
1

Uncovering Use-After-Free Conditions
In Compiled Code

David Dewey1 Bradley Reaves2 Patrick Traynor2

ddewey@gatech.edu reaves@ufl.edu traynor@cise.ufl.edu
1School of Computer Science, Georgia Institute of Technology

2Department of Computer and Information Science and Engineering, University of Florida

Abstract—Use-after-free conditions occur when an execution
path of a process accesses an incorrectly deallocated object. Such
access is problematic because it may potentially allow for the
execution of arbitrary code by an adversary. However, while
increasingly common, such flaws are rarely detected by compilers
in even the most obvious instances. In this paper, we design
and implement a static analysis method for the detection of use-
after-free conditions in binary code. Our new analysis is similar
to available expression analysis and traverses all code paths to
ensure that every object is defined before each use. Failure to
achieve this property indicates that an object is improperly freed
and potentially vulnerable to compromise. After discussing the
details of our algorithm, we implement a tool and run it against
a set of enterprise-grade, publicly available binaries. We show
that our tool can not only catch textbook and recently released
in-situ examples of this flaw, but that it has also identified 127
additional use-after-free conditions in a search of 652 compiled
binaries in the Windows system32 directory. In so doing, we
demonstrate not only the power of this approach in combating
this increasingly common vulnerability, but also the ability to
identify such problems in software for which the source code is
not necessarily publicly available.

I. INTRODUCTION

Many software developers have the unenviable task of
maintaining large, often complex codebases. As the number
of lines of code increases, it becomes virtually impossible for
any single developer to be able to reason about their soft-
ware’s behavior, yet alone its security. As such, large software
projects commonly have a range of subtle vulnerabilities.

Use-after-free vulnerabilities represent one particularly dif-
ficult example of this problem. The result of a programmer
freeing a memory resident object that may be needed on
some other code execution path creates an opportunity for an
adversary to inject and execute arbitrary code. Not only do
current compilers generally fail to catch even the most trivial
instances of this problem, but developers relying on opaque
binary libraries may be further endangering the security of
their software. Such vulnerabilities are now regularly being
exploited in the wild [19]–[21].

In this paper, we develop a static analysis technique for
detecting use-after-free conditions. We make a clear distinction
between use-after-free conditions and vulnerabilities because
static analysis techniques cannot always determine the real-
world exploitability of a given code flaw. Just as compiler
warnings imperfectly alert developers to common errors, indi-

cations of use-after-free conditions allow an analyst to focus
on the most likely exploitable code.

Our approach is based on a technique from compiler theory
known as available expression analysis. While this technique
has traditionally been used to make code more efficient via
common subexpression elimination, we extend this concept to
instantiated objects to show that an object that does not exhibit
this property has been improperly freed and is potentially
vulnerable. After formally describing our available object
definition analysis, we describe our implementation of the
algorithm, which applies our techniques to binary code. In
so doing, we make the following contributions:

• Develop a general-purpose data flow algorithm for de-
tection of use-after-free conditions: We present and for-
mally define a data flow algorithm based on a technique
from compiler theory known as available expression anal-
ysis. Our technique, called Available Object Definition
Analysis (AODA) can be used by source code analysis
tools, compilers and binary static analysis frameworks to
identify use-after-free conditions.

• Programmatically identify use-after-free conditions in
compiled binaries: We implement our algorithm for use
on compiled binaries, as source code for the majority of
commercial software is not publicly available. We also
discuss the research challenges of the implementation.

• Confirm known vulnerabilities and discover many
potential new ones: We use our tool to confirm both
exemplar and known instances of use-after-free vulner-
abilities. We then analyze 652 popular binaries in the
Windows system32 directory and identify 127 new use-
after-free conditions in these files.

The analyses presented in this paper focus specifically
on use-after-free conditions in compiled C++ code. While
this same vulnerability can be present in other languages,
they tend not to present the opportunity for such formulaic
exploitation as is described in Section III-B. With that, they
have historically been less exploitable, and do not pose nearly
the level of threat that is seen with C++.

We focus on compiled code because our research agenda
is focused on identifying vulnerabilities in commercial soft-
ware, including applications like Microsoft Excel or Google
Chrome, libraries like mshtml.dll (Microsoft’s HTML parser)
and acrord32.dll (Adobe’s PDF parser), and operating sys-
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tems including Microsoft Windows, without access to the
original source code. The importance of auditing compiled
binaries cannot be overstated. Binary analysis is how users
and consumers of libraries, applications, and operating sys-
tems verify and contribute to the security of the software
they trust. Security consultants and researchers regularly use
disassembly tools to reverse engineer commercial software to
identify security vulnerabilities. The famous (yet now defunct)
Full Disclosure mailing list was populated by vulnerabilities
identified from binary analysis, and a significant portion of
CVEs are attributed to security researchers working only with
compiled binaries. Accordingly, binary analysis has been and
will continue to be a significant driver of software security.

II. RELATED WORK

The programmatic identification and elimination of code
flaws has been studied since the beginnings of software
engineering. Much of this effort has centered around the
static analysis of source code. Tools such as Lint [16] (and
its modern day implementation, Splint [29]) and Sparse [28]
are popular for finding flaws in kernel and userland code in
Linux. Similarly, Clang [5] is included with Apple’s Xcode.
These tools implement detection techniques for a number of
weaknesses, including buffer overflows [12], [17] and format
string vulnerabilities [25]. Constraint solving tools such as
ARCHER [32] determine the safety of behaviors such as
array access. Still other tools can help identify pointer access
errors [1]. Searching specifically for use-after-free vulnera-
bilities, Caballero, et al. developed Undangle [3]; a runtime
taint tracking tool used to detect dangling pointers. Also
focused on dangling pointers, Lee, et al. created DANGNULL
to nullify class pointers when objects are deleted. While
this is a sound solution to prevent exploitation of use-after-
free vulnerabilities, it relies on the appliication’s pre-existing
ability to handle null pointers, else it would introduce stability
problems. Tice [30] proposed a compile time solution to verify
the validity of a virtual function pointer before its invocation
via inserting verification checks.

