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Problem - Undamped Transverse Beam Vibration
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Derivation of PDE

@ Sum Forces Vertically, choosing + up

ov o

vV —(V+ x dx) + p(x, t)dx — m(x)dxﬁ =0 (1)

@ Sum Moments about o, choosing CCW as + rotation
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Simplifying (1), and in (2) ignoring higher order terms in the
limit as dx — 0O gives
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Derivation of PDE

@ From mechanics of materials class, moment curvature
relation (given here to save time)
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@ Substituting equation two of (3) and equation (4) into
equation one of (3) and rearranging yields
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@ Equation (5) is the PDE governing the motion u(x,t),
subject to the external forcing function p(x,t).




Solving the PDE

@ Analytical solution difficult or impossible to obtain due to
m(x) and I(x).

@ Numerical methods such as Finite Element Method or
Finite Differences can solve the PDE.

@ Can simplify the PDE to demonstrate analytical methods
by the following assumptions:

@ m(x) = m =constant along the beam length
@ I(x) = | =constant along the beam length
@ p(x,t) =0, ie, no forcing function




Solving the PDE

@ After simplifying assumptions the governing PDE (5)

becomes
m—(92u + EI—a4u =
ot2 ox4

@ To make things pretty at the end, define a> = El/m, so that

0 (6)
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Solving the PDE

@ Assume a solution of the following form

u(x,t) = ¢(x)a(t) (8)
@ Substitute (8) into the PDE (7) to get
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@ By separation of variables, observe that I.h.s and r.h.s

must equal a constant, 5

11t
a2gq otz ¢ ox4




Solving the PDE

@ From (10), two ODE'’s are obtained

84
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@ The respective solutions are
#(X) = Asinh gx 4+ B cosh gx + C sin 8x + D cos fx  (13)

q(t) = E sinag?t + F cosaf?t (14)
@ .. solution of the PDE (6) is u(x,t) = ¢(x)q(t).




Solving a Boundary Value Problem (BVP)

@ To solve a realistic problem, boundary conditions must be
specified
@ The six boundary conditions (BC's) are

©Q @x =0, u(0,t) = ¢(0)q(t) =0
Q@ @x=L, u(L,t)=¢(L)g(t) =0
©Q @x =0, u"(0,t) =¢"(0)q(t)
Q @x =L, u"(Lt)=¢"(L)q(t)
@ @1t =0, 0(x,0) = ¢(x)q(0) =
o X),




Applying the boundary conditions to ¢(x)

@ Applying the first four boundary conditions yield the
following results

Q 90)=B+D=0
@ 4(L) =AsinhpL+BcoshfBL + CsinpL+DcosfL =0
@ ¢'(0)=B3>-DB?=0 = B-D=0

Q ¢"(L) = A2 sinh L + B2 cosh AL
—C3?sinfL —DB?cos L =0

@ From BC’s (1) and (3), B =0and hence D =0




Applying the boundary conditions to ¢(x)

@ From BC’s (2) and (4)
AsinhgL+CsinpL=0
AsinhgL—-CsingL =0

@ The above results imply

AsinhgL=0 and CsingL=0 (15)

@ From the first expression of (15), A=0. If A=0is not
chosen, § = 0 is required and this leads to ¢(x) = O for all
x which is the at rest condition (not very interesting).

@ Using the remaining case (since A = 0), either C =0 or
sin 5L = 0. Choosing C = 0 isn’t an option since that leads
to ¢(x) = 0 for all x which is the uninteresting at rest
condition.




Applying the boundary conditions to ¢(x)

@ Therefore, must have sin gL = 0, which implies L = n.

@ After solving for 3, the n solutions (which satisfy the B.C’s)

for ¢(x) are

én(X) = Cp sin ? (16)

@ This implies that the beam vibrates in the following natural
mode shapes forn =1,2,3,4...
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Applying boundary condition (5)

@ Applying BC (5) yields
q(0) = —af?E sinaf?0 + af%F cosaf?0 =0 (17)
@ The sine term equals zero and hence F = 0. As a result
q(t) = E cosaf?t (18)
@ In light of the fact that 5 = n7/L
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Applying boundary condition (6)

@ Combining (16) and (19) and defining b, = C,E yields
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Un(X,t) = én(X)gn(t) = bp sin Ccos

L L2 (20)

@ Equation (20) satisfies the PDE and the first 5 BC’s for any
value of n and arbitrary constants b,. As a result, any
linear combination of (20) also satisfies the requirements
so that
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Applying the boundary condition (6)

@ To satisfy BC (6) the following must be true
u(x,0) = Gx(L—x) =Y bysin—— (22)

@ Hence, the b, are the sine Fourier coefficients for
Gx(L —x). That is

L
by = 2/ Gx(L — x) sin ™ dx (23)
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Final solution of the BVP

@ Using the results of (21) and (23) gives the final solution of

the BVP.

u(x,t) =

o0

D

n=13,5,...
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@ Comments:

@ Recall a2 = El/m which is known

@ G specifies initial amplitude att = 0, hence is known

(26)

@ By observing the cosine term of (26) it is concluded that the

natural frequencies for the beam are

@ Reference: Miller, Kenneth S., “Partial Differential Equations in Engineering Problems”,

wnp =

Prentice-Hall, Englewood Cliffs, NJ, 1953.
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