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FINITE ELEMENT METHODS FOR THE SOLUTION

OF PROBLEMS WITH ROUGH INPUT DATA

I. Babuska~ and J.E. Osborn*

1. Introduction

The finite element method is based on the variational or weak

formulation of the boundary value problem under consideration. The

* approximate solution is obtained by restriction of the variational

formulation to finite dimensional trial and test spaces.

*Accuracy of the approximate solution is achieved by the choice of

a trial space with good approximation properties and the choice of a

test space which guarantees that the finite element solution is an

approximation of the same quality as is the best approximation of the

exact solution by the trial functions.

The success of the finite element method as a practical computational

tool is related to the special construction of the trial and test func-

tions in terms of "element" trial and test functions (defined on the

finite elements) satisfying appropriate constraints at the nodes. This

element based structure is the basis for the architecture of existing

finite element codes. Usually the "element" trial and test functions

are polynomials.

It is well known that when the solution is rough, which will in

ceneral be the case when the data is rough, then the use of polynomials

as "element" trial functions does not lead to good accuracy. In this

pacer we will construct "element" trial functions which reflect the

* properties of the problem under consideration. This will lead to

increased accuracy - the maximum possible accuracy - while not changing

the structure of the code. In fact, the approach can be implemented

by changinq only the "element" trial functions employed in the method.

The questions of optimal trial functions relative to a class of problems

is also addressed.

The abstract framework of the approach is given in Section 2. In

Section 3, five examples of various types are presented and in terms

of these examples the ideas presented in Section 2 are develop~ed. In

Section 4, we make some general comments on the design of finite

element methods for problems with rough coefficients.

Detailed proofs of the results in the paper will be presented

elsewhere. The ideas in the paper can be generalized in various

directions.

S. .... ... *~ . .~V V



Throughout the paper we will use the usual L spaces and Sobolev

spaces Hit Ai P

2. Variational Approxination Methods

In this section we discuss variational approximation methods and

state a basic error estimate.

Let H1 ,'.I!I and H2,11.11H be two Hilbert spaces and let
1 2

Hl'h''lJH ,h' 0 < h - 1, H2 , h , 11'11H2,h' 0 < h 1 1, be two one parameter

families of Hilbert spaces satisfying

H cH lluHl = jIuliH Vh and Vu E H (2.1)H1 c l,h ,h11(2)

and

Hl2 C H 2 ,h'uH = luIH2Vh and Vu E H2 . (2.2)

Let Bh(uv) be a bilinear form on Hlh x H2,h satisfying

ID(u'v)I !5 Mul l,hjvJh Vu ( Hl,h , Vv E H2, h ,  and Vh (2.3)I~ h (uv~l.<l]h 2 ,h

(M is independent of h).

Let f be a bounded linear functional on H . Corresponding to

f we assume that there is a unique u0 E H1  satisfying

Bh(uO,v) = f(v) Vv ( H2 and h. (2.4)

u 0 can be thought of as the exact solution to a boundary value problem

under consideration and is unknown. Bh and f are given input

date and are known.

We are interested in approximating u0 and toward this end we

assume we are given or have chosen finite dimensional spaces S1,h c HI, h

and S2h c H2 h with dim Slh = dim S2 h and

inf sup IBh(u,v) _ y > 0 Vh (2.5)
u Slh uES2,h

Ufl,h E 2,h
,lull H1 Ph = 1 !!Vl H2,h=l

(y is independent of h). Then we define uh by i llability Coe

hm , DIAvalaSpit ad

U' --. L. Special



3

Uh ( Slh (2.6)

Bh(uh,v) = Bh(uOv) Vv E S2, h

and consider uh to be an approximation to u0. (2.6) is uniquely
solvable. We often denote u0 be u. Note that uh is defined for

every u E Hl,h . Given bases for Sl,h and S2 ,h, (2.6) is reduced

to a system of linear equations. But (2.6) does not define an algorithm

for finding uh since it depends on the unknown u0 . We note from

(2.4), however, that Bh(U0,V) = f(v)Vv E S2,h provided

S2 ,h c H2 Vh. (2.7)

We now assume that (2.7) holds. (2.6) can then be written

uh E Sl'h (2.8)

Bh(Uh,v) = f(v) Vv E S2,h.

(2.8) is called a variational approximation method.

Having defined uh we are interested in an estimate for 11U0-Uh 1l,h.

