐
𝑶𝟐 → 𝑪𝑶𝟐        (22) 

 

Hydrogen oxidation reaction model, Eq. (23), proposed by Peters [24] and methane oxidation 

reaction model, Eq. (24), proposed by Dryer and Glassman [25] are used to model hydrogen and 

methane oxidation with the reaction rates provided by Eqs. (32) and (33) in Table 8, respectively. 

 

𝟐𝑯𝟐 + 𝑶𝟐 → 𝟐𝑯𝟐𝑶        (23) 

𝑪𝑯𝟒 + 𝟐𝑶𝟐 → 𝑪𝑶𝟐 + 𝟐𝑯𝟐𝑶       (24) 

 

Water Gas Shift Reaction 

Since water gas shift reaction model, Eq. (25)(25)(25)(25) is also treated as a categorical 

uncertain input parameter, the reaction models of Chen et al. [26] and Biba et al. [27] are used to 

account for conversion of carbon monoxide and steam to hydrogen and carbon dioxide, where 

the reaction rates are given by Eqs. (34) and  (35), respectively. 

𝑪𝑶 + 𝑯𝟐𝑶 ↔ 𝑪𝑶𝟐 + 𝑯𝟐       (25) 

 

Coal particles undergoing mass transfer due to moisture release, devolatilization and chemical 

reactions become more porous, as char conversion progresses. The solid phase accounts for 

interface mass transfer by reducing the particle material density. 
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Steam gasification 

𝑋ℎ2
 

𝛾ℎ2𝑜 
𝐴ℎ2𝑜  (

𝑚𝑜𝑙𝑒

𝑐𝑚3𝑠
) 𝐸ℎ2𝑜    (

𝑐𝑎𝑙

𝑚𝑜𝑙𝑒
) 

𝑛ℎ2𝑜  𝑘ℎ2  

4.0𝑒−2  ≥  𝑋𝐻2
 1.249 23300 0.93 0 

4.0𝑒−2 <  𝑋ℎ2
< 2   1.619 𝑒2.64 𝑋ℎ2   24249 + 7995 𝑋ℎ2

−

1382 𝑋ℎ2

2 + 161𝑋ℎ2

3 − 9 𝑋ℎ2

4   

0.98 22.5 

2 ≤  𝑋ℎ2
≤ 5   14.026 𝑋ℎ2

4.04  24249 + 7995 𝑋ℎ2
−

1382 𝑋𝑋ℎ2

2

 
+ 161 𝑋𝑋ℎ2

3 −

9 𝑋𝑋ℎ2

4   

0.98 22.5 

5 <  𝑋ℎ2
 47.08 𝑋ℎ2

3.45 32683 + 7480 log (𝑋ℎ2
) 1 22.786 + 0.037 ∗ 𝑋ℎ2

 

 

Carbon dioxide gasification 

𝑋ℎ2
 

𝛾𝑐𝑜2 𝐴𝑐𝑜2    (
𝑚𝑜𝑙𝑒

𝑐𝑚3𝑠
) 𝐸𝑐𝑜2    (

𝑐𝑎𝑙

𝑚𝑜𝑙𝑒
) 

𝑛𝑐𝑜2  𝑘𝑐𝑜  

4.0𝑒−2  ≥  𝑋ℎ2
 33.38 40400 0.98 0 

4.0𝑒−2 <  𝑋ℎ2
< 2   52.963 𝑒

2.37 𝑋ℎ2 
 
 41426 + 8102 𝑋ℎ2

−

1454 𝑋ℎ2

2 + 169𝑋ℎ2

3 − 9 𝑋ℎ2

4   

1.0 0.7598 − 0.1804 𝑋ℎ2
+

0.0362 𝑋ℎ2

2 −

0.005𝑋ℎ2

3 + 0.0003 𝑋ℎ2

4   

2 ≤  𝑋ℎ2
≤ 5   4000 𝑋ℎ2

3.47  41426 + 8102 𝑋ℎ2
−

1454 𝑋ℎ2

2 + 169𝑋ℎ2

3 − 9 𝑋ℎ2

4   

1.0 0.7598 − 0.1804 𝑋ℎ2
+

0.0362 𝑋ℎ2

2 −

0.005𝑋ℎ2

3 + 0.0003 𝑋ℎ2

4   

5 <  𝑋ℎ2
 20000 𝑋ℎ2

2.7 49661 + 7485 log (𝑋ℎ2
) 1 0.6113 − 0.0779 𝑋ℎ2

+

0.0057 𝑋ℎ2

2 −

0.0002𝑋ℎ2

3 + 3𝑒−6 𝑋ℎ2

4   

 

Table 7 Kinetic values used in the rate expression for steam and CO2 

gasification 
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𝒓𝒑𝒚𝒓𝒐𝒍𝒚𝒔𝒊𝒔 = 𝜺𝒑 𝟑𝟔, 𝟎𝟎𝟎𝐞𝐱𝐩(
−𝟗,𝟎𝟔𝟎

𝑹 𝑻𝒑
) 

𝝆𝒑𝒀𝒗𝒎

𝑴𝑾𝒗𝒎
     (26) 

𝒓𝒄𝒐 =
−𝟑𝜺𝒔𝑷𝒐𝟐

𝒅𝒑(
𝟏

𝒌𝒇𝒊𝒍𝒎
+

𝟏

𝒌𝒂𝒔𝒉
+

𝟏

𝒌𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏
)𝑴𝑾𝒐𝟐

        (27) 

𝑘𝑓𝑖𝑙𝑚 =
𝐷𝑜2𝑆ℎ

𝑑𝑝
𝑅

𝑀𝑊𝑜2
𝑇𝑔

          

