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Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor.

Abstract

We introduce a realtime facial tracking system specifically
designed for performance capture in unconstrained settings
using a consumer-level RGB-D sensor. Our framework
provides uninterrupted 3D facial tracking, even in the
presence of extreme occlusions such as those caused by hair,
hand-to-face gestures, and wearable accessories. Anyone’s
face can be instantly tracked and the users can be switched
without an extra calibration step. During tracking, we
explicitly segment face regions from any occluding parts
by detecting outliers in the shape and appearance input
using an exponentially smoothed and user-adaptive tracking
model as prior. Our face segmentation combines depth
and RGB input data and is also robust against illumination
changes. To enable continuous and reliable facial feature
tracking in the color channels, we synthesize plausible face
textures in the occluded regions. Our tracking model is
personalized on-the-fly by progressively refining the user’s
identity, expressions, and texture with reliable samples and
temporal filtering. We demonstrate robust and high-fidelity
facial tracking on a wide range of subjects with highly
incomplete and largely occluded data. Our system works in
everyday environments and is fully unobtrusive to the user,
impacting consumer AR applications and surveillance.

1. Introduction
Facial performance capture is well-established in the film

and game industries for efficient and realistic animation
production. While professional studios tend to rely on
sophisticated solutions, realtime and markerless tracking
technologies using lightweight monocular sensors (video or
depth cameras) are becoming increasingly popular, due to
their ease of adoption, cost, and deployability.

In production, the capture process is typically constrained
for optimal performance: face visibility is maximized; the
environment is well lit; and an optimal facial tracking model
is built before tracking. Unconstrained facial performance
capture, on the other hand, has the potential to impact

surveillance, recognition, and numerous applications in the
consumer space, such as personalized games, make-up apps,
and video chats with virtual avatars. In these unconstrained
scenarios, new challenges arise: (1) occlusions caused by
accessories, hair, and involuntary hand-to-face gesticulations
challenge the face segmentation problem; (2) a facial
tracking model needs to be constructed on-the-fly to enable
instantaneous tracking and user switching for unobtrusive
performance capture.

While recent advances have shown promising results in
facilitating unconstrained facial tracking with data-driven
methods, they do not ensure uninterrupted tracking in the
presence of large and unexpected occlusions. Driven by
the growing availability of consumer-level realtime depth
sensors, we leverage the combination of reliable depth
data and RGB video and present a realtime facial capture
system that maximizes uninterrupted performance capture
in the wild. It is designed to handle large occlusion and
smoothly varying but uncontrolled illumination changes.
Our system also allows instant user switching without any
facial calibration (Figure 1).

Our approach unifies facial tracking, segmentation, and
tracking model personalization in both depth and RGB
channels. We detect dynamic occlusions caused by temporal
shape and texture variations using an outlier voting scheme in
superpixel space. As recently demonstrated by Li et al. [31],
the combination of sparse 2D facial features (e.g., eyes,
eyebrows, and mouth) with dense depth maps are particularly
effective in improving tracking fidelity. However, because
facial landmark detection becomes significantly less reliable
when the face is occluded, we synthesize plausible face
textures right after our face segmentation step. Concurrent
to the facial tracking thread, we progressively personalize
our tracking model to the current user as more data is being
collected. In each frame, we simultaneously solve for the
user’s identity (neutral pose) and expression. In summary,
we make the following contributions:

• A framework that unifies tracking, segmentation, and
model personalization, designed to provide unobtrusive
and uninterrupted realtime 3D facial tracking.
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Figure 2: Our capture setup for tracking and retargeting.

• A user-adaptive face segmentation method that com-
bines RGB and depth input for robustness w.r.t. oc-
clusions and illumination changes. We synthesize face
textures in occluded regions from the tracked model to
improve the reliability of facial landmark detection.

• An on-the-fly textured blendshape personalization al-
gorithm based on exponential temporal smoothing that
selectively improves the identity and each expression
depending on the tracked pose.