This is provided by the standard

Theorem. The error u O-Uh satisfies

Hu0 - UhIIlH S (1 + y-1 M) inf flu0 - X'IH (2.9)
l,h XES lh l,h

where M and y are the constants in (2.3) and (2.5), respectively.

For a complete discussion of variational approximation methods see [1,2].
The spaces Slh are called trial spaces and the functions in

Sl,h are called trial or approximating functions. The spaces S2, h

are called test spaces and the functions in S 2, are called test

functions.

Remarks:l) In our applications there will be a bilinear form B(u,v)

defined on H1 x H2 and satisfying Bh(Uv) = B(u,v) Vu E Hi t v ( H2 .

From (2.4) we see that

B(u0 ,v) = f(v) Vv ( H2 . (2.10)

(2.10) is the variational formulation of our boundary value problem and
Hl, H2 , and B are the spaces and the bilinear form in this formulation.
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2) (2.9) suggests we choose Sl,h so that inf Hu0 - X"H is
XESlh l,h

small, i.e., so that the trial functions have good approximation prop-

erties, and, with S so chosen, S2 h can be selected so that (2.5)

holds with as large a constant y as possible.

3) In many applications we can choose SI, h c Hi, but in others the

requirement that inf Iju0 - XIH be small leads one to choose
xESl,h l,h

Sl,h 4 H1 . The trial space is then nonconforming in the sense that

Sl,h does not lie in the basic variational space H . This fact leads

to a use of the family of spaces Hlh and forms Bh.

In certain situations one has H1 = H2 and one wishes to choose

$2,h = S ,h . Then, if Sl,h is nonconforming, S2, h will be also,

and we are led to the use of the family H 2,h  Note that in this

circumstance,

Bh(UOv) = f(v) Vv E $2,h (2.11)

is not valid. Nonetheless, an approximation uh can still be defined

as in (2.8). This, in fact, is what is done in the class of methods

commonly referred to as nonconforming in the finite element literature

(see, e.g., Section 4.2 in [4]). The error analysis for such problems

does not follow directly from (2.9) and the additional complications

in the analysis are due to the fact that (2.11) does not hold.

In the methods discussed in this paper we will always have

$2,h c H2 , i.e., our test spaces will be conforming. We emphasize

that the choice of nonconforming trial spaces causes no difficulty in

the analysis, provided the test spaces are conforming.

3. Examples

In the section we will discuss the approximate solution of five

specific boundary value problems with rough input data. In each

examole we will use a variational approximation method employing trial

functions which reflect the properties of the underlying problem in

that they provide an accurate approximation to the unknown solution.

a. A Two Point Boundary Value Problem with a Rough Coefficient

Consider the problem

Lu0  - -(a(x)u;)' = f, 0 -x 1 (3.1)

u0 (0) = u0 (1) = 0

i iii iii**i IIIt- r- O6,-,.



where a(x) is a rather arbitrary function satisfying 0 < a - a(x) 8

and f E L2 (0,1). This simple model problem arises in the analysis

of the displacements in a tapered elastic bar. f represents the load,

a(x) the elastic and geometric properties of the bar, and u0  the

displacement. If the bar has smoothly but rapidly or abruptly varying

(as in the case of composite materials) material properties, then

a(x) will be a smoothly but rapidly or abruptly varying function, i.e.,

a rough function.

The variational formulation of (3.1) is

U0 E A1 (,l)

jI auv'dx = fvdx Vv E H1 (0,1).

This has the form (2.10) with HI = H2 = H, B(uv) = au'v'dx, and

f(v) = jl fdx. It is known that the standard finite element method

employing C0  piecewise linear trial and test functions (i.e., the

variational approximation method determined by the form B and C0

piecewise linear trial and test spaces) does not yield accurate approxi-

mations to the solution of (3.2) (or (3.1)) when a(x) is rough. We

thus consider an alternate method.

Let T h = {0 = x0 < x1 <...< xn = 1} be an arbitrary mesh on

[0,1] and set Ij = (x.j_, xj), h. = xj-x j_ , and h = max h . The

points xj are called nodes. For the trial space we choose

Sl,h = {u: For each j, u. = a linear combination of 1 and

-- I~X dt (3)

t, i.e., u is a solution of (au')' = 0, (3.3)

u is continuous at the nodes, and u(0) = u(l) = 0}

and for the test space

S2 h = {v: For each j, v = a linear combination of 1 and x,

u is continuous at the nodes, and u(O) = u(l) = 01. (3.4)

Now SI, h c H and $2,h r H2 and we may thus choose

lh= H1 H 2 h = H2 Bh B. (3.5)

v ~ h '% 2,h ' .&~ *.**
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However, we could also choose

Hlh 2h l,h -u:u (Ij) for each j, u(0) = u(l) =0},
I )j

)n

I~UIIHlh = IIUII = Iui if' u2dx + _ f (u')2 dx 1 /2 , (3.6)lull,h 2,h l,h 0f j=l I
0

Bh(u'v) = [j U u'v'dx.

