

1

Understanding computer science

How the discipline of computer science develops new

understanding

Master Thesis Philosophy of Science, Technology and Society

Joke Noppers

University of Twente, Faculty of Behavioral, Management and Social

Sciences, Enschede, the Netherlands

August, 31, 2017

Graduation committee

First reader: Fokko Jan Dijksterhuis

Second reader: Miles MacLeod

2

Contents
Chapter 0: preface ... 5

Chapter 1: Understanding in computer science 7

Introduction ... 7

Research question .. 8

My approach .. 9

Outline of my thesis .. 10

References .. 11

Chapter 2: Developing understanding in science 12

Understanding in the philosophy of science 12

De Regt: Understanding as use 13

Boon: Understanding as interpretation 14

Understanding in different fields 15

References .. 16

Chapter 3: The development of understanding in physics 17

The specific sort of explanation that physics seeks 17

Causes as a key to explaining the physical world 18

Explanation beyond matter 19

How these specific explanations enable understanding 21

The kind of understanding that is being developed 22

Understanding in physics: understanding by proxy 23

How the nature of this understanding is reflected in the theories

of the field .. 24

The inferences that this understanding affords 24

How such inferences lead to the further development of that

understanding ... 25

The assumptions that underlie this idea of understanding 26

Assumptions about the nature of reality 27

Knowledge of this reality 30

From worldview to understanding 31

Philosophy of science: discussing the search for hidden causes .. 33

References .. 36

Chapter 4: The development of understanding in mathematics 37

Introduction .. 37

Mathematics as descriptions of structure 37

How describing ‘structure’ brings about understanding 39

Our concept of structure 39

3

Our understanding of structure is an understanding of

relationships ... 41

Where does this notion come from? 42

How mathematical theories expand this intuitive concept of

structure ... 44

Mathematical theories as interpretative structures 45

Mathematics, understanding and philosophy 46

The philosophical debate about mathematics 47

The confusion between mathematics and natural science 49

References .. 50

Chapter 5: Describing understanding in computer science 53

Introduction .. 53

Describing understanding in computer science 53

Studying the history of a paradigm 55

My use of sources ... 55

A specific conception of computer science 57

To what extent does a story from the past reflect computer science

of today? ... 59

References .. 61

Chapter 6: The development of understanding in computer science ... 62

Introduction .. 62

Programming and Language, a Conceptual Shift 62

A Brief History of Programming 70

Closing the black box: A new understanding of computation 85

References .. 90

Chapter 7: Analyzing Understanding in Computer Science 92

Introduction .. 92

Different kinds of scientific understanding 92

Computer science and mathematics: Why an understanding of

algorithmic computation is an understanding of structure 95

Describing structure: formal theories versus programming

languages ... 96

How traditional mathematical descriptions help us to understand

algorithmic computation 97

How programming languages help us to understand algorithmic

computation .. 102

Computer science and empirical science: How the physical can help

to understand the abstract 106

4

Physical objects as models for understanding 107

How a physical process creates an ‘empirical’ mathematics 112

References ... 113

Chapter 8: Computer science as a science 114

Introduction ... 114

Sub-question 1: What kind of thing does computer science seek to

understand? .. 114

Sub-question 2: How do they develop an understanding of this thing?

 ... 115

Research question: How can the field of computer science develop

new understanding? ... 117

The strengths and weaknesses of my analysis 118

A better understanding of computer science 120

Implications for future research 121

References ... 127

5

Chapter 0: preface

The nature of computers and computer science has always puzzled me.

Somehow, the emergence of computers and computer science has opened

up a new perspective, a new way of thinking that enabled us to

profoundly change the world we live in. But what kind of perspective

did computer science open up? In my final thesis for the master’s

program of Philosophy of Science, Technology and Society, I seek to

understand this new kind of thinking.

Writing this thesis has certainly not been an easy process. While

the philosophy of science profoundly analyzed the more traditional

forms of scientific thinking, computer science still remains a

philosophical terra incognita. And it is difficult to ask the right

questions when you have no concepts, theories or frameworks to

formulate your question in.

But, to paraphrase President Kennedy, sometimes, you don’t do things

because they are easy. You do them because they are hard. This

conceptual struggle made my job very difficult. But it also made my

job deeply challenging and satisfying. Before finishing my thesis, I

wouldn’t have imagined that spending all those days behind my

desktop computer could be so much fun. But it was.

I am grateful to my thesis supervisor, Fokko Jan Dijksterhuis, for

his guidance, his feedback and for those many fun and energizing

meetings in which we discussed my progress. I am also grateful to

Mieke Boon, who helped me a lot during the beginning of my thesis. I

would like to thank Miles MacLeod, who was willing to step in as my

second supervisor. And I am grateful to Yvonne Luyten-de Thouars,

who motivated me to finish my thesis at a moment when life’s

priorities had shifted towards my other work.

