

UNDERSTANDING AERODYNAMICS Arguing from the Real Physics

DOUG McLEAN

UNDERSTANDING AERODYNAMICS

Aerospace Series List

Introduction to UAV Systems, 4 th Edition Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave	Fahlstrom and Gleason McBain	August 2012 August 2012
Sense and Avoid in UAS: Research and Applications	Angelov	April 2012
Morphing Aerospace Vehicles and Structures Gas Turbine Propulsion Systems Basic Helicopter Aerodynamics, 3 rd Edition	Valasek MacIsaac and Langton Seddon and Newman	April 2012 July 2011 July 2011
Advanced Control of Aircraft, Spacecraft and Rockets	Tewari	July 2011
Cooperative Path Planning of Unmanned Aerial Vehicles	Tsourdos et al	November 2010
Principles of Flight for Pilots	Swatton	October 2010
Air Travel and Health: A Systems Perspective	Seabridge et al	September 2010
Design and Analysis of Composite	Kassapoglou	September 2010
Structures: With applications to aerospace		
Structures		
Unmanned Aircraft Systems: UAVS Design, Development and Deployment	Austin	April 2010
Introduction to Antenna Placement & Installations	Macnamara	April 2010
Principles of Flight Simulation	Allerton	October 2009
Aircraft Fuel Systems	Langton et al	May 2009
The Global Airline Industry	Belobaba	April 2009
Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 - Platform Kinematics and Synthetic Environment	Diston	April 2009
Handbook of Space Technology	Ley, Wittmann Hallmann	April 2009
Aircraft Performance Theory and Practice for Pilots	Swatton	August 2008
Surrogate Modelling in Engineering Design: A Practical Guide	Forrester, Sobester, Keane	August 2008
Aircraft Systems, 3 rd Edition	Moir & Seabridge	March 2008
Introduction to Aircraft Aeroelasticity And Loads	Wright & Cooper	December 2007
Stability and Control of Aircraft Systems	Langton	September 2006
Military Avionics Systems		
• •	Moir & Seabridge	February 2006
Design and Development of Aircraft Systems	e	February 2006 June 2004
Design and Development of Aircraft Systems Aircraft Loading and Structural Layout	Moir & Seabridge	
Aircraft Loading and Structural Layout Aircraft Display Systems	Moir & Seabridge Moir & Seabridge Howe Jukes	June 2004
Aircraft Loading and Structural Layout	Moir & Seabridge Moir & Seabridge Howe	June 2004 May 2004

UNDERSTANDING AERODYNAMICS ARGUING FROM THE REAL PHYSICS

Doug McLean

Technical Fellow (retired), Boeing Commercial Airplanes, USA

This edition first published 2013 © 2013 Boeing. All rights reserved.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

McLean, Doug (Doug J.) Understanding aerodynamics : arguing from the real physics / Doug McLean. pages cm
Includes bibliographical references and index.
ISBN 978-1-119-96751-4 (hardback)
1. Aerodynamics. I. Title.
TL570.M3823 2013
629.132'3 - dc23

2012032706

A catalogue record for this book is available from the British Library

Print ISBN: 978-1-119-96751-4

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India

Contents

Fore	word		xi
Serie	es Preface		xiii
Prefa	ace		XV
List	of Symbo	bls	xix
1	Introd	uction to the Conceptual Landscape	1
2	From 1	Elementary Particles to Aerodynamic Flows	5
3 3.1 3.2	The Co Mather	uum Fluid Mechanics and the Navier-Stokes Equations ontinuum Formulation and Its Range of Validity natical Formalism	13 13 16
3.3	3.3.1 3.3.2 3.3.3	atics: Streamlines, Streaklines, Timelines, and Vorticity Streamlines and Streaklines Streamtubes, Stream Surfaces, and the Stream Function Timelines	18 18 19 22
	3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	The Divergence of the Velocity and Green's Theorem Vorticity and Circulation The Velocity Potential in Irrotational Flow Concepts that Arise in Describing the Vorticity Field Velocity Fields Associated with Concentrations of Vorticity	23 24 26 26 29
3.4	3.3.9	The Biot-Savart Law and the "Induction" Fallacy juations of Motion and their Physical Meaning Continuity of the Flow and Conservation of Mass Forces on Fluid Parcels and Conservation of Momentum Conservation of Energy Constitutive Relations and Boundary Conditions Mathematical Nature of the Equations The Physics as Viewed in the Eulerian Frame	31 33 34 35 36 37 37 38 40
3.5		<i>The Pseudo-Lagrangian Viewpoint</i> and Effect, and the Problem of Prediction	40 40