With either the choice (3.5) or (3.6), we see that (3.2) has the form
(2.4) and that (2.3) is satisfied with M = B. We will use the
choice (3.6) since it leads more naturally to the choice dictated to

us in Example b below.

We next consider the variational approximation method (2.8) deter-

mined by Bh, Sl,h , and S2, h , i.e.,

uh E Sl,h  1 1

Bh(uh,v) = f au~v'dx = J fvdx Vv E S2 ,h. (3.7)

Regardinq (3.7) one can prove the inf-sup condition (2.5), namely

inf sup jI au'v'dxl = y(m,B) > 0 Vh
uES1,h v(S2 ,h (3.8)

H uIIIII

and the approximation result

inf u0 - xIIA - N(aS)hIj(au )'IL = N(a,8)hIIfIIL (3.9)
X(Sl,h  2 2

where Y(c,B) and N(a,B) depend on a and 0 but not otherwise on

a(x) nor on h. From (3.8), (3.9) and the basic estimate (2.9) we
immediately have

Theorem a. The error u0 - uh satisfies

:;u0 - Uh IfA 1- C(a ,8)hIfIL2 (3.10)

where C(q,8) = (1 + y-I(c,O)M(c,3)]N(a,S) depends only on a and 8.
Thuq we have a i t order estimate for !Iu - U h which is uniform

0 h'H 1
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over all a(x) satisfying a - a(x) < B. For a proof of (3.8) and

(3.9) see [3]. The estimate (3.10) is the best possible estimate

for f E L2 This can be seen by an application of the theory of

N-widths (see, e.g., [2, 8]).

(3.9) shows that Slh, as defined in (3.3), yields accurate

approximations to the solutions u0 of (3.1). (3.8) shows that (2.5)

holds with our choice of Sl,h and S2, h' as defined in (3.4). Thus

our trial and test spaces have been chosen in accordance with the

suggestions in Remark 2 in Section 2. We further note that if

is the usual basis for $2,h defined by 4i(x ) = 6 ij and

Olt,..., N  is the basis for SI, h defined by i(xj) = ij, then the

matrix of (3.7) (the stiffness matrix) is given by

a a'. i dx (3.11)

0 
0

where ah  is the piecewise harmonic average of a(x), i.e., the step

function defined by

a = (h (3.12)

Thus the stiffness matrix is symmetric (which is not immediate since

we are using different trial and test spaces) and is as easily computed

as is the stiffness matrix for the standard method employing S2, h  for
.1

both trial and test space, namely a ah4!Oidx, where ah is the piece-

0

wise average of a(x).

The accuracy and robustness of the approximation uh is further

shown by the estimate

Iu(xj) -uh(xj)1 . Cho,)V L(a)h211f'l j=l,...,n-i (3.13)

1
where Vo(a) denotes the total variation of a(x). Thus we have

second order convergence at the nodes even if a(x) has several jumps.

The proof of (3.13), which does not follow the lines suggested by

(2.9), can be found in [3].



:b. A Special Class of Two Dimensional Boundary Value Problems with

Rough Coefficients

Consider the problem

Lu = -(a(x)Ux) x - (b(y)u Y) = f(x,y),(x,y) Pel = [0,2

u =0 on r = (3.14)

where 0 < a - a(x),b(y) - 8 and f E L2. This problem generalizes

the model problem considered in a . The variational formulation of

(3.14) is

u E ln

B(u,v) = f(v) Vv E Hl~) (3.15)

where

B(u,v) = (auxvx + bu v )dxdy

and

f(v) = J fvdxdy.

This is of the form (2.10) with H1 = H 2 = H.