Many analysis tools have been integrated directly into
popular compilers to provide developers with warnings and
errors at compile time. C++ analyses typically come in the
form of checks for type, “const”-ness and volatility, all of
which are fully enumerated in the C++ standard [24]. Signif-
icant research has attempted to extend required checks with
virtual function call resolution in C++ programs. Bacon and
Sweeny [2], for example, developed a static analysis algorithm
to determine whether dynamic dispatch is truly necessary for
a given method call. In cases where it is not, the call can
be replaced with a static function call, thus reducing the size
of the compiled binary and the complexity of the program.
Pande and Ryder [22], [23] and Calder and Grunwald [4]
expand this concept to eliminate late binding where possible
to take advantage of instruction pipelining on modern-day
processors. SAFECode, a system developed by Dhurjati et
al. [9], introduces a new type system that can be enforced at
compile-time to prevent a range of vulnerabilities. However,
in spite of great progress in this area, many problems remain
unsolved [13].

All of the aforementioned tools require access to the source
code of the potentially vulnerable program. One of the major
motivations for the work presented in this paper is to be able to
analyze code that has already been distributed to the public. In
these cases, the analysis must function on compiled binaries.

Because there are many scenarios where a security analyst
must audit software without source code, binary decompilation
has been studied extensively. Such analysis often requires
the transformation of binary code to an intermediate rep-
resentation. Cousot and Cousot showed that restructuring a
language into such an abstract representation allows for the
simplified implementation of many complex analyses [6]. This
observation has been extended and implemented by a number
of open and closed source tools. Song et al. developed one
of the first practical frameworks for binary decompilation
and analysis with Bitblaze [27]. The commercially popular
Hex-Rays plugin for IDA Pro reverses binary code to a C-
like intermediate representation [14], and Dullien and Porst
developed the Reverse Engineering Intermediate Language
(REIL) for their commercial product, Bindiff [11]. Yakdan et
al. [?] offer a novel method for decompilation that eliminates
the excessive use of goto’s that are often introduced. This
paper builds upon the RECALL decompilation framework by
Dewey and Giffin [8], which reverses binary code to the
popular LLVM intermediary representation [18].

One of the core requirements for our use-after-free analysis
is the proper identification of C++ objects as they are rep-
resented in binary code. Such binary data structure recovery
has been covered extensively in the literature. For example,
Dolan-Gavitt et al. [10] developed a dynamic-analysis system
that creates attack detection signatures by monitoring kernel
data structures in a way that is resistant to evasion. Similarly,
Cozzie et al. developed Laika [7], a system that uses Bayesian
unsupervised learning to detect the presence of data structures
in memory indicative of a bot infection. In the area of reverse
engineering tools, Slowinska et al. [26] created a system that
recovers data structures from a compiled binary. This work
relies on the heuristics defined by Dewey et al. [8], which are
discussed in greater detail in Section V.

III. BACKGROUND

In this paper, we present a static analysis technique to
detect use-after-free conditions in compiled binaries. Because
the structure of how C++ objects are compiled and stored
in memory is crucial to both the understanding of use-after-
free vulnerabilities as well as analysis of C++ binaries, we
give a brief description of how C++ objects are represented
after compilation. We then give a short description of how
use-after-free vulnerabilities occur in code and how they are
exploited. We conclude this background section with a review
of available expression analysis from compiler theory.

A. C++ Objects in Memory

One of the tasks of a C++ compiler is to ensure the
correct storage of C++ classes in memory while providing
both multiple inheritance and virtual functions. C++ compilers
store instantiated objects as contiguous structures in memory.
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This is fortunate because it simplifies the discovery of object
instantiations in compiled binaries. Our discussion here is
focused on how Visual Studio compiles C++; other compilers
represent C++ objects in a similar manner.

Classes without virtual functions are represented in memory
like traditional C structs. Simply, the properties (data mem-
bers) of the object are placed in contiguous memory in order of
declaration in the code. The object’s method calls are compiled
as direct calls to functions that take a pointer to the object as
an argument (the this pointer).

When an object has one or more virtual functions, virtual
function calls must be dispatched at runtime through the use
of a virtual function table (vtable). A vtable for an object is a
contiguous set of function pointers that point to the appropriate
functions for that object type. The virtual function can be
called by finding the correct function pointer in the function
pointer table.

Objects with virtual methods are laid out in memory the
same way as objects without virtual methods, but have an
initial member element: a pointer to the class’s vtable. This
is a pointer to an array of function pointers (one for each
virtual funciton) stored in the read-only .data section of the
binary. When a class inherits from a single base class, the
class instance begins with a vtable pointer, followed by the
base object properties and then the derived object properties.
When a class inherits from more than one class, the base
class layouts are placed consecutively, with the derived class’s
data members following. Classes that are the result of multiple
inheritance have more than one vtable — one for each base
class. Virtual methods from the derived class will be appended
to the vtable for the first base class.