𝑘𝑎𝑠ℎ = 
2𝑟𝑑𝐷𝑒𝑓𝑓𝑎𝑠ℎ

𝑑𝑝 (1−𝑟𝑑) 
𝑅

𝑀𝑊𝑜2
𝑇𝑠

         

𝑘𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑐ℎ𝑎𝑟 exp (−
𝐸𝑐ℎ𝑎𝑟 

𝑅𝑇𝑠
) 𝑟𝑑

2      

𝒓𝒉𝟐𝒐 = 𝜸𝒉𝟐𝒐 𝑨𝒉𝟐𝒐 𝐞𝐱𝐩(
−𝑬𝒉𝟐𝒐

𝑹𝑻
)

𝜺𝒔𝝆𝒔𝒀𝑪𝒉𝒂𝒓

𝑴𝑾𝑪𝒉𝒂𝒓

𝒑𝒉𝟐𝒐

𝒏𝒉𝟐𝒐

(𝟏−𝑲𝒉𝟐
𝒑𝑯𝟐

)
    (28) 

𝒓𝒄𝒐𝟐
= 𝜸𝒄𝒐𝟐 𝑨𝒄𝒐𝟐

𝐞𝐱𝐩(
−𝑬𝒄𝒐𝟐

𝑹𝑻
)

𝜺𝒔𝝆𝒔𝒀𝑪𝒉𝒂𝒓

𝑴𝑾𝑪𝒉𝒂𝒓

𝒑𝒄𝒐𝟐

𝒏𝒄𝒐𝟐

(𝟏−𝑲𝒄𝒐𝒑𝒄𝒐)
    (29) 

𝒓𝒄𝒐 = 𝟏. 𝟑𝒙𝟏𝟎𝟏𝟒  𝐞𝐱𝐩 (−
𝟑𝟎,𝟎𝟎𝟎

𝑹𝑻𝒈
) 𝜺𝒈 𝑪𝒐𝟐

𝟎.𝟓𝑪𝒄𝒐 𝑪𝒉𝟐𝒐
𝟎.𝟓

    

          (30) 

𝒓𝒄𝒐 = 𝟑. 𝟗𝟖𝒙𝟏𝟎𝟏𝟒  𝐞𝐱𝐩 (−
𝟐𝟎,𝟏𝟑𝟎

𝑹𝑻𝒈
) 𝜺𝒈 𝑪𝒐𝟐

𝟎.𝟐𝟓𝑪𝒄𝒐 𝑪𝒉𝟐𝒐
𝟎.𝟓

   (31) 

𝒓𝒉𝟐
= 𝟏. 𝟎𝟖𝒙𝟏𝟎𝟏𝟔  𝐞𝐱𝐩 (−

𝟑𝟎,𝟎𝟎𝟎

𝑹𝑻𝒈
) 𝜺𝒈𝑪𝒐𝟐 𝑪𝒉𝟐

     

          (32) 

𝒓𝒄𝒉𝟒
= 𝟏. 𝟓𝟖𝒙𝟏𝟎𝟏𝟑  𝐞𝐱𝐩 (−

𝟒𝟖,𝟒𝟎𝟎

𝑹𝑻𝒈
) 𝜺𝒈 𝑪𝒐𝟐

𝟎.𝟖𝑪𝒄𝒉𝟒

𝟎.𝟕
    

          (33) 

𝒓𝒘𝒈𝒔 = 𝑨𝒘𝒈𝒔  𝐞𝐱𝐩 (−
𝟐𝟏,𝟕𝟎𝟎

𝑹𝑻𝒈
) (𝑷𝒄𝒐 𝑷𝒉𝟐𝒐  −  

𝑷𝒉𝟐 𝑷𝒄𝒐𝟐  

𝟎.𝟎𝟐𝟔𝟓 𝒆

𝟑𝟗𝟓𝟔
𝑻𝒈

)   (34) 

𝒓𝒘𝒈𝒔 = 𝟐, 𝟕𝟖𝟎 𝐞𝐱𝐩(−
𝟑,𝟎𝟏𝟎

𝑹𝑻𝒈
) (𝑪𝒄𝒐 𝑪𝒉𝟐𝒐  −  

𝑪𝒉𝟐 𝑪𝒄𝒐𝟐  

𝟎.𝟎𝟐𝟗 𝒆

𝟒𝟎𝟗𝟒
𝑻𝒈

)   (35) 

 

Table 8 Reaction models for the heterogeneous and homogeneous 

reactions 

 



Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized 

Bed Gasifier 

 

36 

5.3 SIMULATION CAMPAIGN BASED ON CENTRAL COMPOSITE DESIGN 

The target of first set of simulations was the exact replication of the physical experiments by 

using the same statistical design of experiments generated operating conditions as shown in the 

Table 9. Although such experiment matrix is more suited for physical experiments rather than 

computer experiments, the same matrix was replicated for CFD simulations. Hence, 15 distinct 

MFIX-TFM simulations were set up by changing the three operating variables used in the 

physical experiments in Karimipour et al. [3]. As MFIX simulations are deterministic in nature, 

the six-replicated experiment runs for the center point in the CCD sampling method was 

represented as single simulation using the same operating conditions. The QoIs were calculated 

by temporal averaging for the last 10 seconds of the simulation for each sample. 