Let Th be a uniform triangulation or mesh on P with triangles

of size h, as shown in Fig. 1. The vertices of the triangles T E Th

are

Ih
-- so

m -

Fig. I

called the nodes of Th. By analogy with the definition of Sl,h in

a , we choose as trial space

Sl,h = {u: For each T E Th , uT = linear combination of 1,

T .-'--,.--
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a- dt'and f u u continuous at the nodes, and

u 0 at the boundary nodes}. (3.16)

For the test space we choose

S2,h = {v: For each T E Th, v I = linear combination of 1, x, and
T

y, u continuous at the nodes, and u = 0 at the

boundary nodes). (3.17)

In contrast to the situation in Example a, the nodal constraints imposed

on the functions in Slh do not imply the functions are continuous

and we have Sl,h HI, i.e., the trial space is nonforming. S2, h c H2

in both examples.* We now define

Hlh = H2h =Hl 'h = {u: u E L2 ( M), ul E H1 (T) for all T ( Th},

l,h 2, 2,h 2f IT 1 h dd1 1

"u"H h = "u", = IIU"H = if u2dxdy + TT h  udxdy]I/2

and

Bh(u'v) h 'T (ayxVx + bu v )dxdy.
TxTh TYy

Bh  is defined on Hl,h x H1, h  and (2.3) holds with M =.

The approximate solution is then defined by

Uh ( Sl,h

Bh(uh,V) = f fvdxdy, Vv E S2,h. (3.18)

It is possible to show that (2.5) holds, i.e., that

inf sup IBh(u,v)I - y(a,B) > 0 Vh (3.19)
uSSl,h vES2,h

Hlhnl I,h

where y(c,B) depends on a and 3 but not otherwise on a(x) and

b(y). We have also shown that the functions in Slh approximate

the unknown solution well. In fact

hinf lu - \i! < C(u,8)h'lu"l  (3.20)
AES l,h H1 L,h
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where

HL,h {u: u E L2 (0), u E HM(T), aux, bu H (T) VT T u is
L~h2 1y 1 h
continuous at the nodes of Th, and u = 0 at the

boundary nodes)

and

Hull2 :iulI2 f (aUx)x12 + 2ablUy 12 + I(buy)y 12 d xd y "

HLh Hlh T

It is easy to see that u, aux , bu E HI(T) implies u is continuous

on T and so the requirement of continuity at the nodes makes sense.

Now, combining (3.19), (3.20), and (2.9) we have

H u - uhIIH , C(a,B)hIuI!H for all h. (3.21)
• l ,h L.h

We have been able to prove the following regularity result for (3.14)

(or (3.15)): If f E L then u E H and

Mull H C(a, 8) 1f 1L (3.22)

where

HL = {u: u E H(), aux , bUy E HI(Q)}

and

Hull 2 = 1lU1l 2  + ({I au x ) X2 + 2abl 12 + (b 2
H L a x aUxy yy

Because it is immediate that !ullH = !;U11HL for any u E H , from. HLL

(3.21) and (3.22) we get
.'

Theorem b. The error u - uh satisfies

lu - uh l 1: C(Vf,!) 2 h. (3.23)

(3.23) shows that we have first order convergence in the "energy norm,"

with an estimate that is uniform with respect to the claqq of croffi-

cients satisfying 0 < A < a(x),b(v) <

If i '.'.''N form the usual basis for S2 ,h defined by

¢i(z.) = ij, for all interior nodes Zl,...Ozn of Th, and t ...... N

- . . . . .-... ' . . .-. .h . " " . -



form the basis for Slh defined by #i(zj) 6 ij' for a]

nodes zj, then the stiffness matrix of (3.18) is given by

Bh( jl i) = f (a jxi,x + b 0j,y i,x)dxdy

where a h and b h are the (one dimensional) piecewise haz

averages of a(x) and b(y), respectively. The result in

completely analogous to that expressed in (3.11) and (3.12)

a We exphasize that although we are treating a two dimer

problem, the harmonic averages are one dimensional.

As we have seen, trial spaces with good approximation r

are required in an accurate method. It is thus natural to

trial functions. We have, in fact, been able to show that

defined in (3.16), is an optimal approximation space in the

sup inf Hu - X1IH sup inf Ilu - XIH
uEHL,h xESl,h l,h uEHL,h XESN

lull h=1  11ulH

tor all SN c HL, h with dim S = dim SI, h =N = the numbe

nodes of T h Therefore Slh is optimal in the sence of

(cf. [8]) relative to the norms 11 • !I (the norm we ax
• l,h

the error in) and HL,h  (a 2nd derivative norm in which t

bounded by llflL2). We have thus chosen an "ideal" approxi

subsvace for our problem. We have chosen the test space 1

defined in (3.17), so that Bh(uv) can be calculated fror

data for v E S2, h  (cf. (2.7)) and so that the inf-sup cc

(2.5) holds. These features of the choices for the trial

space lead to the accuracy of the method. We further note

choice of S2, h  led to an easily computed stiffness matrii

the precise statement of the accuracy and robustness of thi

We note that (3.25) shows (in the case a = b = 1) tha

S of continuous piecewise linear functions is an optim4
2,h

matino subspace in the case when the differential operator

Laolacian. Furthermore, in an asymptotic sense, S2, h  is

oroblems with smooth coefficients.