2. Related Work
Performance-driven facial animation has been introduced

to reduce the amount of manual work involved in animation
production. Pighin and Lewis present an overview of the
most fundamental techniques in [32]. Production methods
typically aim for tracking fidelity rather than deployability
and rely on a sophisticated capture settings and carefully
crafted tracking models [25, 42, 21, 28, 40, 2].

For surveillance and facial recognition, monocular 2D
input is preferred due to their availability and the tracking
is often designed to operate in uncontrolled environments.
Methods based on parametric models have been introduced a
decade ago [29, 7, 3, 19, 17] and also used for performance-
driven facial animation [33, 14, 12]. Data-driven algorithms
such as the popular active appearance models (AAM) [15]
and constrained local models (CLM) [16] have been intro-
duced to enable realtime tracking of sparse 2D facial features.
More recently, advances in realtime 2D tracking based on
landmark prediction [37] or supervised descent method [41]
(distributed as CMU’s IntraFace) do not involve user-specific
training and have shown impressive accuracy compared to
previous methods.

With the democratization of consumer-grade depth sen-
sors, realtime facial performance capture techniques that
were originally based on sophisticated structured light
systems [42, 40] were quickly deployed in non-professional
environments. The data-driven method of Weise et al. [39]
uses a motion prior database to handle noise and the low-
resolution depth maps from the Kinect sensor. For improved
fidelity, techniques that combine depth input data with sparse
facial features were introduced [31, 11, 13, 9]. To improve
accessibility with less input training, an example-based facial
rigging method was introduced by Li et al. [30]. The method
of [31] builds a single neutral model before tracking and
trains PCA-based correctives for the expressions during
tracking with samples obtained from per-vertex Laplacian

deformations. Bouaziz et al. [6] introduce a completely
calibration-free system by modeling the full blendshape
model during tracking. Even though previous frames are
aggregated using exponential decay, uncontrolled variation
in individual expressions can still occur during tracking.
Since they optimize for all mesh vertices, the localities of
the expressions are not preserved.

With sufficient data-driven priors or computation, re-
searchers have recently demonstrated comparable 3D track-
ing results using purely 2D video cameras. A combination
of dense flow and shape-from-shading has been proposed by
Garrido et al. [22] for highly accurate performance capture,
but involves costly computations. The 3D shape regression
framework of [10] exhibits impressive 3D tracking fidelity
but requires an extra offline calibration for each user. The
recent work of [9] eliminates the need for tedious user-
specific training using runtime regression, but requires
sufficient visibility of the face for tracking and does not
capture facial details as faithfully as depth-based systems.

Face segmentation from video alone is particularly
challenging because of uncontrolled lighting and the wide
variations of facial appearance (skin color, facial hair, make-
up, scars, etc.). Handling occlusions is an ongoing thread
in facial recognition and some recent developments suggest
the modeling of partial occlusions directly in the training
sets [26]. Data-driven approaches with occluded training
samples have also been explored for 2D facial feature
tracking such as the AAM framework of Gross et al. [24].
The state-of-the-art methods are based on discriminative
trained deformable parts [34, 23] and cascade of regressors
trained with occlusion data [8].

3. Overview
Our architecture is shown in Figure 3 with input data

obtained from a PrimeSense Carmine 1.09 sensor. There
are three main components in our system: realtime facial
tracking (blue), face segmentation with occlusion completion
(purple), and tracking model personalization (pink) which
runs concurrently to the tracking and segmentation thread.

Tracking. Facial tracking is achieved by fitting a textured
3D tracking model to every captured RGB-D frame. First
the rigid motion is estimated between the input data and
the tracking model obtained in the previous frame. A user-
adaptive tracking model is then used to solve for the linear
blendshape expressions. Next a Laplacian deformation is
applied to the tracked blendshape for accurate per-vertex
displacements in the final output. Similar to the tracking
method of [31] and [13], we use sparse facial features
detected in the RGB channels to improve the facial tracking
fidelity and to better handle fast motions in xy-directions.
We use 36 out of 49 landmarks (eyebrows, eye and mouth
contours) obtained from the supervised descent method
of [41]. The tracked model can be used for augmented reality
applications such as retargeting. To do so, we simply transfer
the computed blendshape coefficients of the subject’s face to
a target blendshape model (Figure 3 bottom right).
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Figure 3: System overview: we unify facial tracking (blue), face segmentation (purple), and model personalization (pink).