 

5.3.1 Simulation results 

The time averaged mole fraction values for CO and H2 from MFIX-TFM simulation (Solid 

Square) and measurement from experiments (asterisk) are shown in Figure 18. Both values of 

time averaged CO and H2 mole fraction are under-predicted at some of the sampling runs and 

over-predicted at other sampling runs. In order to better quantify the uncertainty in the predicted 

syngas mole fraction, GEBHM analysis was used to predict the uncertainty band associated with 

the time averaged values of syngas composition. 

Figure 19 to Figure 21 show the parity plots for the emulator’s prediction (y-axis) vs. 

experimental results (x-axis) for CO, H2 and CO2 mole fractions respectively. Values on the 

diagonal line indicate perfect agreement between the predictions from the constructed surrogate 

and experiment. The blue solid circles in these figures represent the emulator’s prediction of 

mole fraction values for the syngas species under consideration at the experiment sampling 

locations. The intervals represent the uncertainty bands due to propagation of uncertainties in the 

three input uncertain parameters (coal flow rate, particle diameter and steam to oxygen ratio). 

The difference between the solid circle symbols and the diagonal line (actual species mole 

fraction) is the discrepancy. The red solid squares in Figure 19 to Figure 21 are the emulator’s 

prediction, after they are corrected for the model discrepancy as part of the GEBHM analysis.  It 

can be seen that the magnitude of the discrepancy varies depending on the values of the uncertain 

input parameters. The discrepancy function distribution as a function of steam to oxygen ratio for 

CO, H2 and CO2 mole fractions are shown in Figure 22 through Figure 24. A positive value on 

the y-axis indicates the amount of under-prediction in the syngas composition, whereas a 

negative value on y-axis indicates the amount of over-prediction in the syngas composition. 

Hydrogen mole fraction is under-predicted across the entire operating conditions. The trend 

observed in predicted values of CO mole fraction is changing from under-predication (at lower 

steam to oxygen ratio) to over-predication at higher steam to oxygen ratio. The opposite trend is 

observed in the predicted CO2 mole fraction behavior.  Response surface plots based on the 

emulators were constructed with the sampling simulation results obtained with MFIX runs.  

Figure 25 through Figure 27 shows the response surface plots for CO, H2 and CO2 mole fractions 

as function of steam to oxygen ratio and coal particle size, where coal flow rate was kept at a 

nominal setting for illustration purposes. The emulators were constructed based Gaussian 
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Process Model (GPM) in order to establish a model that approximates the relationship between 

the three input factors and quantities of interest using the sampling simulation data. 
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 Uncertain Input 

Parameters/Factors 
Primary Quantities of Interest (Response Variables) 

Actual order 
of 

experiment 

Factor 1 Factor 2 Factor 3 Response 1 Response 

2 

Response 

3 

Response 4 Response 5 

Coal 

flow rate 

(gr/s) 

Particle 

size 

(µm) 

H2O/O2 

ratio in 

syngas 

Carbon 

conversion 

H2/CO 

ratio in 

syngas 

CH4/H2 

ratio in 

syngas 

Gasification 

efficiency 

Gas yield 

(m3/kg-coal) 

1 0.063 70 0.5 91.57% 0.81 0.065 56.50% 3.45 

2 0.063 70 1 93.35% 1.25 0.052 57.92% 3.57 

3 0.0495 70 0.75 92.56% 1.05 0.057 59.03% 3.47 

4 0.036 70 0.5 92.26% 0.82 0.066 59.83% 3.42 

5 0.036 70 1 93.61% 1.23 0.052 61.17% 3.54 

6 0.063 285 0.75 96.59% 1.04 0.058 62.24% 3.63 

7 0.0495 285 0.5 93.79% 0.81 0.065 63.93% 3.5 

8 0.0495 285 0.75 95.48% 1.01 0.059 62.12% 3.57 

9 0.0495 285 0.75 96.00% 1.01 0.057 62.24% 3.61 

10 0.0495 285 0.75 96.00% 0.99 0.058 60.79% 3.6 

11 0.0495 285 0.75 96.00% 0.98 0.057 66.88% 3.65 

12 0.0495 285 0.75 96.89% 1.00 0.059 64.07% 3.66 

13 0.0495 285 0.75 96.42% 1.01 0.059 63.66% 3.65 

14 0.0495 285 1 95.41% 1.22 0.053 59.50% 3.63 

15 0.036 285 0.75 95.68% 1.01 0.057 61.37% 3.59 

16 0.063 500 0.5 91.10% 0.81 0.067 56.23% 3.44 

17 0.063 500 1 94.33% 1.27 0.054 58.98% 3.6 

18 0.0495 500 0.75 93.83% 1.02 0.061 58.84% 3.56 

19 0.036 500 0.5 93.58% 0.78 0.070 59.42% 3.47 

20 0.036 500 1 96.41% 1.19 0.055 62.94% 3.63 

Mean 94.54% 1.01 0.059 60.88% 3.56 

Standard deviation 1.78% 0.16 0.005 2.70% 0.08 

Additional validation experiments  

V1 0.063 500 0.75 92.81% 1.07 0.057 57.66% 3.52 

V2 0.036 500 0.75 96.49% 1.01 0.059 62.73% 3.59 

V3 0.063 70 0.75 94.45% 1.01 0.058 59.96% 3.55 

V4 0.036 70 0.75 95.85% 1.00 0.060 62.00% 3.58 

Table 9 Tabulated data for input and primary quantities of interest 

(response) from experiments [3] 
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Figure 18 Comparison of 3D MFIX simulation results for each sampling 

simulation with respect to corresponding experimental data (Green circles are 

for 3D MFIX simulations. Red asterisk denotes the experiments) 
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Figure 19 GEBHM surrogate model (emulator) quality for CO mole 

fraction 

 

 

Figure 20 GEBHM surrogate model (emulator) quality for H2 mole 

fraction 
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Figure 21 GEBHM surrogate model (emulator) quality for CO2 mole 

fraction 

 

 

Figure 22 GEBHM discrepancy function distribution for CO surrogate 

model 
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Figure 23 GEBHM discrepancy function distribution for H2 surrogate 

model 

 

 

Figure 24 GEBHM discrepancy function distribution for CO2 surrogate 

model 
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Figure 25 Response surface plot of the surrogate model (emulator) 

behavior for CO mole fraction (coal flow rate set at midpoint of 0.0495 g/s). 