c. N Singular Two Point Boundary Value Problem

Consider the problem

Aj
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12

-(/X u')' = lx), 0 < x

u(O) = u(M) = 0. (3.26)

Let

1 = H = {u: f 'x (u')2dx < ', u(0) = u(1) = 01

0

and

PIull 2 IjuIIH 2 IIUII 2 = flVi (u') 2dx.
1 2 H

The variational formulation of (3.26) is given by

J x u'v'dx = fvdx Vv E H.

0 0

Given a mesh Th  (as in Example a 1, let

H h = H2,h = {u: v rx (u) 2dx < for j =,...,n,

u(0) = u(M) = 0}

and

,u,2 = u = 2lul + VX- (u') 2dx.
Hl,h 2,h 2 j=l

J

We define the trial and test spaces by

Slh = {u: For each j, u I  = a linear combination of 1 and

rx, u continuous at the nodes, and u(0) = u(l) = 0)

and S2, h = Cc piecewise linear functions, as in Example a .

The approximate solution uh E S1, h  is then characterized by
uh11

B (u ,v) f fvdx Vv E S 2 hh h ,

where

B h(u'v) /-- u'vIdx.
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One can show that (2.3) and (2.5) hold with M and y independent of

h. Furthermore, one can show that

inf u XI X Ch ! ch u')I d/.

XESl,h H 0 /x 2 dx.

Combining these facts with (2.9) leads immediately to

Theorem c. The error u - uh satisfies

h1 2f 1/2llu - u - Ch( dx) Vh. (3.27)

We emphasize that (3.27) holds for an arbitrary mesh. It is not

necessary to refine the mesh in the neighborhood of the singular point

0. The rate of convergence in (3.27) is the highest possible. This

follows from the theory of N-widths. Problems similar to (3.26) have

recently been considered in [6,11].

Vd. A Boundary Value Problem in a Domain with a Corner

Consider the model problem

-Au = f(x,y), (x,y) E Q

u = 0, (x,y) E 1 = 30 (3.28)

where 9 is a polygonal domain with a convex angle (see Fig. 2), which

In

Fig. 2

we assume is placed at the origin, and f E C0 (:). The solution u

of (3.28) is singular at (0,0) and as a consequence the standard

finite element method with piecewise linear approximating functions

", ' " " " " " , ' , ' : " " " -. ,, . ' . ." ."-* " " , .. "-.. ."- q " ." ,'d.' " ",- "-'
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and a quasiuniform mesh gives an inaccurate approximate solution. In

fact

11u - UhIIH (M) > Chp

with p < 1 depending on the angle B. (If 0 S Ti, then p = 1.)

Appropriate refinement of the mesh in the neighborhood of the concave

angle leads to the optimal convergence rate O(N-11 2 ), where N is

the number of degrees of freedom (the dimension of the trial and test

space). A different way to achieve accuracy for problems with corners

is to augment the trial space with singular functions (which will not

have local supports). See, for example [5,7]. We will outline an

approach that preserves the local nature of the finite element method

bv selecting special trial functions. The resulting method will have

the highest possible rate of convergence, namely 0(h).

Toward this end suppose Th is a quasi-uniform triangulation of

Q, let

Slh = {u: For each T E Th, uj is a linear combination of 1,

ra cos a6, and ra sin aG, where a = /s and (r,O)

are polar coordinates of (x,y), u is continuous at

the nodes, and u = 0 at the boundary nodes},

and let S2,h be the usual CO piecewise linear functions relative

to Th that vanish on r. The triangulation will be required to

satisfy certain technical restrictions in addition to being quasi-

uniform. We describe these now. Let 0 < T and 0 < h << 1 be

given. Choose K sufficiently large, to be precise, choose K > K(8,y),

where K(c,T) is an explicitly known expression. Triangulate the

portion of 0 near the concave angle with several isoceles triangles

such as shown in Fig. 3. Triangulate the rest of Q with triangles

Fig. 3

of size h and minimal angle > T as in Fig. 4. The bilinear form

Bhp the approximate solution uhr and the norm H1 ,h are defined
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Fig. 4

in the obvious way. Then we can verify (2.3) and (2.5) and use (2.9)

to prove

Theorem d. The error u - Uh satisfies

"chilog hi 1/ 2 , 8 = 2
Ou- u 1 (3.29)h Hl,h LCh, S < 2 .