Segmentation. The facial expressions should be solved
with constraints that are defined in unoccluded regions
and visible to the sensor. We therefore compute a binary
segmentation map for every frame by labeling each pixel as
face region or occlusion in the UV map of the tracking model.
We model occlusions as outliers in the input data using the
vertex positions and texture of the exponentially smoothed
tracking model as reference. While only unoccluded regions
are used for tracking, we fill the occluded ones with textures
that are aggregated on the tracked face model from the
previous frames. By synthesizing the facial features behind
occlusions, landmark detection becomes significantly more
reliable.

Personalization. Our tracking model is initialized with a
generic blendshape model (statistical mean and 28 generic
FACS-based expressions [18]) which is adapted to the user
during tracking. Every time the template personalization
updates its shape and appearance, the latest one is retrieved
and used for tracking. For every input frame, the blendshape
coefficients computed by the facial tracking are used to
solve for the shape of the user’s identity using a linear
PCA model. Next, the mesh vertices of the expression
shapes are refined to match the captured subject. To account
for the entire history of personalized tracking models, we
recursively aggregate the new shapes and recorded texture
to the previous ones via exponentially weighted moving
average. Only those expressions are solved, if the currently
tracked model is closer to the corresponding expression than
all previous observations. The tracking model effectively
improves over time and uncontrolled shape variations of the
tracking model can be significantly reduced.

4. Realtime Facial Tracking
We adopt a similar tracking pipeline as [31] which com-

bines linear blendshape tracking with per-vertex Laplacian
deformations for improved accuracy. The tracking template
is simultaneously matched to the input depth maps and sparse
facial features. Prior to tracking, we first detect the face
position using the facial feature corresponding to the tip of
the nose and crop a region of interest obtained from [41]

within a radius of 50 pixels. We re-detect the face if the rigid
motion computation does not converge or fails a penetration
test, i.e., when 25% of the depth map correspondences are
more than 5 mm behind the tracking model. The penetration
test ensures that occluding objects are always in front of the
face.

Our tracking model consists of (1) rigid motion esti-
mation, (2) linear blendshape fitting, and (3) per-vertex
Laplacian deformation as illustrated in Figure 3. Our base
tracking model is driven by a linear blendshape model with
vertex v(x) = b

t
0 + B

t
x, where b

t
0 is the personalized

mesh of the neutral pose, the columns of Bt the mesh of
the personalized expressions, and x 2 [0, 1]N the N = 28
blendshape coefficients. The personalized meshes bt

0 and
B

t are retrieved at frame t whenever an update occurs.

Rigid Motion Estimation. We begin tracking by solving
for the global rigid motion between the tracking model
obtained in the previous frame and the current depth map
using the iterative closest point (ICP) algorithm [36], which
is based on point-to-plane constraints on the input depth map
and point-to-point constraints on the 2D facial features. We
prune correspondences that are further away than 5mm and
normals between source and target points that are larger than
30 degrees. We allow 50 iterations of ICP, but the estimation
typically converges in less than 5 iterations.

Linear Blendshape Fitting. To fit the blendshape to the
current frame, we alternate between per-vertex correspon-
dence computation and blendshape coefficients solving. We
use the point-to-plane fitting term on the depth map:

c

S
i (x) = ↵

S
i

�
n

>
i (vi(x)� v̄i)

�2
, (1)

where vi is the i-th vertex of the mesh, v̄i is the projection
of vi to the depth map and ni the surface normals of v̄i. A
binary visibility term ↵

S
i 2 {0, 1} is assigned to every vi,

and its value is obtained by sampling the segmentation map
computed in Section 5.