 

 

Figure 26 Response surface plot of the surrogate model (emulator) 

behavior for H2 mole fraction (coal flow rate set at midpoint of 0.0495 g/s). 
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Figure 27 Response surface plot of the surrogate model (emulator) 

behavior for CO2 mole fraction (coal flow rate set at midpoint of 0.0495 g/s). 

 

5.3.2 Sensitivity analysis 

GEBHM analysis shown earlier for the experimental data in Section 4.2 was replicated for the 

3D MFIX simulation results.  The global sensitivity analysis results shown in Table 10 is for the 

same QoIs used in the experiment but this time using MFIX simulation results instead of 

experimental data standalone.  It can be seen that the variability in the predicted syngas 

composition is largely due to coal flow rate for CO mole fraction, whereas for H2 it is primarily 

due to steam to oxygen ratio. The variability in CO2 mole fraction, however, is due to all three 

input parameters. Observed trends in Table 10 is contrary to the trends observed with the 

experimental data in Table 3 where the steam to oxygen ratio was the primary driver for 

variability observed in QoIs. 

To further investigate this discrepancy, sensitivity of CO, H2, and CO2 to variance in each of the 

primary input parameters (coal flow rate, particle diameter and steam to oxygen ratio) was 

analyzed utilizing one of the features in the GEBHM analysis as shown in Figure 28 through 

Figure 30.  Unlike what was observed in the experimental data, Figure 8, changes in each of the 

input parameters affect the mole fraction of CO, H2 and CO2. For example, there is a large 

variance in sensitivity of CO to particle flow rate that is caused by variability in particle diameter 

and steam to oxygen ratio or the variance in sensitivity of CO to particle diameter is affected by 

variability in coal flow rate and steam to oxygen ratio.  The differences observed in the 

sensitivity analysis of the experimental and predicted syngas composition indicates that the 

fluidization behavior maybe different in simulations than in the experiment, since coal flow rate 

and particle diameter can directly affect the hydrodynamics through drag force between gas and 
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solid phases. The effect that coal flow rate exhibits on syngas composition can further be 

observed in Figure 31 and Figure 32.  Figure 31 shows the time averaged reaction rates for the 

oxidation reactions, char combustion and char gasification reactions for run numbers 6 and 10 

(refer to Table 9). It is clear that adding more coal to the gasifier (going from run number 10 to 

run number 6) leads to an increase in all the reaction rates. It is also evident that CO oxidation is 

stronger than char oxidation for both run numbers 6 and 10. Mole fraction of CO, H2 and CO2 

(measured and predicted) for run numbers 6 and 10 are shown in Figure 32, which points to a 

decrease in predicted mole fraction of CO, H2 and an increase in predicted mole fraction of CO2 

when coal flow rate into the gasifier increases. Based on the trends observed in Figure 31 and 

Figure 32, one can conclude that the extend of the homogeneous CO and H2 oxidation reactions 

in the bed is greater than the extend of heterogeneous reactions taking place when coal flow rate 

is increased. Additionally, Table 10 and Figure 28 through Figure 30 show that CO mole fraction 

is not sensitive to steam to oxygen ratio. This indicates that, in simulation, coal combustion 

reaction is not greatly affected by increasing or decreasing the oxygen flow into the gasifier. 

Therefore, the fluidization and mixing behavior in the experiment have to be somewhat different 

than the hydrodynamic behavior that the model is predicting. 
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 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: coal flow rate (g/s) 84.7% 0.57% 0.0% 

PS: particle size (µm)  14.1% 0.0% 

H2O/O2 ratio in syngas   0.6% 

% Contribution of variability seen in CO mole fraction 

 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: coal flow rate (g/s) 26.7% 0.02% 1.2% 

PS: particle size (µm)  0.1% 0.1% 

H2O/O2 ratio in syngas   71.9% 

% Contribution of variability seen in H2 mole fraction 

 Factor 1 Factor 2 Factor 3 

CF PS H2O/O2 

CF: coal flow rate (g/s) 36.5% 2.11% 3.1% 

PS: particle size (µm)  27.9% 2.1% 

H2O/O2 ratio in syngas   27.6% 

% Contribution of variability seen in CO2 mole fraction 

Table 10 Global Sensitivity of Quantities of Interest with respect operating 

variables based on 3D MFIX simulations with CCD sampling 
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Figure 28 Variance of global sensitivity for CO mole fraction based on 

MFIX simulation results 
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Figure 29 Variance of global sensitivity for H2 mole fraction based on 

MFIX simulation results 
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Figure 30 Variance of global sensitivity for CO2 mole fraction based on 

MFIX simulation results 
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Figure 31 Time averaged predicted reaction rates for run numbers 6 and 

10. 