The memory structures described above are created on the
stack or the heap by the class constructor depending on how
the object is allocated in the source code. The compiler may
also choose to make the constructors inline or create a separate
function call for the constructor. In Visual Studio, this is a
configurable optimization that can be set by the developer.

B. Use-After-Free Vulnerabilities

Use-after-free (UAF) vulnerabilities are a class of software
flaws that involve using a memory resident object after it has
been freed. UAF vulnerabilities most commonly occur when
a C++ object that was allocated on the heap is accessed after
it is deleted, but stack-allocated objects can also be used after
a free.

Developers can easily make this memory management error,
especially in large and complex codebases, and often in an
attempt to prevent memory leaks. This creates a condition
where an object is deleted on some code paths, but not all.
The code in Figure 1 provides a simplified example. In this
example, the developer chose to delete the object if the first
command line argument is “1”, but needed the object under
all other conditions. If an attacker can cause the program to
take the first branch, the object is deleted, but then is used
later in the program.

When an object is deleted, new data takes the place of the
previously deleted object’s properties and/or vtable pointer.

00: class A {
01: private:
02: int reference;
03:
04: public:
05: A();
06: ˜A() { };
07: virtual void addRef();
08: virtual void print();
09: };
10:
11: int main(int argc, char* argv[])
12: {
13: A *a = new A;
14:
15: a->addRef();
16: a->print();
17:
18: if (atoi(argv[1]) == 1) {
19: delete a;
20: }
21:
22: //. . .
23: //Memory allocation operations
24: //. . .
25:
26: a->print();
27:
28: return 0;
29: }

Fig. 1: Sample C++ code with a use-after-free vulnerability.
Note that the presence of a command line argument at line 18
causes object a to be deleted, even though it is called again
at line 26.

Later, if the deleted object’s property is accessed, this new
data could be read or modified, affecting the reliable operation
of the program. If a deleted object’s virtual method is called,
whatever data has been written to the old vtable pointer will
be dereferenced to locate the correct function pointer. This
can result in memory access violations or otherwise unstable
execution.

In addition to the hazards of a normally functioning program
with a use-after-free condition, it can also be a path to software
exploitation. While a use-after-free can result in an attacker
with the ability to write data to the stack or heap to influence
decisions made based on an object’s properties, the greatest
danger is if the use-after-free includes a virtual function call.
In that case, the attacker can write his own vtable containing
pointers to shellcode and fill the deleted object’s memory with
references to that vtable. On the virtual function call, execution
will transfer to the attacker’s injected code.

Figure 2 demonstrates a use-after-free exploit of the code
shown in Figure 1. The left side of Figure 2 shows a fragment
of the compiled code from Figure 1. That fragment completes
with a call to the virtual function print at line 413BC2. The
object pointer is consulted to find the pointer to the vtable at
line 413BB9. At runtime, the object is stored on the heap —
in this example, the object is stored at address 11001000, and
the class’s vtable is located at address 416740. The function
pointer stored at offset 4 represents the second virtual function
declared in the class (since function pointers are 4 bytes each).

If this object were overwritten using a use-after-free vul-
nerability, and the attacker could control the value of the data
at the heap location where the object was stored (which in
many cases is not difficult), the attacker could overwrite the
vtable pointer with a pointer to the attacker’s own vtable. The
bottom half of Figure 2 shows this scenario with gray boxes.
In that example, the attacker has established a vtable pointer
of 12001000 (also heap data written by the attacker) and has
preloaded that location with function pointers to malicious
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.text:00413BB6,

.text:00413BB9,

.text:00413BBB,

.text:00413BBD,

.text:00413BC0,

.text:00413BC2

mov,eax,,[ebp+var_14]
mov,edx,,[eax]
mov,esi,,esp
mov,ecx,,[ebp+var_14]
mov,eax,,[edx+4]
call,eax

11001000,,,,,,,,,,,,,00416740,
11001004,,,,,,,,,,,,,<reference>

.rdata:00416740,;,,,,,,const,A::`vJable'

.rdata:00416740,,,,,,,,??_7A@@6B@,dd,offset,j_A__addRef,

..rdata:00416744,,,,,,,dd,offset,
j_A__print

.text:00413BB6,

.text:00413BB9,

.text:00413BBB,

.text:00413BBD,

.text:00413BC0,

.text:00413BC2

mov,eax,,[ebp+var_14
mov,edx,,[eax]
mov,esi,,esp
mov,ecx,,[ebp+var_14]
mov,eax,,[edx+4]
call,eax

11001000,,,,,,,,,,,,,12001000,
11001004,,,,,,,,,,,,,<garbage> 1200100,dd,offset,ATTACKER_FUNCTION_1,

1200104,dd,offset,ATTACKER_FUNCTION_2

Normal Object

Use-After Free Exploit

Fig. 2: Memory layout of a valid object and after a use-after-free exploit

functions (again, written by the attacker). When the second
function in the vtable is called, the processor will call address
dd offset ATTACKER_FUNCTION2 instead of address
dd offset j_A__print.

Unfortunately, compilers fail to detect use-after-free vulner-
abilities. Not only do they miss complex flaws that are the
result of interprocedural memory management, they also miss
trivial examples like the one in Figure 1. Visual Studio 2012,
g++ 4.8.3, and clang++ 3.5 all fail to detect the flaw in that
exact code sample (outputs shown in [?]).

