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Problem - Undamped Transverse Beam Vibration
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Derivation of PDE

Sum Forces Vertically, choosing + up

V − (V +
∂V
∂x

dx) + p(x , t)dx − m(x)dx
∂2u
∂t2 = 0 (1)

Sum Moments about o, choosing CCW as + rotation

−M−Vdx +p(x , t)ǫ1dx2 +m(x)ǫ2dx2 ∂2u
∂t2 +M +

∂M
∂x

dx = 0

(2)
Simplifying (1), and in (2) ignoring higher order terms in the
limit as dx −→ 0 gives

∂V
∂x

= p(x , t) − m(x)
∂2u
∂t2 , and V =

∂M
∂x

(3)



Derivation of PDE

From mechanics of materials class, moment curvature
relation (given here to save time)

M = EI(x)
∂2u
∂x2 (4)

Substituting equation two of (3) and equation (4) into
equation one of (3) and rearranging yields

m(x)
∂2u
∂t2 +

∂2

∂x2

[

EI(x)
∂2u
∂x2

]

= p(x , t) (5)

Equation (5) is the PDE governing the motion u(x , t),
subject to the external forcing function p(x , t).



Solving the PDE

Analytical solution difficult or impossible to obtain due to
m(x) and I(x).

Numerical methods such as Finite Element Method or
Finite Differences can solve the PDE.

Can simplify the PDE to demonstrate analytical methods
by the following assumptions:

m(x) = m =constant along the beam length
I(x) = I =constant along the beam length
p(x , t) = 0, ie, no forcing function



Solving the PDE

After simplifying assumptions the governing PDE (5)
becomes

m
∂2u
∂t2 + EI

∂4u
∂x4 = 0 (6)

To make things pretty at the end, define a2 = EI/m, so that

∂2u
∂t2 + a2 ∂4u

∂x4 = 0 (7)



Solving the PDE

Assume a solution of the following form

u(x , t) = φ(x)q(t) (8)

Substitute (8) into the PDE (7) to get

φ
∂2q
∂t2 + a2q

∂4φ

∂x4 = 0 (9)

By separation of variables, observe that l.h.s and r.h.s
must equal a constant, β4

−
1

a2q
∂2q
∂t2 =

1
φ

∂4φ

∂x4 = β4 (10)



Solving the PDE

From (10), two ODE’s are obtained

∂4φ

∂x4 − β4φ = 0 (11)

∂2q
∂t2 + β4a2q = 0 (12)

The respective solutions are

φ(x) = A sinh βx + B cosh βx + C sin βx + D cos βx (13)

q(t) = E sin aβ2t + F cos aβ2t (14)

∴ solution of the PDE (6) is u(x , t) = φ(x)q(t).



Solving a Boundary Value Problem (BVP)

To solve a realistic problem, boundary conditions must be
specified

The six boundary conditions (BC’s) are
1 @ x = 0, u(0, t) = φ(0)q(t) = 0
2 @ x = L, u(L, t) = φ(L)q(t) = 0
3 @ x = 0, u′′(0, t) = φ′′(0)q(t) = 0
4 @ x = L, u′′(L, t) = φ′′(L)q(t) = 0
5 @ t = 0, u̇(x , 0) = φ(x)q̇(0) = 0
6 @ t = 0, u(x , 0) = Gx(L − x), G specified constant



Applying the boundary conditions to φ(x)

Applying the first four boundary conditions yield the
following results

1 φ(0) = B + D = 0

2 φ(L) = A sinh βL + B cosh βL + C sin βL + D cos βL = 0

3 φ′′(0) = Bβ2
− Dβ2 = 0 ⇒ B − D = 0

4 φ′′(L) = Aβ2 sinh βL + Bβ2 cosh βL
−Cβ2 sin βL − Dβ2 cos βL = 0

From BC’s (1) and (3), B = 0 and hence D = 0



Applying the boundary conditions to φ(x)

From BC’s (2) and (4)
A sinh βL + C sin βL = 0
A sinh βL − C sin βL = 0

The above results imply

A sinh βL = 0 and C sin βL = 0 (15)

From the first expression of (15), A = 0. If A = 0 is not
chosen, β = 0 is required and this leads to φ(x) = 0 for all
x which is the at rest condition (not very interesting).

Using the remaining case (since A = 0), either C = 0 or
sin βL = 0. Choosing C = 0 isn’t an option since that leads
to φ(x) = 0 for all x which is the uninteresting at rest
condition.



Applying the boundary conditions to φ(x)

Therefore, must have sin βL = 0, which implies βL = nπ.

After solving for β, the n solutions (which satisfy the B.C’s)
for φ(x) are

φn(x) = Cn sin
nπx

L
(16)

This implies that the beam vibrates in the following natural
mode shapes for n = 1, 2, 3, 4...
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Applying boundary condition (5)

Applying BC (5) yields

q̇(0) = −aβ2E sin aβ20 + aβ2F cos aβ20 = 0 (17)

The sine term equals zero and hence F = 0. As a result

q(t) = E cos aβ2t (18)

In light of the fact that β = nπ/L

qn(t) = En cos
an2π2t

L2 (19)



Applying boundary condition (6)

Combining (16) and (19) and defining bn = CnEn yields

un(x , t) = φn(x)qn(t) = bn sin
nπx

L
cos

an2π2t
L2 (20)

Equation (20) satisfies the PDE and the first 5 BC’s for any
value of n and arbitrary constants bn. As a result, any
linear combination of (20) also satisfies the requirements
so that

u(x , t) =
∞

∑

n=1

bn sin
nπx

L
cos

an2π2t
L2 (21)



Applying the boundary condition (6)

To satisfy BC (6) the following must be true

u(x , 0) = Gx(L − x) =
∞

∑

n=1

bn sin
nπx

L
(22)

Hence, the bn are the sine Fourier coefficients for
Gx(L − x). That is

bn =
2
L

∫ L

0
Gx(L − x) sin

nπx
L

dx (23)

=
8GL2

n3π3 for n odd (24)

= 0 for n even (25)



Final solution of the BVP

Using the results of (21) and (23) gives the final solution of
the BVP.

u(x , t) =
∞

∑

n=1,3,5,...

8GL2

n3π3 sin
nπx

L
cos

an2π2t
L2 (26)

Comments:
Recall a2 = EI/m which is known
G specifies initial amplitude at t = 0, hence is known
By observing the cosine term of (26) it is concluded that the
natural frequencies for the beam are

ωn =
n2π2

L2

√

EI
m

Reference: Miller, Kenneth S., “Partial Differential Equations in Engineering Problems”,
Prentice-Hall, Englewood Cliffs, NJ, 1953.