We also use the point-to-point fitting term on the 2D facial



features:

c

F
j (x) = ↵

F
j k⇡(vj)� ujk22 , (2)

where uj is the position of a tracked 2D facial feature, ⇡(vj)
its corresponding mesh vertices projected into camera space,
and ↵

F
j its binary visibility term, which is also obtained from

the same segmentation map as before.
We solve for the coefficients x of our linear tracking

model by minimizing the total energy term using a fast
iterative projection method [38] in 3 iterations:

min
x

X

i

c

S
i (x) + w

X

j

c

F
j (x) ,

where w = 5 · 10�5 is the weight of the facial feature term
and the elements of x are bounded between 0 and 1.

Per-Vertex Deformation. For the final tracking output
we perform one step of fast Laplacian deformation ṽi =
vi + �ṽi as proposed by [31] solving for the per-vertex
displacements �ṽi. We first use the point-to-point fitting
term on the depth map:

c

P
i (�ṽi) = ↵

P
i kṽi � v̄ik22 , (3)

where v̄i is again the projection of vi to the depth map and
↵

P
i its visibility term.

Similar to Equation 2, we derive the point-to-point fitting
term on 2D facial features for Laplacian deformation:

c

W
j (�ṽj) = ↵

W
j k⇡(ṽj)� ujk22 . (4)

We minimize the total energy term:

min
�ṽi

X

i

c

P
i (�ṽi)+w1

X

j

c

W
j (�ṽj)+w2�ṽ

>
L(bt

0)�ṽ ,

where w1 = 10 is the weight for the facial feature term,
w2 = 100 the weight for the Laplacian smoothing term,
ṽ = [ṽ0, . . . , ṽV�1]> with V the number of vertices, and
L(bt

0) the Laplacian regularization matrix with cotangent
weights w.r.t. the current neutral mesh [5]. We solve
for the displacement �ṽi using the sparse linear system
LDLT solver from the C++ Eigen Library. Because b

t
0 is

progressively updated by the tracking model personalization
(see Section 6), we factorize of the sparse linear system in a
separate thread to ensure realtime performance.

5. Face Segmentation
We explicitly segment the face during tracking for

effective occlusion handling. We use the incoming RGB-D
frame and the current tracking model to produce a binary
segmentation map M in texture space. The segmentation
map represents the visibility of the tracked face (Section 4)
and the region of interest for the tracking model personal-
ization (Section 6). Because of the limited resolution of our
RGB-D input, we represent M as a small 100⇥ 100 image.
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Figure 4: Segmentation with depth and penetration tests.

We perform a binary classification on M and assign to a
pixel mi = 1 if it is part of the face and mi = 0 if it is either
occluded or invisible to the camera. Our general approach
for detecting occluded pixels consists of comparing dynamic
variations, or outliers, between captured input frame and
the tracking model using all RGB-D channels. Because
our tracking model and its texture are averaged over all
previous frames using exponential smoothing, they form an
robust prior for outlier detection. Exponential smoothing
also allows the tracking model to rapidly adapt its shape and
appearance to a new user while being resistant to smooth
lighting variations of the environment.

Depth Input. Like other 3D sensor-based methods [39, 6,
31], we use the depth map for rough occlusion detection. The
tracked model of the previous frame is used right after rigid
motion estimation, and assigns mi = 0 if its L2 distance
to the depth map is larger than a threshold �D = 5mm and
mi = 1 otherwise. If �D is too small, input expressions with
vertex motions in z-direction may not be captured correctly,
and if �D is too large, it becomes difficult to discern between
the face and occlusions. While this segmentation is invariant
to appearance and illumination variations, it is challenged by
the noise and limited resolution of current consumer-grade
sensors. As proposed in Section 4, we use an additional
penetration test to ensure that occlusions are always in front
of the face to improve the reliability of the segmentation (see
Figure 4).

Video Input. Only inliers from the depth input are
considered for color segmentation. While depth data is
very effective for face segmentation with large geometric
occlusions (e.g., hand-to-face gestures), thin structures
such as hair, tongue, glasses, and other accessories are
generally difficult to detect from depth alone leading to
failure of previous depth-based methods. Because the space
of variations of occlusions is hard to model in the appearance
domain [8, 34, 23], we use a history of input frames to
determine the segmentation map. Similar to depth, we model
occlusions in the color channel as outliers between the input
color frame and the exponentially smoothed texture map that
is aggregated from all previous frames.