C. Available Expression Analysis

Available expression analysis (abbreviated AVAIL) is a
common compiler data flow analysis that enables common
subexpression elimination. AVAIL takes as input a control flow
graph consisting of basic blocks, and AVAIL identifies, for each
basic block, a set of expressions that will always be computed
before the entry of a given basic block. Knowing the set of ex-
pressions that are always computed before a basic block allows
a compiler to set aside results to avoid redundant computation
(specifically, common subexpressions). While AVAIL is usually
presented as a local (within a single procedure) algorithm,
interprocedural available expression analysis is also possible.

More specifically, AVAIL computes four sets for each basic
block B: GEN[B], KILL[B], AVAILIN[B], and AVAILOUT[B].
AVAILIN and AVAILOUT refer to the expressions that are avail-
able before and after each block (respectively). GEN is the
set of new expressions that are defined in the basic block,
and KILL is the set of expressions whose values have changed
because a variable used in the expression has changed. These
sets are computed with the following two relations:

AVAILIN[B] =
⋂

p proceedsB

AVAILOUT[p] (1)

AVAILOUT[B] = GEN[B] ∪ (AVAILIN[B]− KILL[B]) (2)

where p is a basic block (that proceeds a block B). In our
analysis, objects must be tracked interprocedurally. In those
cases, AVAILIN at the entry of a function F is equal to AVAILOUT

at the call site to F from a call site c. Within a basic block,
we say that an expression is in the “AVAILset” at an execution
point a if it has been generated before a, or if the expression
is in AVAILIN and not killed before point a.

These relations, when written for every basic block, form a
system of equations. Because the control flow graph contains
back-edges (from loops and other control structures), and thus
blocks can be affected by both preceding and subsequent
blocks, solving the system of equations requires a fixed-point
algorithm (that runs through each block iteratively until the
four sets for every block do not change).

The recurrence relationship described above forms the basis
of many other data flow analysis algorithms, with slightly
different definitions of IN, OUT, GEN, KILL, and the so-called
“meet” operator, which in the case of AVAIL is set union. In
this work, we define a new data-flow analysis algorithm in the
following section. Our algorithm uses the same recurrences
above, but with new definitions of GEN and KILL that allow us
to track object instantiation and deletion rather than availability
of expressions.

IV. AVAILABLE OBJECT DEFINITION ANALYSIS

As discussed in the previous section, use-after-free vulner-
abilities occur when an object is accessed after being freed.
Frequently, the object is freed along some code paths, but
not others. Accordingly, use-after-free errors can be detected
by finding every access where the object may have been
deleted on some proceeding code path. Thus, an analysis
that determines if all code paths to an access contain a valid
object definition will detect use-after-free conditions. In this
section, we define such an analysis and term it Available
Object Definition Analysis (AODA).

Our crucial insight is that the recurrence relations from
AVAIL can be used to track the availability of instantiated
objects to detect use-after-free errors. To track instantiated
objects, we simply need to redefine how the GEN and KILL sets
are populated during the analysis. We will use the same
notation for these sets, but note their alternative meanings in
AODA. In AODA, GEN is the set of objects that are instantiated
in a basic block, while KILL is the set of objects that are freed
in a basic block. AVAILIN is simply the set of objects that are
instantiated (and thus, available) along all code paths before a
basic block, while AVAILOUT are the objects that are available
after a basic block has executed.

Tracking all instantiated class pointers is significantly more
difficult than tracking expressions. The following section de-
tails how we reliably compute the GEN and KILL sets. Given
GEN and KILL, computing AVAILIN and AVAILOUT requires
a straightforward application of iteration over the control
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flow graph. We rely on the RECALL framework to compute
the control flow graph, and identify object instantiations and
deletions.

Although in this paper we evaluate AODA on compiled
binaries, as a data flow algorithm it can also be implemented
within a compiler or within a stand-alone static analysis tool.

V. IMPLEMENTATION

In this section, we describe how we extended the RE-
CALL binary analysis framework to implement AODA. This
section includes the technical details involved in identifying
object instantiation, usage, and deletion. In the following
section, we use this implementation to detect use-after-free
conditions in several test applications adapted from pubilcly
available projects as well as 652 Microsoft Windows libaries
and a previously disclosed use-after-free vulnerability.

A. Assumptions

As discussed in Section I, our research focuses on the com-
mon and important problem of identifying software vulnera-
bilities in compiled code. Because we focus on commercially
available, release-build code, we make no claims about the
applicability of our algorithms or implementation to malware
or other hardened, obfuscated code. We chose to focus on
Windows binaries compiled to x86 by Microsoft Visual Studio
for this paper. We chose this platform because the majority
of closed-source software (which requires binary analysis) is
implemented for that platform. While our platform choice
influences our implementation and choice of experimental
targets, the techniques we present will be applicable to any
x86 binary format and compiler choice. For the sake of
generality, we assume that Runtime Type Information (RTTI)
is unavailable to the analysis. If this information is available, it
can only make object detection (and our subsequent analysis)
more accurate.

B. Identifying object instantiation and deletion

To compute GEN for AODA, we must identify every object
instantiation, and to compute KILL for AODA we must identify
every object deletion. When C++ code is compiled, the clear
type definitions in the source code become calls to relevant
constructors that create the memory objects described in
Section III-A, and accordingly are non-trivial to identify. We
rely on RECALL’s ClassTracker to identify C++ object creation
and deletion with high reliability. Identifying object creation
is prior work [8], and accordingly we provide only a rough
sketch of this analysis. We refer the reader to [8] for the
complete details and justifications of correctness.