 

 

Figure 32 A comparison between the CO and H2 composition for run 

numbers 6 and 10, both predicted and measured 
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5.4 GRID RESOLUTION 

As seen in previous section when compared to experimental data, CO mole fraction was under-

predicted at lower steam to oxygen ratio and over-predicted at higher steam to oxygen ratio. The 

opposite trend was observed for CO2 mole fraction. To improve quality of numerical models 

used in simulations of a fluidized bed gasifier at any scale, the sources of uncertainty in the 

simulation have to be identified and quantified. There are several sources of uncertainty that can 

affect any simulation result and scale up process such as uncertainty in the model input values, 

uncertainty in the reaction models and kinetic rates, uncertainty in selection of the appropriate 

numerical models affecting the hydrodynamics, uncertainty in selection of adequate 

computational grid resolution, uncertainty in the selection of proper numerical techniques 

required for solution of the discretized conservation equations and many more. The lack of 

agreement in the CO and CO2 trend with respect to steam to oxygen ratio that was discussed in 

the previous section highlights the need to examine uncertainty in reaction models and the effect 

of computational grid resolution that may affect the hydrodynamics and syngas generation in the 

fluidized bed. A separate study was carried out, which is presented in this section to show the 

effect that reaction models for gasification, char oxidation, carbon monoxide oxidation and water 

gas shift will have on the syngas composition at different grid resolution, along with bed 

temperature, which affects the reactions. 

Selection of an adequate grid resolution, when using the multi-fluid model derived from kinetic 

theory of gases continues to be a major challenge. Dinh [28] argued that the multi-fluid model 

approach is ill-posed mathematically, since the resulting equations are non-hyperbolic, non-

linear and non-conservative. They point out that the length scale disparity between the 

discontinuity at the phasic interface and grid resolution can be of many order of magnitude. 

Since the averaging process, can lead to loss of phase distribution information, it becomes 

necessary to refine the mesh, in order to reduce the amount of information lost. However, they 

point out that mesh refinement beyond the smallest cluster length scale is meaningless and can 

lead to nonphysical results. Fullmer [29] points out that in a dilute gas-solid flow, grid spacing as 

small as 10 particle diameters is required for numerical accuracy. The grid requirement becomes 

even more demanding in dense flow regimes, where grid spacing as low as particle diameter may 

be required for numerical accuracy [29]. This poses a great challenge when the size of the 

particle of interest is in the order of few hundred microns, as it is the case in most reacting coal 

gasifiers. Under such circumstances, the number of grid cells required to adequately resolve flow 

structures can easily reach many millions of cells. The problem becomes even more challenging, 

since small time-steps are needed to resolve the temporal scales of this highly unsteady flow. 

The gasification reaction rates, which were obtained from the computer software PC Coal Lab 

required calibration. The calibration process compares the char conversion history of the coal 

being studied, with the char conversion history of similar coal types in PC Coal Lab database and 

make the appropriate adjustments to the pre-exponent constant in the rate expression. Since no 

char conversion history was available for the lignite coal used in the current study (i.e., the coal 

from Boundary Dam mine in Saskatchewan, Canada), we considered the pre-exponent constant 

in the gasification reaction rate as an uncertain model parameter. The uncertainty was 

characterized by multiplying the pre-exponent kinetic constant in the gasification reaction rate by 

a constant (α), since the gasification reaction rates given in Table 7 were expected to be too high. 
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The experimental baseline condition, where particle diameter was 285 µm and coal flow rate was 

0.0495 g/s was selected for the grid study. For all simulations, second order spatial discretization 

and first order temporal discretization were selected. The first simulation campaign investigated 

the effect of grid resolution, with two uncertain input parameters, which were the ratio of steam 

to oxygen in the fluidized bed gasifier and the gasification reaction rates, α in Eqs. (28) and (29). 

Space filling Optimal Latin Hypercube (OLH) sampling technique [30] was used to generate 30 

samples, where steam to oxygen ratio varied between 0.5 and 1 and the multiplier to the 

gasification reaction rate varied between 0.1 and 0.5, with both assumed to have a uniform 

distribution. The sample size for a space filling DOE coupled with a Gaussian Process model is 

generally determined through a heuristic measure of 10 times the number of input variables. 

Although there are no guarantees for convergence, it is widely accepted by experts from 

observing results for several applications ( [31], [32]). Considering the overall extensive 

computational resource requirements of transient reacting multiphase flow simulations, we 

followed the accepted heuristic for our initial sample size. The statistical convergence is 

estimated using the quality of the model generated. In this case, the models can be seen to be 

accurate within the required criteria. 

 

Ψ Grid Spacing (mm) Number of Grid Cells in I, J and K direction 

35 10 15 x 175 x 15 

18 5 30 x 350 x 30 

9 2.5 60 x 700 x 60 

Table 11 Computational grid size. 

 

Table 11 shows the grid properties for the three grid resolutions used in this study.  Based on the 

simulation timings recorded, 100 seconds of simulation time at grid spacing to coal particle 

diameter of 35, 18 and 9 takes 30, 125 and 205 days respectively on 128 cores at Ψ=35 and 

Ψ=18 and 256 cores at Ψ=9.  The time history of the quantities of interest (e.g., CO, H2 mole 

fractions), which are spatially averaged at the monitor location corresponding to the experiments 

is written out in a separate file during the runs. These CFD simulation results were post-

processed to extract the quantities of interest from 30 sampling simulation utilizing Python 

scripts to perform time averaging for the last 10 seconds of each simulation. A separate 

sensitivity analysis for the temporal averaging duration was performed for several durations and 

averaging for the last 10 seconds were determined to be adequate. The temporally averaged 

results are then compiled in a tabulated format such a way that OLH based design of experiments 

matrix for the simulations performed and the corresponding quantities of interest are provided as 

input for the GEBHM analysis. As presented in the previous sections, the first step in the 

GEBHM framework is to construct a Gaussian Process Model (a.k.a. emulator) of the responses. 