Naı̈ve per-pixel thresholding on M is prone to errors
because of noise in the input video, specularity on faces,
and complex lighting variations. We therefore enforce
smooth spatial and color coherence in our segmentation for
additional robustness. We first convert our RGB input frame
into CIELAB color space for a more robust treatment w.r.t.
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Figure 5: Video-based segmentation with superpixels.

illumination variance. We adopt the simple linear iterative
clustering (SLIC) of [1] to generate superpixels from the
current texture map of the tracking model. Superpixels are
grouped pixels, or atomic regions, that are close in color
and spatial proximity. They are ideally suited for efficient
image segmentation since they are perceptually meaningful
and adhere well to object boundaries.

SLIC is a k-means clustering algorithm with limited
window search which makes it particularly fast and memory
efficient. The K superpixels are each represented by a cluster
center Ck = [lk, ak, bk, uk, vk] which concatenates an LAB
color [lk, ak, bk] and a uv-position [uk, vk]. Ck is initialized
on a regular grid with interval S =

p
N/K, where N is

the number of pixels in M. For each Ck, the algorithm
repeatedly assigns to a pixel i in a 2S ⇥ 2S region around
Ck a label l(i) if its distance is closer to Ck than any other
cluster. The Cks are then updated with the mean [l, a, b, u, v]
values of pixels with l(i) = k. We repeat this procedure 3
times and choose k = 200.

Since superpixels do not provide a binary segmentation
directly, we combine superpixel computation with our per-
pixel thresholding approach (see Figure 5). We first perform
a per-pixel outlier detection and set mi = 0 if the L2 distance
in the ab channels between current frame and the texture of
the tracking model is above a threshold �C = 16 and mi = 1
otherwise. We then count the number of per-pixel inliers in
each cluster Ck and set all pixels with l(i) = k to mi = 1
if more than 50% of the pixels in each Ck are inliers and
mi = 0 otherwise.

Occlusion Completion. After face segmentation, we fill
the occluded regions mi = 0 by transferring the colors of the
adaptive tracking model texture map. This step maximizes
the visibility of face textures during occlusion for more
accurate and reliable 2D facial landmark detection. While it
is impossible to know the texture of an occluded region, we
can synthesize a plausible appearance that matches the last
observation (Figure 6).

Note that for longer periods of occlusions, discontinuous
color transitions between the synthesized and non-occluded
regions can occur due to illumination changes in the
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Figure 6: Occlusion completion improves the reliability of
2D facial feature tracking.
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Figure 7: We continuously adapt the identity and expressions
of the template model to the user during tracking.

environment. While a smooth blend between the regions
would improve the visual quality of the overall face texture, it
does not affect the quality of the landmark detection of [41].

6. Tracking Model Personalization
In parallel to the facial tracking thread, the tracking model

is progressively optimized to fit to the user’s shape and
appearance. Because neither the identity nor the individual
expressions are known in advance when a new user is
being captured, we begin with a statistical mean identity
b

0
0 and 28 generic FACS-based expression B

0, which are
then personalized. As described in Section 4, our tracking
is grounded on an adaptive linear blendshape model, where
each mesh vertex is described by v(x) = b

t
0 + B

t
x

with x the blendshape coefficients, B

t = [bt
1, . . . ,b

t
N ]

the expressions, and t the frame at which the model is
personalized. The personalization stage uses the blendshape
coefficients x computed by the blendshape fitting and then
updates the tracking model which is then used in the next
tracking iteration. Each personalization step consists of
first solving the identity shape followed by optimizing
all expressions. The solutions are then aggregated to the
previously optimized shapes via exponential smoothing and
a careful scheduling strategy.

Identity Optimization. Tracking model personalization
first solves for the identity, which is represented by b

t
0(x) =

a0 +Ay

t, where y

t are the 50 unknown PCA coefficients,
a0 = b

0
0 the statistical mean shape, and the columns of A the

PCA modes from the morphable face models described in [4].
We use the same depth-based point-to-plane terms c

S
i (y

t)



and the facial feature-based point-to-point terms cFi (yt) as
for the blendshape fitting (see Section 4) to solve for yt. We
also apply the same facial feature weight w = 5 · 10�5, but
bound y

t between �2 and 2.