Briefly, RECALL uses four simple, reliable heuristics to
identify C++ objects that reflect all possible ways a C++ object
can be instantiated at runtime:

• Stack-allocated object with in-line constructor
• Heap-allocated object with in-line constructor
• Stack-allocated object with called constructor
• Heap-allocated object with called constructor
The heuristics for detecting heap objects rely on the com-

piler’s use of a specific function for the new operator. In

the case of Visual Studio, after compilation this function is
referred to as YAPAXI.

Once an object instantiation is located, RECALL discovers
an object’s type by tracing the size of the new vtable and
set of funtion pointers as well as the number and size of the
properties of the object. When a new object is encountered,
the virtual address of the constructor of the object is used as
an opaque identifier for that object type.

We extend RECALL to also detect object deletion. Deletion
detection also differs between stack and heap declared objects.
Stack-alloocated objects are deleted by first calling the object’s
destructor, then calling a delete operator (named YAXPAX
Visual Studio after compilation). The compiler automatically
deletes stack-declared objects when they fall out of scope.

Heap-allocated objects are deleted only when the developer
makes an explicit call to delete. When this occurs, Visual
Studio creates a helper function that calls the object’s
destructor and the delete function YAXPAX. The name of the
helper function will include the string
_scalar_deleting_destructor or
_vector_deleting_destructor depending on
whether the developer calls delete or delete[],
respectively. In the case of heap-allocated objects, to ensure
correctness RECALL traverses into the helper function to
ensure that the class destructor is called and that there is an
explicit call to YAXPAX. RECALL detects deletion of both
types of object. In particular, because heap object deletion is
so distinctive, we are highly confident in our ability to detect
deleted objects on the heap.

C. Complex Real-World Scenarios

While the basic concept of how AODA is able to iden-
tify object instantiations and deletions is covered above, in
practice, developers employ many variations on this concept
that complicate the analysis. The details of some of the more
complex, real-world scenarios we identified are covered in the
following subsections.

1) Virtual Destructors: A developer may choose to declare
the destructor for a class as virtual. This is important if
the developer encounters a scenario where they wish to delete
an instance of a derived class through a pointer to a base
class. This however, introduces complexity for AODA. The
problem is that when performing the data flow analysis, there
is no clear call to the destructor for the object. Rather, an
indirect function call is inserted into the binary. The structure
of the object must be fully recovered to gain an understanding
of what that indirect function call is doing. We use the
RECALL framework [8] to reconstruct the vtable of the object.
Then, any indirect function call encountered during the data
flow analysis is reconciled to its actual function, and further
analyzed to determine whether it is actually the destructor for
the object.

Of course, following every indirect function call during
the analysis can cause the runtime of the analysis to grow
exponentially. To combat this issue, AODA takes a config-
uration parameter to define how deeply it should follow the
indirect calls to look for the destructor. In practice, we found
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that a depth of one is sufficient to find virtual destructors.
To further limit the impact of following indirect function
calls, this traversal only occurs for functions which employ
the __thiscall calling convention (i.e., one that passes
the this pointer as an argument in the ecx register). This
ensures that the indirect function call is, in fact, a call to a
class method and not some other arbitrary function.

2) Factory Design Pattern: Much like virtual destructors
require AODA to traverse function calls to identify a destructor,
the factory design pattern requires AODA to traverse function
calls to identify the instantiation of new objects. The factory
design pattern is a common object-oriented design construct
in which the developer creates a method which will instantiate
differing objects based on the arguments specified. When this
design pattern is used, the constructor for the object is not
directly encountered during the data flow analysis. Rather,
AODA must follow function calls to determine whether the
returned value is a class pointer.

In the same way AODA takes an argument to specify
the depth to which it should traverse indirect calls to find
destructors, the depth of function calls to be traversed to find
constructors is configurable. Again, in practice, a depth of one
was found to be sufficient. However, it is more difficult to
limit the functions that will be traversed to find instantiated
objects. When the constructor depth is set to one, it will follow
every function call encountered during the data flow analysis
to determine whether a class pointer is returned.

D. Computing AODA and Finding Use-After-Free vulnerabil-
ities

The second pass made by RECALL over the intermediate
representation performs the fixed point availability analysis
algorithm described in Section IV. In this pass, it performs
a forward analysis iterating over each basic block. As object
instantiation points are identified, the virtual address of the
constructor is added to the GEN set for the given basic block.
As object deletion points are identified, objects are added to
the KILL set. The analysis identifies which particular object is
deleted by following the use-def chain to locate its instantation.
As RECALL iterates to the next basic block, the objects in all
the AVAILOUT sets of the block’s predecessors are added to the
AVAILIN set for the current block. This process is repeated in
a fixed-point algorithm until AVAILIN and AVAILOUT sets have
been generated for each basic block.

In the third pass over the code, RECALL identifies usage
points of binary objects by using a forward analysis that
iterates over each basic block in the IR. In each basic block,
RECALL looks for indirect function calls — calls to function
pointers that are dereferenced from a larger containing data
structure (i.e., a vtable). When RECALL identifies this con-
dition, it traverses the use-def chain of the function pointer
backwards to identify the instantiation point of the containing
structure. If the instantiation point can be traced back to an
object instantiation detected in the first pass, RECALL then
determines whether the virtual address of the call to that
object’s constructor is present in the AVAIL set for the basic
block at the program point where the usage occurs. If the call

413b20:

%5 = call i32 @"j_??2@YAPAXI@Z_0"() 
store i32 %5, i32* %this
store i32 0, i32* %var_4
%6 = load i32* %this

13b7d:

%58 = load i32* %this
%59 = call i32 @"j_?0A@@QAE@XZ"() 
store i32 %59, i32* %var_10C