The GPM model is then employed to conduct several UQ related analysis. 

In their experimental work, Karimipour et al [3] carried out their experiment with three distinct 

particle sizes of 70 µm, 285 µm and 500 µm. The grid requirement of maintaining a grid size to 
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particle diameter (Ψ) of 10 for smaller particle diameters will make such simulations 

computationally very costly due to extensive resources required and impractical. In this study, 

the baseline experiment, with coal particle diameter of 285 µm, initial coal density of 1100 

kg/m3, composition of %41 carbon, %35 volatile matter, %10 moisture and %14 ash and coal 

flow rate of 0.0495 g/s was selected for simulation. Humidified air (%19.6 O2, %16.7 H2O and 

%63.7 N2) at a rate of 0.189 g/s and temperature of 750 C enters the gasifier.  The primary 

motivation for the selection of the baseline case among the other remaining 14 operating 

conditions was due to the fact that baseline case had 5 repeat experiments of the same flow 

conditions, which provided an assessment on the experimental uncertainties.  All of the 

simulations for the grid resolution effect study were conducted using NETL’s Joule 

supercomputer. Joule comprises of 1,512 nodes, where each node has two 8-core 2.6 GHz Intel 

Sandy Bridge CPUs for a total of 24,192 cores. Joules is a Linux based HPC cluster system, 

running SUSE 11.4 operating system. 

 

       Ψ = 35        Ψ = 18      Ψ = 9 

Figure 33 Snap shots of the instantaneous voidage at two different time for 

three mesh resolution. 

 

The effect of computational grid on the hydrodynamics of the fluidized bed is shown in Figure 

33, which shows snapshot contour images of the instantaneous voidage along the gasifier height 

at two different times during the simulations for three grid resolution of Ψ=35, Ψ=18 and Ψ=9. 

Bubble shapes are not as well defined at low grid resolution, however, as grid resolution 

increases, the bubble shapes become more resolved and well defined. 
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 H2O/O2 = 0.5 H2O/O2 = 1.0 

Grid resolution Ψ = 35 Ψ = 18 Ψ = 9 Ψ = 35 Ψ = 18 Ψ = 9 

Steam gasification 52.0% 48.3% 44.0% 68.0% 63.0% 58.1% 

CO2 gasification 9.5% 9.0% 8.3% 5.5% 5.0% 4.5% 

Char oxidation 38.5% 42.7% 47.7% 26.5% 32.0% 37.1% 

Table 12 Char consumption rate in the gasifier 

 

The regions, where the solid phases (sand plus coal) are at the packing limit of 0.57 (voidage of 

0.43) are shown in dark blue in Figure 33. Increasing the grid resolution not only leads to a 

sharper phasic interface between the gas and solids (bubble interface), it also leads to more 

clustering and heterogeneity of the solid phases.  Figure 34 and Figure 35 show the time 

averaged coal volume fraction, and sand volume fraction (averaged over the last 30 seconds of 

the simulation) along with their standard deviation at Ψ=35, Ψ=18 and Ψ=9 grid resolution. 

Larger standard deviations observed in Figure 34 and Figure 35, as grid is refined point to a more 

heterogeneous bed being formed as the result of mesh refinement.  

 

     Ψ = 35  Ψ = 18      Ψ = 9           Ψ = 35    Ψ = 18       Ψ = 9 

Figure 34 Time averaged coal volume fraction (left) and its standard 

deviation (right) at three different grid resolutions 
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Denser solid regions are formed throughout the bed, as mesh is refined. Regardless of mesh 

resolution, most of the lighter coal particles move to the top of the denser sand particles in the 

bed. A visual comparison of the bed height in Figure 34 and Figure 35 shows a similar bed 

height at grid resolutions of Ψ=18 and Ψ=9. Similar bed expansion between the medium and fine 

mesh resolutions indicates the hydrodynamics of the bed is not greatly affected by the mesh 

refinement between medium and fine mesh resolutions. To further investigate this, the Fast 

Fourier Transform (FFT) analysis of the CO mole fraction signal was performed, which is 

presented in Figure 36. The frequency spectrum for the medium and fine mesh resolutions are 

very similar with a dominant frequency of about 25 Hz. From Figure 36 and the similar bed 

expansion observed earlier, it can be concluded that no appreciable change is taking place in the 

hydrodynamic behavior of the fluidized bed, when grid is further refined from Ψ=18 to Ψ=9. 

 

     Ψ = 35 Ψ = 18        Ψ = 9   Ψ = 35       Ψ = 18        Ψ = 9 

Figure 35 Time averaged sand volume fraction (left) and its standard 

deviation (right) at three different grid resolutions 

 

The effect of grid refinement on the reaction models is investigated by examining average char 

consumption rate in the gasifier for the three grid resolutions under consideration. Table 12 

shows the percentage of char consumption rate (kmole/s) in the entire gasifier due to the three-

heterogeneous steam gasification, char oxidation and carbon dioxide gasification reactions at 

inlet steam to oxygen ration of 1.0 and 0.5 for three grid resolutions studied. 
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Regardless of the steam to oxygen ratio level, grid refinement leads to a decrease in overall char 

consumption due to gasification reactions in the reactor and an increase in char consumption due 

to oxidation. Although further mesh refinement beyond the medium mesh resolution does not 

affect the hydrodynamics of the fluidized bed, it is evident from Table 12 that gasification 

reactions and char oxidation reaction continue to be significantly affected by mesh refinement 

beyond medium mesh resolution.   The reason for continued dependency of heterogeneous char 

reactions on the grid resolution is improvements seen in the phasic interface, when grid is 

refined. Figure 37 shows a snap shot of the voidage, mass fraction of steam and CO2 in the flow. 