Expression Optimization. Once the identity shape is
solved, we personalize all the expressions B to the user.
Since the number of vertices is too large for efficient
optimization, we reduce their dimensionality using spectral
mesh processing as described in [27] and recently adopted
for online modeling [6]. We extend the approach of [6] to
preserve the locality of blendshape expressions.

Let Si be the subset of vertices {vj} for a blendshape
bi, where the vertex displacements ||vj(bi)�vj(b0)||2 are
larger than a given threshold ✏ = 0.1. While in the original
formulation of [6], spectral analysis is performed on the
entire frontal face, we compute dedicated eigenvectors for
each expression only considering vertices that contribute
to deformations. We visualize the offset between the
current frame and the generic expression blendshape as
heatmap in Figure 7. We thereby avoid semantically
erroneous improvements in regions where no displacements
are expected. We then form the graph Laplacian matrix [27]
Li using Si and the connectivity of bi to compute the
k eigenvectors Ei = [ei1, . . . , eik] with the smallest
eigenvalues. The eigenvectors correspond to the frequency
modes of a deformation field represented by Li, where the
low frequencies correspond to those with small eigenvalues.
We obtain a linearized deformation field per expression Eizi,
where zi are the k spectral coefficients.

With known identity shape b

t
0 and blendshape coef-

ficients x, we now solve for the blendshapes using the
eigenvectors {Ei}. Because Ei are computed from Si which
have different numbers of vertices, we extend them to Ēi

such that the entries with same vertex indices have the values
of Ei and the rest are 0. Using the combined blendshape
deformation fields Ē = [Ē1, . . . , ĒN ] and concatenated
spectral coefficients z = [z>1 , . . . , z

>
N ]>, we obtain the

following linear representation:

v(z) = b

t
0 + (Bt +Ez)x.

Instead of using only depth maps constraints as in [6], we
use the final Laplacian deformation ṽ (see Section 4) similar
to the on-the-fly corrective technique proposed by [31] and
use the following point-to-point fitting term:

c

P
i (z) = ↵

P
i ||(vi(z)� ṽi)||22,

and a regularization term to reduce the aggregation of noise:

r(z) =
X

i

(w1||Dizi||22 + w2||zi||22)

where Dj is a diagonal matrix with the eigenvalues of ejk
at its k-th diagonal element, w1 = 10�3 and w2 = 10�5 are
the weights for the regularization terms. By minimizing the
total energy:

min
z

X

i

c

P
i (z) + ri(z),

we obtain the linearized deformation field for each expres-
sion and update the expressions Bt+1 = B

t +Ez.

Exponential Smoothing. Because our input data is in-
complete and affected by noise, it is unlikely that each
of our solutions for y

t and B

t is consistent over time.
We therefore take into account all previously tracked face
models by temporally averaging using an exponential decay.
We simply use the exponentially weighted moving average
formula [35] to aggregate the entire history of shapes
v

t(x) = � v

t(x) + (1 � �) v

t�1(x), where � is the
decay factor. We obtain the following update rules for the
optimized identities and expressions yt = �y

t+(1��)yt�1

and B

t = � B

t + (1� �)Bt�1.
We apply the same formula on the aggregated textures

of the tracking model and only use non-occluded regions.
Lower values of � lead to more robustness but a slower per-
sonalization rate and adaptation to the appearance changes
(e.g., caused by lighting variations). We use � = 0.2 for
all of our examples including the exponential smoothing of
both shape and appearance.

Scheduling. Since the identity PCA is least local, affecting
all the front facing vertices, we exclusively solve for yt for
t < 100 to ensure robust convergence of the tracking model
personalization. We then solve for both the identity shape
and expression shapes, and begin the accumulation of texture
using exponential smoothing.