413b90:

store i32 0, i32* %var_10C 
br label %"413b9a"

413b9a:

%9 = load i32* %var_10C
store i32 %9, i32* %var_104 
store i32 -1, i32* %var_4
%10 = load i32* %var_104
store i32 %10, i32* %a
%19 = inttoptr i32 %18 to i32 ()* 
%20 = call i32 %19()

413c2a:

%42 = load i32* %a
%43 = inttoptr i32 8 to i32*
%44 = getelementptr i32* %43, i32 %41 
%45 = load i32* %44
%46 = inttoptr i32 %45 to i32 ()*
%47 = call i32 %46()

413bed:

%51 = load i32* %a
store i32 %51, i32* %var_E0 
%52 = load i32* %var_E0 
store i32 %52, i32* %var_EC

413c20:

store i32 0, i32* %var_10C 
br label %"413c2a"

413c0b:

%56 = load i32* %var_EC
%57 = call i32 @"j_??_GA@@QAEPAXI@Z"() 
store i32 %57, i32* %var_10C

1

2
3

Fig. 3: Control flow graph of code from Figure 1. At point
1, the object a is declared. At point 2, the object is deleted.
At point 3, a->print() is called again. Note that because
point 3 is reachable via point 2, a use-after-free vulnerability
is possible.

to the object’s constructor is not present in the AVAIL set for
the basic block where the usage occurs, a potential use-after-
free condition has been discovered.

VI. RESULTS

After implementing the Availabile Object Definition Anal-
ysis described in Section IV, we tested the framework on
a series of simple examples to ensure the algorithm was
operating correctly. The process used for testing and the results
of the tests are detailed in Section VI-A. Then, use-after-
free conditions were injected into several publicly available
projects as detailed in Section VI-B. By scanning these
projects, we ensure that our analysis is correct for real-
world applications. To ensure the analysis would work on a
real-world vulnerability, it was run against a library with a
known use-after-free vulnerability. Section VI-B details how
the results of the analysis were verified. Once we verified the
results on a control set of binaries, the framework was run over
a substantial subset of the the .dll’s in the system32 directory
on a default install of Windows 7. Section VI-D details the
number of use-after-free conditions that exist unpatched on
one of the world’s most popular operating systems.

A. Control Set Results

The first step in verifying the Available Object Definition
Analysis was to test it on a series of simple examples and
manually verify the results. An example of one of the simple
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Processing Function: _main(i32, i*)
Processing Basic Block: 413b20

Avail_in = {}
Avail_out = {j_??0A@@QAE@X} ## 1 ##

Processing Basic Block: 413b7d
Avail_in = {j_??0A@@QAE@X}
Avail_out = {j_??0A@@QAE@X}

Processing Basic Block: 413c2a
Avail_in = {} ## 3 ##
Avail_out = {}

Processing Basic Block: 413bed
Avail_in = {j_??0A@@QAE@X}
Avail_out = {j_??0A@@QAE@X}

Processing Basic Block: 413c0b
Avail_in = {j_??0A@@QAE@X} ## 2 ##
Avail_out = {}

Processing Basic Block: return
Avail_in = {}
Avail_out = {}

Avail sets complete...

Processing Basic Block: 413b90
Processing Basic Block: 413b9a

Found use of: j_??0A@@QAE@X
In Avail Set...
Found use of: j_??0A@@QAE@X
In Avail Set...

Processing Basic Block: 413c2a
Found use of: j_??0A@@QAE@X
ERROR - Not in Avail Set...
Potential Use After Free Condition

Processing Basic Block: 413bed
Processing Basic Block: return

Fig. 4: AODA results show that compiled code of Figure 1
contains a use-after-free vulnerability

Avail sets complete...
Processing Basic Block: ed0c85e
Processing Basic Block: ed0c877
Processing Basic Block: ed0c881
Processing Basic Block: ed0c887
Processing Basic Block: ed0c883
Processing Basic Block: ed0c8aa
Processing Basic Block: ed0c8b6
Processing Basic Block: ed0c8f5
Processing Basic Block: ed0c8ff
Processing Basic Block: ed0c902
Processing Basic Block: ed0c8f9

Found use of: ??0CEditSession@@QAE@P6GJKPAV0@@Z@Z
ERROR - Not in Avail Set...
Potential Use After Free Condition

Fig. 5: AODA results detect use of an object that is not in the
AVAIL set in a previously-disclosed vulnerability

examples can be found in Figure 1. This example code was
compiled and then run through RECALL, which generated an
LLVM bitcode file. The control flow graph of the resulting
bitcode can be seen in Figure 3 (some code is omitted). Here
we can see the object a is instantiated in basic block 413b20
(denoted as “1” in Figure 3). We can then see that the object
is deleted in basic block 413c0b (denoted as “2” in Figure 3).
Then the object is used in basic block 413c2a (denoted as
“3” in Figure 3). However, since there is a path to 413c2a
whereby the object is deleted, we have a potential use-after-
free vulnerability.