Some of the strongest reaction rates occur at the interface of bubbles, which carry the 

gasification agents and solid phase (coal particles), as seen in Figure 37(D) and (E). An under- 

resolved phasic interface leads to over-prediction of the heterogeneous reactions, since the 

smearing of the interface causes a higher contact area between the gas and solid. This poses a 

unique challenge with respect to selecting an appropriate grid resolution to carry out the 

simulations for routine analysis and also for non-intrusive uncertainty quantification analysis, 

which requires many sampling simulations. The choice of grid spacing to particle diameter ratio 

of 18 is adequate resolution to capture the hydrodynamics of the fluidized bed. However, the 

choice of grid spacing to particle diameter of 9 should provide adequate resolution (among the 

three-grid resolution tested) to resolve the phasic interface and capture the heterogeneous 

reactions taking place.  Figure 38 through Figure 40 show the behavior for H2 with respect to 

changes in steam to oxygen ratio and gasification rate constant for the three-grid resolution 

studied (Ψ=35, Ψ=18 and Ψ=9, respectively).  The color legend in the figures represent the 

uncertainty in the emulator prediction. The uncertainty is higher, where number of samples are 

not adequate (such as the perimeter of the sampling space). It is clear that the general behavior of 

H2 in syngas does not change with grid resolution, in the entire parametric space, which was 

considered in this work (response surfaces for CO and CO2 are not shown here, since they exhibit 

similar behavior). Over-prediction of H2 mass fraction when grid resolution is low is expected 

since the phasic interface is not resolved as well as it can be at higher mesh resolution. Since the 

general trend in syngas species does not change with mesh refinement and the fact that achieving 

100 seconds of simulation time for Ψ=35, Ψ=18 and Ψ=9 on 128 cores, requires 30, 125 and 417 

days respectively, practical considerations dictates the use of coarse grid resolution Ψ=35 for the 

remainder of this work. 
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Figure 36 Frequency spectrum of CO mole fraction at three grid 

resolutions 
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(A)                            (B)                           (C)                           (D)                           (E)   

Figure 37 Instantaneous contours of (A) voidage, (B) steam mass fraction, 

(C) CO2 mass fraction, (D) steam gasification rate and (E) CO2 gasification 

rate. 
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Figure 38 H2 behavior at Ψ = 35 as a function of steam to oxygen ratio and 

multiplier to pre-exponent kinetic constant in gasification reaction model 
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Figure 39 H2 behavior at Ψ = 18 as a function of steam to oxygen ratio and 

multiplier to pre-exponent kinetic constant in gasification reaction model 

 



Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized 

Bed Gasifier 

 

61 

 

Figure 40 H2 behavior at Ψ = 9 as a function of steam to oxygen ratio and 

multiplier to pre-exponent kinetic constant in gasification reaction model 
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5.5 BAYESIAN CALIBRATION 

The Bayesian calibration technique, which was discussed earlier was used to calibrate the 

multiplier to the gasification reaction rate, which is an unobservable model parameter in MFIX-

TFM simulations. The 30 OLH samples from the simulations at the Ψ=35 grid resolution were 

used. The prior distribution for this multiplier was assumed to be uniform and varying between a 

range of 0.1 to 0.5. GEBHM uses Markov Chain Monte Carlo (MCMC) to compute the posterior 

distribution of calibration parameters and compute the hyperparameters of the Gaussian Process 

models. 10,000 MCMC steps with an additional 5,000 burn-in steps were used to compute the 

posterior distributions. The posterior distribution of the calibration parameter obtained from 

GEBHM is shown in Figure 41, with a median value of 0.2254 and standard deviation of 

0.03524.  Figure 42 illustrates the CFD results for CO mole fractions with the multiplier to the 

gasification reaction rates set to the calibrated value of 0.2254 and also set to the default value of 

1.0 (uncalibrated) at grid resolution of Ψ=35. Although the calibrated gasification reaction rate 

multiplier of 0.2254 is the most probable value for improving the simulation results, the 

calibrated CFD results do not show the correct trend, when compared with the experimental 

values at steam to oxygen ratio of 0.5, 0.75 and 1.0. This is attributed to the systematic 

discrepancy that exists in the CFD simulations. The discrepancy adjusted predictions from 

GEBHM provide a closer look at the systematic discrepancy observed in the CFD simulation 

results. The optimal Latin hypercube based 30 sampling simulations at grid resolution of Ψ=35 

are shown as gray dots in the same figure. Large discrepancies exist, when comparing the 

experimental results to both un-calibrated and calibrated results. However, once the calibrated 

emulator results are corrected for the discrepancy term by GEBHM, good agreement is achieved 

with experimental data, as seen in Figure 42. This clearly shows that the discrepancy model 

obtained from GEBHM is sufficient for correcting the missing effects in the simulator and the 

calibration parameter has not been over-tuned to fit the experimental observations 
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Figure 41 Posterior distribution of the multiplier to gasification rate, after 

Bayesian calibration 

 

 

Figure 42 CO mole fraction predictions for calibrated and un-calibrated 

gasification reaction rate. 
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6. CONCLUSION 