For the identity, we only aggregate if the current x

is closer to the null vector o than previous observations.
Similarly, we only optimize the expressions bi with i =
1, . . . , N , if bi is closer to the i-th standard basis vector
ii which i-th entry is 1 and 0 for all the rest. In this way,
we ensure that only those expressions are improved if the
current tracking matches better than the previous ones.

7. Results
We show in Figures 1 and 8 challenging tracking

examples (infants, different skin colors, specular lighting)
with occlusions that frequently occur in everyday life (hands,
hair, objects). By combining depth and video input, our
face segmentation algorithm allows us to clearly discern
between occlusions and face regions on the segmentation
map. Our subjects are captured in fully uncontrolled lighting
conditions. Figure 9 illustrates the adaptability of our
tracking model personalization during user switching. We
also evaluate the robustness of our system w.r.t. uncontrolled
illumination changes in outdoor scenes (Figure 10) and
extreme capture angles (Figure 12). In Figure 11, we
challenge our face segmentation pipeline with different
levels of occlusions that are synthetically generated on
multiple sequences of facial animation. The artificial
occlusions are rotated around the face center and their sizes
increase gradually. Tracking accuracy is measured using
the unoccluded model as ground truth and averaged over
all sequences. Using both depth and RGB for segmentation
(green) clearly outperforms when only depth is used (blue).
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Figure 8: Our facial tracking results. We can handle challenging cases with large occlusion such as those caused by wearable
accessories, hand-to-face gestures, hair and other obstacles. From top to bottom, we show the frames of input video, tracking
models with inliers visualized in blue, synthesized face textures with 2D facial features, and the final composited results.

frame

Figure 9: We can switch between users without requiring an
additional calibration step. Top: input frames and tracking
model; middle and bottom: shape and appearance of the
tracking model.

Figure 10: Our results in outdoor environments.

Comparison. We compare the performance of our oc-
clusion handling with other state-of-the-art realtime facial
capture systems (see Figure 13). While recent depth sensor-
based methods [39, 31] can handle partial occlusions in the
depth data if no facial features are used (row 1), we show
that our explicit face segmentation can use facial features
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Figure 11: Impact of our segmentation on the tracking
accuracy with different levels of occlusions.

Figure 12: Our method does not break even when the subject
is facing away the camera.

and is more effective for occlusions that are hard to detect
in the depth map (row 2). The pure RGB-based technique
of Cao et al. [9] would fail for very large occlusions (row 3)
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Figure 13: Comparison with other realtime techniques.

Figure 14: Limitations of our system. Left: since our
RGB-D camera is based on IR illumination, our depth map
can be negatively affected by direct sunlight. Middle/Left:
Illuminating the directly face with a flashlight produces an
outlier during face segmentation.

and the modeling is not as faithful as depth-based methods
(row 4). We also compare our system with the commercial
animation software Faceshift [20], which also fails for large
occlusions (row 3) but produces more accurate face models
(row 4) at the cost of a tedious calibration procedure.

Limitations. While our tracking model adapts to smooth
appearance changes due to lighting variations, a sudden
change in the lighting can still result in a wrongly detected
outlier. In Figure 14, we illuminate the face with a flashlight,
which results in a wrong segmentation. Even though our
method is designed for uninterrupted capture, our rigid
motion estimation can still fail when the face disappears
completely. However, we can immediately recover the
tracking by re-detecting the face in the case of such failure.

Performance. Our tracking and segmentation processes
run concurrently to the tracking model personalization. The
full pipeline runs at full 30 fps on a quad-core 2.3 GHz Intel
Core i7 with 8GB RAM and an NVIDIA GeForce GT 650M
graphics processor. While our code can be further optimized,
we measure the following timings: rigid motion tracking
takes 0.2 ms, blendshape fitting 1 ms, Laplacian deformation
2 ms, face segmentation 3 ms, occlusion completion 4 ms,

and one step of model personalization 2 ms. The superpixel
generation (SLIC) runs on the GPU and the remaining
implementation is multi-threaded on the CPU.

