

Understand, Assess, and Control

Dynamic Loads in Climbing and Rigging

presented at the Kletterforum Augsburg 2014

Andreas Detter

court certified consulting arborist Brudi & Partner TreeConsult, Gauting, Germany

Static vs. Dynamic

Load causes deflection

Static vs. Dynamic

Load causes deflection

Any suddenly imposed load generates dynamic conditions.

Dynamic Conditions

Rate of Load Application

quasi-static: very slow, over several minutes/hours

dynamic: fast, within seconds

shock: rapid, within small fractions of a second

harmonic: in tune with the rhythm of the structure

Dynamic Conditions

Rate of Load Application

quasi-static: snow/ice accumulating on a branch

dynamic: wind, climbing, "letting the log run"

shock: snubbed-off rigging, fall arrest

harmonic: oscillation test, resonance

Resonance

Oscillation and damping

James (2006)

The effect of leaves

The effect of leaves

The significance of branches

Natural frequency

The significance of branches

Peak force and stem reaction

Results of field tests on Beech and Sycamore

Peak force and stem reaction

Results of field tests on Beech and Sycamore

Peak force and stem reaction

Results of field tests on Beech and Sycamore

Dynamic Conditions

Damping properties

Low: bulk mass, bluff body

medium: mass unilaterally concentrated, porous

structure

high: well distributed mass, rough surface

critical: no dynamic response

Dynamic Conditions

Damping properties

Low: big diameter stem without crown

medium: forest conifers with small live crown ratio

high: broad-leaved tree with full crown

critical: sponge, shock absorber

Energy Input - Excitation

Potential energy in a fall-arrest scenario

$$F_{peak} = m \times g \times \left(1 + \sqrt{1 + \frac{2 \times M \times h}{m \times g \times L}}\right)$$

distance of fall h [m]

Results of a laboratory study

Drop tests carried out in the lab recorded at 250 frames/sec in Motion Capture Technique

Spruce Ø 35 cm ~ 1 ft 2 inches

Results of a laboratory study

Drop tests carried (Statum_aktuell\b100305-2) recorded at 250 frain Motion Capture

Spruce Ø 35 cm ~

Results of a laboratory study

Peak deceleration of log

Maximum rope stretch

Studying a real rigging operation

Field tests on Maple

Components of a more complex model for energy dissipation

Energy Dissipation

In a "snubbed-off"scenario

Kinematics of a Rigging Operation

Topping down a tree top

Field tests on Beech

Energy Dissipation

In a "snubbed-off"scenario

Forces Generated from Rigging Operations

Results from field tests

22 drop tests on Beech and Sycamore, 14 mm doublebraid rope

Dynamic Conditions

Energy dissipation

Potential energy: weight x distance of fall

Kinetic energy: ½ mass x velocity²

Strain energy: 1/2 force x elongation

Forces Generated from Fall Arrest

The effect of rope modulus

Forces Generated from Fall Arrest

The effect of rope modulus

Peter Donzelli's field tests from 2001 in cooperation with ArborMaster Inc.

Fatigue

due to cycling with quasi-static loads

Cycling reduces the strength of ropes.

source: D. Blair & Samson Rope Technologies

Design factor (breaking strength / working load

Fatigue

due to shock loads

Test series carried out by Treemagineers with Teufelberger Ropes

Static rope 14 mm (9/16")

Test in a drop tower

mass 100 kg

Distance of fall 2 m

Rope length 3,5 m

Fatigue

due to shock loads

Test series carried out by Treemagineers with Teufelberger Ropes

Static rope 14 mm (9/16")
Test in a drop tower
mass 100 kg
Distance of fall 2 m
Rope length 3,5 m

Peak load
13 drops at 25 - 37% BS
during the 14th drop
failure at 16 kN (33% BS)

Shock loading will reduce the rope strength!

Fatigue due to shock loads

Shock loads will reduce the number of cycles to failure!

TREECONSUL

Dynamic Conditions

Energy dissipation

Potential energy: weight x distance of fall

Kinetic energy: ½ mass x velocity²

Strain energy: ½ force x elongation

,loss' of energy: friction - rope on block/bollard,

rope in knots, slings on the stem

aerodynamic drag

fracture - hinge/branches

Dynamic Conditions

Control Dynamic Conditions:

The rate of load application:

Decelerate slowly, avoid shock loads

Damping properties:

Retain mass, flexibility and aerodynamic resistance

Energy dissipation:

Cut smaller logs, reduce distance of (free) fall, avoid rigid ropes, reduce velocity by friction devices

Distance of Fall

The form of the notch:

conventional

inverted (Humbolt)

open face

Thank you for your attention!

Thanks to my co-workers & friends

Chris Cowell
Paul Howard
Oriol Campana!

Please check www.tree-consult.org for more info and www.treecalc.com for a new online-tool!