3.6	The Effects of Viscosity		
3.7	Turbule	ence, Reynolds Averaging, and Turbulence Modeling	48
3.8	Importa	ant Dynamical Relationships	55
	3.8.1	Galilean Invariance, or Independence of Reference Frame	55
	3.8.2	Circulation Preservation and the Persistence of Irrotationality	56
	3.8.3	Behavior of Vortex Tubes in Inviscid and Viscous Flows	57
	3.8.4	Bernoulli Equations and Stagnation Conditions	58
	3.8.5	Crocco's Theorem	60
3.9	Dynam	ic Similarity	60
	3.9.1	Compressibility Effects and the Mach Number	63
	3.9.2	Viscous Effects and the Reynolds Number	63
	3.9.3	Scaling of Pressure Forces: the Dynamic Pressure	64
	3.9.4	Consequences of Failing to Match All of the Requirements	
		for Similarity	65
3.10	"Incom	pressible" Flow and Potential Flow	66
3.11	Compre	essible Flow and Shocks	70
	3.11.1	Steady 1D Isentropic Flow Theory	71
	3.11.2	Relations for Normal and Oblique Shock Waves	74
4	Bound	ary Layers	79
4.1	Physical Aspects of Boundary-Layer Flows		
	4.1.1	The Basic Sequence: Attachment, Transition, Separation	80
	4.1.2	General Development of the Boundary-Layer Flowfield	82
	4.1.3	Boundary-Layer Displacement Effect	90
	4.1.4	Separation from a Smooth Wall	93
4.2	Bounda	ry-Layer Theory	99
	4.2.1	The Boundary-Layer Equations	100
	4.2.2	Integrated Momentum Balance in a Boundary Layer	108
	4.2.3	The Displacement Effect and Matching with the Outer Flow	110
	4.2.4	The Vorticity "Budget" in a 2D Incompressible Boundary Layer	113
	4.2.5	Situations That Violate the Assumptions of Boundary-Layer	
		Theory	114
	4.2.6	Summary of Lessons from Boundary-Layer Theory	117
4.3		te Boundary Layers and Other Simplified Cases	117
	4.3.1	Flat-Plate Flow	117
	4.3.2	2D Boundary-Layer Flows with Similarity	121
	4.3.3	Axisymmetric Flow	123
	4.3.4	Plane-of-Symmetry and Attachment-Line Boundary Layers	125
	4.3.5	Simplifying the Effects of Sweep and Taper in 3D	128
4.4	Transition and Turbulence		
	4.4.1	Boundary-Layer Transition	131
	4.4.2	Turbulent Boundary Layers	138
4.5	Control	and Prevention of Flow Separation	150
	4.5.1	Body Shaping and Pressure Distribution	150
	4.5.2	Vortex Generators	150
	4.5.3	Steady Tangential Blowing through a Slot	155

	4.5.4	Active Unsteady Blowing	157
	4.5.5	Suction	157
4.6	Heat Tr	ansfer and Compressibility	158
	4.6.1	Heat Transfer, Compressibility, and the Boundary-Layer	
		Temperature Field	158
	4.6.2	The Thermal Energy Equation and the Prandtl Number	159
	4.6.3	The Wall Temperature and Other Relations for an Adiabatic Wall	159
4.7	Effects	of Surface Roughness	162
5	Genera	l Features of Flows around Bodies	163
5.1		stacle Effect	164
5.2	Basic T	opology of Flow Attachment and Separation	168
	5.2.1	Attachment and Separation in 2D	169
	5.2.2	Attachment and Separation in 3D	171
	5.2.3	Streamline Topology on Surfaces and in Cross Sections	176
5.3	Wakes		186
5.4	Integrat	ted Forces: Lift and Drag	189
6	Drag a	nd Propulsion	191
6.1	Basic P	Physics and Flowfield Manifestations of Drag and Thrust	192
	6.1.1	Basic Physical Effects of Viscosity	193
	6.1.2	The Role of Turbulence	193
	6.1.3	Direct and Indirect Contributions to the Drag Force	
		on the Body	194
	6.1.4	Determining Drag from the Flowfield: Application	
		of Conservation Laws	196
	6.1.5	Examples of Flowfield Manifestations of Drag in Simple	
		2D Flows	204
	6.1.6	Pressure Drag of Streamlined and Bluff Bodies	207
	6.1.7	Questionable Drag Categories: Parasite Drag, Base Drag,	
		and Slot Drag	210
	6.1.8	Effects of Distributed Surface Roughness on Turbulent	
		Skin Friction	212
	6.1.9	Interference Drag	222
	6.1.10	Some Basic Physics of Propulsion	225 241
6.2	Drag Estimation		
	6.2.1	Empirical Correlations	242
	6.2.2	Effects of Surface Roughness on Turbulent Skin Friction	243
	6.2.3	CFD Prediction of Drag	250
6.3	Drag Reduction		
	6.3.1	Reducing Drag by Maintaining a Run of Laminar Flow	251
	6.3.2	Reduction of Turbulent Skin Friction	251
7	Lift an	d Airfoils in 2D at Subsonic Speeds	259
7.1	Mathen	natical Prediction of Lift in 2D	260