When AODA is run on the control flow graph in Figure 3, it
automates the detection logic described above. It does this in
two passes over the code. The first pass identifies the AVAILsets
as shown in Figure 4. The most notable points of the first pass
are where the analysis detects the generation of a new object in
basic block 413b20 (denoted as “1” in Figure 4), and where it
detects an object being killed in basic block 413c0b (denoted
as “2” in Figure 4). Then, since basic block 413c2a has three
predecessors, and the required object is not in the AVAILOUT

sets for all of the preceding basic blocks, it is not added to
the AVAILIN set (denoted as “3” in Figure 4). The second pass
over the code looks for uses of objects. It checks to make
sure that the class pointer that is referenced is in fact in the
AVAILIN set of the containing basic block. In the case of the

Project Injected Vulns Discovered Vulns
Leanify 1 1
libwebm 2 2
lifespan 1 1
MAPIEx 2 2

MonaServer 2 2
557-animator 2 2

BarsWF 1 1
easyrtc ie plugin 1 1

ElasticTabstopsForScintilla 1 1

TABLE I: Github projects with injected vulnerabilities

code in Figure 3, the statement %47 = call i32 %46()
makes use of an object that is not contained in the AVAILIN set
(denoted as ERROR in Figure 4). Since, there exists a control
flow path where the object is not available, a use-after-free
condition exists at this program point.

In addition to the code in Figure 1, we tested six other test
cases involving use-after-free with various control structures.
These tested if-else statements, switch statements, goto state-
ments, and switches combined with if-else and goto, and a
switch with an “accidental fall through.”

B. Manually Generated Vulnerabilities

To further test the detection capabilities of Available Object
Definition Analysis, it was tested on a series of publicly
available projects. To find suitable projects, we used a script
to identify projects on Github that included Visual Studio
project files and made use of heap-allocated objects. Of the
first 1000 projects found on Github, 66 met both of those
conditions. We selected the first nine projects that would
build with minimal modification and injected vulnerabilities
into the source. In our corresponding technical report [?], we
provide the diff output from comparing the modified files
with the files from the git repositories. With this information,
the vulnerable conditions can be easily reproduced.

The vulnerabilities were injected using one of two methods.
The first is by freeing objects that had been allocated by
the original author. By using objects that were defined by
the original author, and only injecting deletions of those
objects, we encountered several real-world scenarios that were
not seen in our control set tests from Section VI-A. For
example, the Leanify 1 project makes use of the factory design
pattern and virtual destructors. As described in Section V-C,
these conditions make detection of use-after-free conditions
more difficult. The second method for injecting use-after-free
conditions is by deleting return statements that would cause
the use of a freed object to be unreachable.

After injecting the vulnerabilities into the nine test projects,
they were each run through AODA. The results of those tests
can be seen in Table I. In short, AODA was able to detect every
one of the thirteen use-after-free conditions that were injected
into the nine Github projects without a single instance of a
false positive.

1https://github.com/JayXon/Leanify



8

Library Potential Use-after-free Conditions
ActionCenterCPL.dll 5

AdmTmpl.dll 16
bidispl.dll 3

cabview.dll 12
certcli.dll 1

cewmdm.dll 8
cnvfat.dll 1

comdlg32.dll 1
comsnap.dll 9

credui.dll 6
cscapi.dll 2

dataclen.dll 2
devenum.dll 3
devmgr.dll 2

eapp3hst.dll 2
eappcfg.dll 4
Faultrep.dll 2

FirewallAPI.dll 1
fontext.dll 5
fundisc.dll 4

gpprnext.dll 1
gpedit.dll 3
iasrad.dll 1
icsigd.dll 1

imagehlp.dll 1
ipsmsnap.dll 23

itss.dll 8

TABLE II: DLLs containing use-after-free vulnerabilities

C. Real-World Vulnerability

In addition to verifying AODA with simple examples, we
also confirm that AODA can detect previously-disclosed vulner-
abilities. In particular, we analyze a vulnerability in Microsoft
Internet Explorer (located in tiptsf.dll) that was disclosed as
MS13-069 and CVE-2013-3205. In Figure 5, we can see the
AVAIL sets as they were generated during analysis (some
basic blocks omitted). Later we see a use of an object of type
??0CEditSession@@QAE@P6GJKPAV0@@Z@Z that is not
in the AVAILIN set of the basic block containing the use point.
This indicates the presence of a use-after-free vulnerability.

The preceding example represents an interesting case that
was caught by the automated analysis. In this case, there was
a use of a class pointer before it was ever initialized. While
this is not strictly use-after-free vulnerability in the textbook
sense2, the analysis was able to detect it. This is because there
was a program point where class type was used, but not in the
AVAILIN set for the containing basic block. Since there is a
code path in which the class pointer was not instantiated, it
was not included in the AVAILIN set.

D. System32 Directory Results

To estimate the extent of use-after-free vulnerabilities in
production operating systems, we ran AODA on 652 bina-
ries found in the system32 directory on a default install of
Windows 7. The analysis revealed 127 potential use-after-
free conditions. Table II shows the results of the scan of the
binaries. These libraries are often used by popular applications
(and are thus popular targets for attackers) like Microsoft
Office and Internet Explorer.

2From the perspective of an adversary, this is exactly the same - a portion
of improperly allocated memory is accessed by the program.

VII. DISCUSSION

In Section VI we validated AODA against simple test cases
and a previously disclosed vulnerability, and discovered 127
potential use-after-free conditions in 27 binaries in the sys-
tem32 directory of a default install of Windows 7. In this
section, we address the quality of the results of AODA. As
with any static code analysis, the analyses presented in this
paper may result in false positives or negatives, and even true
positives may not necessarily be exploitable.

A. False Positives

False positives are always an important concern in static
analysis techniques.

AODA only identifies code paths where an object is not
guaranteed to be available at a given program point. Like
all static analysis, AODA cannot guarantee that a given code
path will execute at runtime. Some use-after-free paths may
be highly unlikely to execute, or may even have application-
specific logic to prevent the use-after-free execution path.
In the case of use-after-free conditions, these are not false
positives. While there may not be any conditions under which
the affected code path may be executed, the presence of the
deletion of an object that is later needed is bad development
practice and should be refactored.