The application of non-intrusive Bayesian uncertainty quantification methodology for multiphase 

reacting flow is demonstrated by utilizing an existing experimental dataset and conducting CFD 

simulations of the conditions used in the experiment.  The choice of input parameters, quantities 

of interest variables, sampling technique and number of samples were considered fixed and kept 

as the same due to the prior experimental work carried out by Karimipour et al. [3]. One of the 

contributions of the current work is the new set of emulators (i.e., surrogate models) constructed 

for the quantities of interests based on species mole fractions (e.g., CO, CO2 and H2 mole 

fractions) instead of derived quantities (e.g., gasification efficiency) or ratios of mole fractions as 

presented in the original study. Emulators were constructed based on Gaussian Process Model, 

which also provided a detailed assessment on uncertainty of the surrogate model constructed as 

opposed to the polynomial regression based response surfaces constructed in the original study, 

which offered limited surrogate model related uncertainty assessment. The quality of the 

emulators was assessed before any type of UQ analysis was performed as the emulator plays 

critical role in the present approach. As part of the UQ assessment, global sensitivity analysis 

was performed on the experimental data of Karimipour et al. [3], which showed that the third 

factor, i.e., steam to oxygen ratio is the primary uncertain input parameter that affects the 

variability observed in the syngas composition. This finding is similar to what Karimipour et al. 

[3] reported. However, the methodology followed in this paper also indicates that the sensitivity 

observed in steam to oxygen ratio is directly affected by coal flow rate and particle size (the 

other two uncertain inlet parameters), even though coal flow rate and particle size do not directly 

affect the syngas composition. Another UQ analysis performed was the forward propagation of 

input uncertainties by characterizing them with several probability density distribution functions. 

The results showed that the probability density distribution form of the inlet uncertain parameters 

does not affect the syngas composition.  The surrogate models constructed can also be employed 

in providing guidance on trends and relationships between input and output parameters in 

addition to their critical role in UQ analysis. Using the emulator generated as part of the UQ 

study, the question of what additional sampling points would improve the surrogate model 

uncertainty was also investigated by framing the question as an optimization problem. For 

demonstration purposes a single objective optimization to determine sampling location that 

maximizes the uncertainty in the surrogate model was solved using global multi-point particle 

swarm optimization. Ten additional sampling points were determined, which were identified to 

be the best points to conduct a new set of experiments to maximize information gain and thus 

minimize uncertainty. 

 

The effect of grid resolution in CFD simulations of the fluidized bed gasifier of Karimipour et al. 

[3] was studied next.  A grid spacing of 18 times larger than the particle diameter was 

sufficiently resolved to capture the hydrodynamic of the fluidized bed (no appreciable change in 

bed height and frequency spectrum were observed between Ѱ = 18 and Ѱ = 9).  However, a 

grid spacing of at least 9 times larger than particle diameter was needed for capturing the syngas 

species field.  This is due to an under-resolved phasic interface (where the strongest 

heterogeneous reactions take place) at larger grid spacing.  Conducting uncertainty quantification 

based on either of the grid sizes mentioned above is computationally costly and impractical.  It 

was observed that grid spacing of 35 times larger than the particle diameter will yield the same 
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trends and overall behavior by the species field than finer grid spacing, although the gasification 

reaction is over-predicted and char oxidation reaction is under-predicted, when comparing results 

between Ѱ = 35 and Ѱ = 9.  Due to the fact that physical run time for simulations conducted at 

Ѱ = 35 grid resolution were 14 times faster than simulations conducted at Ѱ = 9 grid 

resolution, grid spacing of 35 times the particle diameter was chosen as the grid spacing used for 

the additional UQ analysis that was conducted.   

The global sensitivity analysis of simulations based on the experimental condition shows that the 

predicted syngas composition is strongly affected not only by the steam to oxygen ratio (which 

was observed in the experiments as well) but also by variation in the coal flow rate and particle 

diameter (which was not observed in the experiments). The CO mole fraction is underpredicted 

at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The 

opposite trend is observed for the CO2 mole fraction. These discrepancies are attributed to either 

(i) excessive segregation of the phases, which leads to the fuel-rich or -lean regions, where 

homogeneous and heterogeneous reactions can over- or underproduce the product gases, or (ii) 

selection of the reaction models, where different reaction models and kinetics can lead to 

different syngas compositions throughout the gasifier.  

A closer study into the effect of reaction models on syngas composition shows that among the 

reaction models for water gas shift, gasification, char oxidation, the choice of reaction model for 

water gas shift has the greatest influence on syngas composition, with gasification reaction 

model being second.  Syngas composition also shows a small sensitivity to temperature of the 

bed.   

As non-intrusive uncertainty quantification assessment heavily relies on the number of sampling 

simulations performed, external high performance computing resources were sought in addition 

to the NETL high performance computing resources. For this purpose, two ASCR Leadership 

Computing Challenge (ALCC) program awards from the U.S. Department of Energy’s Office of 

Science were secured through a competitive proposal submission and award process. Proposal 

submitted for the 2014 ALCC program led to 38 million CPU hour award at the National Energy 

Research Scientific Computing Center (NERSC).  In the following year, under the 2015 ALCC 

program, 111.5 million CPU hour were awarded at the Argonne Leadership Computing Facility 

(ALCF) in Argonne National Laboratory of the U.S. Department of Energy.  The findings from 

series of studies conducted were compiled and published in three journal papers, Gel et al. [7], 

[13] and Shahnam et al. [33]. 

The insight gained from the current study for the bench-scale fluidized bed gasifier, has played 

an important role in our computational modeling efforts where there are not only the physical 

operating factors such as coal flow rate or steam to oxygen ratio but also number of modeling 

parameters, which requires careful consideration for uncertainty quantification assessment of 

computational fluid dynamics simulations of multiphase flows.  
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