7.2	Lift in 7	Ferms of Circulation and Bound Vorticity	265
	7.2.1	The Classical Argument for the Origin of the Bound Vorticity	267
7.3	Physical	Explanations of Lift in 2D	269
	7.3.1	Past Explanations and their Strengths and Weaknesses	269
	7.3.2	Desired Attributes of a More Satisfactory Explanation	284
	7.3.3	A Basic Explanation of Lift on an Airfoil, Accessible	
		to a Nontechnical Audience	286
	7.3.4	More Physical Details on Lift in 2D, for the Technically Inclined	302
7.4	Airfoils		307
	7.4.1	Pressure Distributions and Integrated Forces	
		at Low Mach Numbers	307
	7.4.2	Profile Drag and the Drag Polar	316
	7.4.3	Maximum Lift and Boundary-Layer Separation	
		on Single-Element Airfoils	319
	7.4.4	Multielement Airfoils and the Slot Effect	329
	7.4.5	Cascades	335
	7.4.6	Low-Drag Airfoils with Laminar Flow	338
	7.4.7	Low-Reynolds-Number Airfoils	341
	7.4.8	Airfoils in Transonic Flow	342
	7.4.9	Airfoils in Ground Effect	350
	7.4.10	Airfoil Design	352
	7.4.11	Issues that Arise in Defining Airfoil Shapes	354
8	Lift and	d Wings in 3D at Subsonic Speeds	359
8.1	The Flo	wfield around a 3D Wing	359
	8.1.1	General Characteristics of the Velocity Field	359
	8.1.2	The Vortex Wake	362
	8.1.3	The Pressure Field around a 3D Wing	371
	8.1.4	Explanations for the Flowfield	371
	8.1.5	Vortex Shedding from Edges Other Than the Trailing Edge	375
8.2	Distribu	tion of Lift on a 3D Wing	376
	8.2.1	Basic and Additional Spanloads	376
	8.2.2	Linearized Lifting-Surface Theory	379
	8.2.3	Lifting-Line Theory	380
	8.2.4	3D Lift in Ground Effect	382
	8.2.5	Maximum Lift, as Limited by 3D Effects	384
8.3	Induced Drag		385
	8.3.1	Basic Scaling of Induced Drag	385
	8.3.2	Induced Drag from a Farfield Momentum Balance	386
	8.3.3	Induced Drag in Terms of Kinetic Energy and an Idealized	
		Rolled-Up Vortex Wake	389
	8.3.4	Induced Drag from the Loading on the Wing Itself:	
		Trefftz-Plane Theory	391
	8.3.5	Ideal (Minimum) Induced-Drag Theory	394
	8.3.6	Span-Efficiency Factors	396
	8.3.7	The Induced-Drag Polar	397

	8.3.8	The Sin-Series Spanloads	398
	8.3.9	The Reduction of Induced Drag in Ground Effect	401
	8.3.10	The Effect of a Fuselage on Induced Drag	402
	8.3.11	Effects of a Canard or Aft Tail on Induced Drag	404
	8.3.12	Biplane Drag	409
8.4	Wingtip	p Devices	411
	8.4.1	Myths Regarding the Vortex Wake, and Some Questionable	
		Ideas for Wingtip Devices	411
	8.4.2	The Facts of Life Regarding Induced Drag and Induced-Drag	
		Reduction	414
	8.4.3	Milestones in the Development of Theory and Practice	420
	8.4.4	Wingtip Device Concepts	422
	8.4.5	Effectiveness of Various Device Configurations	423
8.5	Manifestations of Lift in the Atmosphere at Large		427
	8.5.1	The Net Vertical Momentum Imparted to the Atmosphere	427
	8.5.2	The Pressure Far above and below the Airplane	429
	8.5.3	Downwash in the Trefftz Plane and Other	
		Momentum-Conservation Issues	431
	8.5.4	Sears's Incorrect Analysis of the Integrated Pressure	
		Far Downstream	435
	8.5.5	The Real Flowfield Far Downstream of the Airplane	436
8.6	Effects	of Wing Sweep	444
	8.6.1	Simple Sweep Theory	444
	8.6.2	Boundary Layers on Swept Wings	449
	8.6.3	Shock/Boundary-Layer Interaction on Swept Wings	464
	8.6.4	Laminar-to-Turbulent Transition on Swept Wings	465
	8.6.5	Relating a Swept, Tapered Wing to a 2D Airfoil	468
	8.6.6	Tailoring of the Inboard Part of a Swept Wing	469
9	Theore	tical Idealizations Revisited	471
9.1	Approximations Grouped According to how the Equations		
	were M	Iodified	471
	9.1.1	Reduced Temporal and/or Spatial Resolution	472
	9.1.2	Simplified Theories Based on Neglecting Something Small	472
	9.1.3	Reductions in Dimensions	472
	9.1.4	Simplified Theories Based on Ad hoc Flow Models	472
	9.1.5	Qualitative Anomalies and Other Consequences	
		of Approximations	481
9.2	Some 7	Cools of MFD (Mental Fluid Dynamics)	482
	9.2.1	Simple Conceptual Models for Thinking about Velocity Fields	482
	9.2.2	Thinking about Viscous and Shock Drag	485
	9.2.3	Thinking about Induced Drag	486
	9.2.4	A Catalog of Fallacies	487
10	Modeli	ng Aerodynamic Flows in Computational Fluid Dynamics	491
10.1	Basic I	Definitions	493