We thus have a first order estimate for the "energy" norm with a

nearly uniform mesh.

e. An Interface Problem

Consider the problem

-div (a grad u) = f(x,y), (x,y) E Q

u = 0 on r = an (3.30)

where 0 is a convex polygon and

a 1 on P

a-

a2 on Q2

where a and a are positive constants and c Q, an, is smooth,
a 2  1

and Q2 - Q - nt. The first derivatives of u have jumps across the

interface 3Q and thus the standard finite element method is inaccu-
rate unless the mesh is chosen so that the interface lies on edges of

triangles in the trinagulation. We will now show that maximal accuracy

can be achieved without aligning the mesh with the interface if we

modify the trial functions properly.

Let Th be a quasi-uniform trianqulation or mesh on 0. We

%' * **t VV * ..:h ' ., ''' ,* ,*-'. " , -' -. -' " . -'".-.-" "-" * , "--. -v.--,, ..
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describe a function u Slh.

i) For T ( Tho

if T A aI = uIT  is linear

if T n an ' uI is as follows:

Choose CE al n T. Denote the tangent and normal

to ai by t and n, respectively. Then

c%) u1 = u j and u2 = u 2 are linear,

6) ul(Q) = u2(Q),

aul 1 u2 Q .

~=
6 ) al n--(Q) = a a2 - (Q).

ii) u is continuous at the nodes of Th.

Note that i)6) is a requirement that the trial functions approximately

model the interface condition 1 an - 2  an satisfied by the

exact solution. For test space we choose the usual CO piecewise

linear functions. Having defined these spaces we then define the

anoroximate solution by

u h E Sl, h

Bh(UV) LT (( aVu . Vvdxdy + aVu • Vudxdy) =

f fvdxdy Vv E 2,h (3.31)

For the method defined in (3.31) we have proved, with the aid of

(2.9), the estimate

l!u - Uhliff 5 ChIf!! Vh (3.32)
l,h

where

!- - ! v2dxdy + T (f Ivldxdy + f IVVI dxdy).
T 1  T n Q 2

(3.32) is a first order estimate for the "energy" norm of the error.

We emnhasize that there is no relationship between the mesh and the
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interface. The method proposed here would provide an alternative to

methods in which the interface is modeled by a mesh line, as in [9].

4. An Approach to the Design of Finite Element Methods for Problems

with Rough Input Data

Our treatment of the Examples in Section 3 suggests an approach

to the design of finite element methods for problems with rough input

data. In this section we outline the steps in this approach.

a) Choose the space of right hand sides or source terms f to

be considered. In all of our example we chose f ( L2 except in

Example 3.c where we considered f's satisfying f- dx < =.
b) Find the space of solutions corresponding to the space of

right-hand sides under consideration. This will involve a regularity

result. For example, in Example 3.b , the space HL is the space of
solutions corresponding to f's in L2. Often regularity results

are available for problems with smooth data, but are not available

in sufficient generality for problems with rough data.

c) Choose the mesh dependent bilinear forms and spaces (norms)

Bh, Hl,h( • 11Hl,h ) , H 2,h 1 - 1 2,h). This choice is usually very

natural, following directly from the basic variational formulation,

considered triangle by triangle.

d) Select trial spaces which have good (optimal) approximation

pronerties. This is the major problem. Usually such spaces are

closely related to local solutions of the equation under consideration.

In many situations the proper choice leads to non-conforming functions.

Inter-triangle continuity is enforces only at the nodes. The approxi-

mation properties of the trial functions is directly tied to the space

of solutions (see b)). The problem of selecting optimal trial functions

is often not simple. In practice one would like to find a trial space

that performs almost as well as the optimal trial space but which is

easily implemented.

e) Select a test space so as to ensure the inf-sup condition

is satisfied with constant y that is not too small and so that the

stiffness matrix can be calculated. In contrast to the trial space,

the test space is chosen to be conforming.

We have illustrated these steps on the relatively simple examples
discussed in Section 3. We restricted our attention to first order

methods in which the maximal rate of converaence was 0(h). As mention-

ed in the introduction, the ideas in the paper can be generalized in

- .'
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various directions.
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