Philosophically, this is in direct contrast to a buffer overflow
enabled by the improper use of a library such as strcpy.
Because it is technically possible to use strcpy in a secure
fashion, its very presence does not indicate a weakness.
However, the static detection of a freed object being used later
in a code path cannot be “used properly” and should never be
allowed to remain in a codebase regardless of the developer’s
certainty of its execution.

Nevertheless, actual false positives are possible. One ex-
ample (unrelated to our data flow analysis) is if a developer
declares a structure on the stack with the exact layout of a
C++ object, RECALL may confuse accesses to that structure
as accesses to a C++ object and indicate a use-after-free
condition. This extremely rare occurrence could be mitigated
by employing techniques like those described by Dolan-Gavitt
et al. in [10].

While we have argued philosophically that false positives
are not a problem, our results in Sections VI-B and VI-D
experimentally confirm this intuition. Specifically, zero false
positives were encountered after manually injecting vulnera-
bilities into nine open source projects, and of the 652 close
source binaries scanned, only 27 had any reported use-after-
free conditions — indicating that 625 binaries scanned had
no false positives. Additionally, not one of the 20 randomly
selected warnings that were manually inspected was a false
positive. This further validates our claim that AODA is a
technique with low false positives.

B. False Negatives

False negatives are also likely to be rare with AODA, but
there are several potential sources.

The first issue is that IDA Pro could fail to correctly recover
the binary code. Given the significant improvement in code
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recovery by IDA Pro in the past decade, this issue is not
likely to be common. A second issue is related: Because
RECALL object use detection is focused solely on detecting
indirect function calls, we will not detect a use-after-free of an
object with no virtual functions. If that object has no virtual
functions (and hence, no vtable), exploitability is limited to
an attacker being able to change member data of a deleted
object, not to inject code to be executed by an improper vtable
call. While we may miss those vulnerabilities, they are far less
common and are arguably less dangerous than ones that permit
arbitrary remote code execution.

Other sources of false negatives are fundamental problems
with all static analysis. One source of false negatives is if an
object is inserted into a collection (like a list or map), the
RECALL framework cannot track the object. This is a widely
known open problem in static analysis. Another source is that
if the control flow graph fails to model program behavior, we
may miss use-after-free conditions. One example of this is if a
shared object is freed in one thread but then used in another.
This is a fundamental issue with static analysis and is not
limited to AODA. A final source of false negatives can occur
if a library being analyzed exposes objects that linked code
later frees. This is simply a result of the analysis not being
able to make claims about behavior outside the code being
analyzed. Such code exists in violation of best practices that
recommend internal objects should not be accessible outside
of a library.

C. Exploitability
Not all use-after-free conditions are exploitable. Certain

conditions favorable to the attacker must exist in order to
turn these code flaws into actual exploitable vulnerabilities.
Specifically, all of the following conditions must be met for
any of the use-after-free conditions identified in this work to
be exploitable:

1) The code path must be reachable at runtime. Deter-
mining the reachability of a given code path has been
researched extensively with many techniques achieving
reasonable levels of success [15], [31], [33]. It is outside
the scope of this paper to provide the details on those
analyses.

2) The attacker must be able to overwrite the data at the
memory location that contained the object prior to it
being freed. Since that memory location will be treated
as a class pointer at runtime, the attacker must be able
to create a data structure that would be interpretd as
an object and achieve their goals for exploitation (as
described in Section III-B).

3) The object must have some property that is beneficial to
an attacker. In the simplest case, an object that contains
a vtable will allow an attacker to substitute a vtable
pointer to their own data. In more complex scenarios, the
ability to overwrite a property of an object may cause
the program to function in a way that is beneficial to
the attacker. It is arguable that this condition can only
be determined manually.

The purpose of the analysis presented in the paper is not to
be an automated “vulnerability detector.” Rather, it is designed

to identify locations in code that represent potential use-after-
free conditions. This could be considered similar to what
would constitute a compiler warning rather than a compiler
error. The warnings that are returned from the AODA analysis
may be used to identify vulnerabilities, but further manual
analysis is required to ensure all of the requirements listed
above could be met. This requirement does not make our
contributions trivial, but emphasizes our improvement over
current techniques: we only require manual confirmation,
where before manual discovery was required. Drawing again
from the compiler warning analogy, production quality code
should be free of all errors and warnings. As it pertains to
vulnerability analysis, AODA allows vulnerability researchers
to more rapily identify potentially exploitable bugs, and de-
termine whether Requirement 3 from the list above has been
met.

VIII. CONCLUSIONS

Use-after-free vulnerabilities are an increasingly important
class of software vulnerability, yet compilers are incapable
of detecting even trivial instances of this error. In this paper,
we present the Available Object Definition Analysis data
flow algorithm to statically detect use-after-free vulnerabilities.
Based on available expression analysis, AODA detects use-
after-free conditions by determining if any code path preceding
an access to an object contains a deletion of that object.
Because analysis of compiled binaries plays a significant role
in securing closed-source software, we implemented AODA for
the RECALL binary analysis framework. We showed that
AODA was able to detect a previously disclosed vulnerability,
and we used AODA to identify 127 previously unknown use-
after-free conditions in 27 binaries in a default install of
Windows 7. Available object definition analysis provides a
significant improvement over the state of the art in detecting
this dangerous and common vulnerability.
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