8. Discussion
Our system demonstrates the ability to handle extremely

challenging occlusions via an explicit face segmentation
approach during tracking using both depth and RGB chan-
nels. By simply voting inliers in superpixel space using an
appearance adaptive tracking model, our system produces
clean segmentations even when the illumination changes in
the environment. Unlike existing data-driven methods, our
approach does not require a dedicated appearance modeling,
since its construction would require a prohibitively large
amount of training data to capture all the possible variations.
We have also demonstrated that synthesizing face textures in
the occluded regions is a crucial step to enable reliable use
of landmark detection and provide accurate and continuous
tracking when the face is occluded. Even though there
is no solution yet for an accurate prediction of identity
and expressions shapes for arbitrary users, our on-the-fly
blendshape modeling solution prevents uncontrolled shape
variations using localized expression optimization and blend-
shape coefficient monitoring. While our online generated
models are close to pre-calibrated ones [20], our depth-
based personalization algorithm significantly outperforms
pure RGB systems [9] (see Figure 13).
Future Work. Our current face segmentation approach is
purely based on a temporal prior that adapts to the user’s
shape and appearance. While effective in detecting dynamic
occlusions, a fringe for example that is visible since the
beginning can be mistakenly segmented as part of the face.
When the fringe is moved away, the forehead would become
an outlier. We believe that a recognition approach using prior
knowledge with higher level semantics could be integrated
into our framework to disambiguate these scenarios. Even
though our personalized tracking model can ensure accurate
tracking, the solved expression shapes may not faithfully
represent those of the actor, especially when the captured
face is largely incomplete. One possible future avenue
consists of exploring supervised learning techniques with
statistical spaces of expressions to recover expressions that
truly match the user’s face.
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[27] B. Lévy and H. R. Zhang. Spectral mesh processing. In ACM
SIGGRAPH 2010 Courses, pages 8:1–8:312, 2010.

[28] H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust
single-view geometry and motion reconstruction. ACM Trans.
Graph., 28(5):175:1–175:10, 2009.

[29] H. Li, P. Roivainen, and R. Forcheimer. 3-d motion estimation
in model-based facial image coding. TPAMI, 15(6), 1993.

[30] H. Li, T. Weise, and M. Pauly. Example-based facial rigging.
ACM Trans. Graph., 29(4):32:1–32:6, 2010.

[31] H. Li, J. Yu, Y. Ye, and C. Bregler. Realtime facial animation
with on-the-fly correctives. ACM Trans. Graph., 32(4):42:1–
42:10, 2013.

[32] F. Pighin and J. P. Lewis. Performance-driven facial animation.
In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, 2006.

[33] F. H. Pighin, R. Szeliski, and D. Salesin. Resynthesizing
facial animation through 3D model-based tracking. In ICCV,
pages 143–150, 1999.

[34] D. Ramanan. Face detection, pose estimation, and landmark
localization in the wild. In CVPR, pages 2879–2886, 2012.

[35] S. Roberts. Control chart tests based on geometric moving
averages. Technometrics, 1(3):239–250, 1959.

[36] S. Rusinkiewicz and M. Levoy. Efficient variants of the
icp algorithm. In International conference on 3-D Digital
Imaging and Modeling, pages 145–152, 2001.

[37] J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable model
fitting by regularized landmark mean-shift. Int. J. Comput.
Vision, 91(2):200–215, 2011.

[38] T. Sugimoto, M. Fukushima, and T. Ibaraki. A parallel
relaxation method for quadratic programming problems with
interval constraints. Journal of Computational and Applied
Mathematics, 60(12):219 – 236, 1995.

[39] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime
performance-based facial animation. ACM Trans. Graph.,
30(4):77:1–77:10, 2011.

[40] T. Weise, H. Li, L. Van Gool, and M. Pauly. Face/off: Live
facial puppetry. In SCA ’09, pages 7–16, 2009.

[41] X. Xiong and F. De la Torre. Supervised descent method and
its application to face alignment. In CVPR, pages 532–539,
2013.

[42] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime
faces: High resolution capture for modeling and animation.
ACM Trans. Graph., 23(3):548–558, 2004.

http://www.faceshift.com/