10.2	The Ma	jor Classes of CFD Codes and Their Applications	493
	10.2.1	Navier-Stokes Methods	493
	10.2.2	Coupled Viscous/Inviscid Methods	497
		Inviscid Methods	498
	10.2.4	Standalone Boundary-Layer Codes	501
10.3	Basic C	haracteristics of Numerical Solution Schemes	501
	10.3.1	Discretization	501
	10.3.2	Spatial Field Grids	502
	10.3.3	Grid Resolution and Grid Convergence	506
	10.3.4	Solving the Equations, and Iterative Convergence	507
10.4	Physical Modeling in CFD		508
	10.4.1	Compressibility and Shocks	508
	10.4.2	Viscous Effects and Turbulence	510
	10.4.3	Separated Shear Layers and Vortex Wakes	511
	10.4.4	The Farfield	513
	10.4.5	Predicting Drag	514
	10.4.6	Propulsion Effects	515
10.5	CFD Va	alidation?	515
10.6	Integrat	ed Forces and the Components of Drag	516
10.7	Solution	1 Visualization	517
10.8	Things	a User Should Know about a CFD Code before Running it	524
Refer	ences		527
Index			539

Foreword

The job of the aeronautical engineer has changed dramatically in recent years and will continue to change. Advanced computational tools have revolutionized design processes for all types of flight vehicles and have made it possible to achieve levels of design technology previously unheard of. And as performance targets have become more demanding, the individual engineer's role in the design process has become increasingly specialized.

In this new environment, design work depends heavily on voluminous numerical computations. The computer handles much of the drudgery, but it can't do the thinking. It is now more important than ever for a practicing engineer to bring to the task a strong physical intuition, solidly based in the physics. In this book, Doug McLean provides a valuable supplement to the many existing books on aerodynamic theory, patiently exploring what it all means from a physical point of view. Students and experienced engineers alike will surely profit from following the thought-provoking arguments and discussions presented here.

> John J. Tracy Chief Technology Officer The Boeing Company September 2012

Series Preface

The field of aerospace is wide ranging and multi-disciplinary, covering a large variety of products, disciplines and domains, not merely in engineering but in many related supporting activities. These combine to enable the aerospace industry to produce exciting and technologically advanced vehicles. The wealth of knowledge and experience that has been gained by expert practitioners in the various aerospace fields needs to be passed onto others working in the industry, including those just entering from University.

The *Aerospace Series* aims to be a practical and topical series of books aimed at engineering professionals, operators, users and allied professions such as commercial and legal executives in the aerospace industry, and also engineers in academia. The range of topics is intended to be wide ranging, covering design and development, manufacture, operation and support of aircraft as well as topics such as infrastructure operations and developments in research and technology. The intention is to provide a source of relevant information that will be of interest and benefit to all those people working in aerospace.

Aerodynamics is the fundamental enabling science that underpins the world-wide aerospace industry – without the ability to generate lift from airflow passing over wings, helicopter rotors and other lifting surfaces, it would not be possible to fly heavier-than-air vehicles as efficiently as is taken for granted nowadays. Much of the development of today's highly efficient aircraft is due to the ability to accurately model aerodynamic flows using sophisticated computational codes and thus design high-performance wings; however, a thorough understanding and insight of the aerodynamic flows is vital for engineers to comprehend these designs.

This book, *Understanding Aerodynamics*, has the objective of providing a physical understanding of aerodynamics, with an emphasis on how and why particular flow patterns around bodies occur, and what relation these flows have to the underlying physical laws. It is a welcome addition to the Wiley Aerospace Series. Unlike most aerodynamics textbooks, there is a refreshing lack of detailed mathematical analysis, and the reader is encouraged instead to consider the overall picture. As well as consideration of classical topics – continuum fluid mechanics, boundary layers, lift, drag and the flow around wings, etc. – there is also a very useful coverage of modelling aerodynamic flows using Computational Fluid Dynamics (CFD).

Peter Belobaba, Jonathan Cooper, Roy Langton and Allan Seabridge