I would like to thank my boyfriend, Ivo Nouwens, for providing the

emotional and practical support that enabled me to finish my thesis.

I am also grateful for Lantz Miller and the students from my

Masterlab graduation group, who were my sparring partners in the

6

writing process. I would like to thank Arthur Melissen, for

providing feedback and advice on my thesis. I am grateful to my

friends and family, for supporting me. And last but not least, I am

grateful to my computer and my smartphone, the amazing products of

seven decades of computing, who were indispensable to the writing

process of this thesis.

Joke Noppers

Enschede, August 28, 2017

7

Chapter 1: Understanding in computer science

Introduction
Science helps us understand the world we live in. It makes us

understand the phenomena that happen around us. Think of lightning,

the oceanic tides, magnetism, but also things like human social

behavior, historic events or economic cycles.

For most disciplines of science, we have a more or less clear idea

of how they work to provide understanding. The physicist performs

experiments in a lab, to arrive at new insights about our universe.

The biologist observes plants and animals, to better understand the

natural world. The mathematician works out abstract mathematical

theories on a chalk board.

But not all disciplines of science are well-understood. As a

scientific discipline, the field of computer science is the source

of much confusion. Natural science studies the world around us, to

develop new insights about our universe. But what new insights are

there to be found in a man-made device like the computer? Some

people say that computer science is an abstract field, like

mathematics. They claim that it is not really about computers, but

about something else. But if that is the case, why do all the topics

in this field, directly or indirectly, have something to do with

computers?1

Apparently, it is unclear what kind of thing computer scientists

seeks to understand and how they seek to understand that thing.

Because of this, we find it hard to understand how computer science

‘works’ as a science. This creates a lot of confusion. Even among

computer scientists themselves, there is a lot of disagreement about

‘what’ computer science actually is.

Some people have argued that computer science is an applied science

or engineering (Loui, 1995). Some think it is a new branch of

mathematics (Dijkstra, 1978; Knuth, 1974), but others have contested

it and call it an empirical or natural science (Denning, 2007; Eden,

1 For an interesting blogpost about this issue, see:
http://www.nomachetejuggling.com/2012/02/02/computer-science-and-
telescopes/

8

2007; Newell & Simon, 1976). Some think that it is revolutionary new

entirely (Hartmanis, 1995). Others are convinced of the exact

opposite: They think that computer science is not even a field at

all, but “a grab bag of tenuously related areas, thrown together by

an accident of history” (Graham, 2008) .

Perhaps, it is not so surprising that computer science is so poorly

understood. When we want to understand the practices of scientific

fields, we turn to the philosophy of science. But philosophy of

science spent very little attention on analyzing computer science as

a scientific practice.

The developments in computing and computer science have attracted a

great deal of philosophical interest. For instance, people discussed

the meaning of computational processes (Searle, 1980) and the social

consequences of information technology (Brey, Light, & Smith, 1998).

But there was little attention for understanding the nature of

computer science (Brey & Søraker, 2009).

From a philosophy of science perspective, computer science is still

uncharted territory. The philosophy of science is mainly concerned

with the study of established fields, like physics, chemistry,

biology, sociology, or economics. There is a focus on empirical,

natural science (Ladyman, 2002) and a substantial body of literature

about the philosophy mathematics (Horsten, 2016), but not a lot

about computer science.

Therefore, I believe that a careful philosophical analysis of the

practices of this field would be the first step towards a better

understanding of the field. That is what I am trying to achieve in

this thesis.

Research question
In my thesis, I want to develop a better understanding of computer

science as a science. I want to explain how this field works as a

scientific discipline, by showing how computer scientists can

develop new scientific understanding.

Research question: How can the field of computer science develop new

understanding?

9

Sub-question 1: What kind of thing does computer science seek to

understand?

Sub-question 2: How does computer science develop an understanding

of this thing?

With my thesis, I do not aim to provide the definitive conclusion

about the status of computer science. I believe that my thesis will

contribute to this discussion in a different way. Through this

analysis, I will explain what scientific understanding is, how it is

developed and how it relates to the practices of a computer science.

Therefore, I will develop a clear set of concepts for thinking about

understanding in computer science. I hope that these concepts can

serve as a set of ‘thinking tools’, enabling others to formulate

their own standpoints in the discussion about the nature of computer

science.

My approach
I plan to explain the development of understanding in computer

science by relating it to other, more familiar forms of scientific

understanding. This approach enables me to discuss an ‘unfamiliar’

kind of understanding in familiar terms. This, in turn, allows me to

explain more clearly how understanding in computer science works.

Because computers are a highly technical subject, the field of

computer science is often associated with technical disciplines,

such as natural science, mathematics and engineering. Therefore, if

computer science is a scientific field, most people would likely

group it with the ‘hard’, technical sciences. Therefore, I will

relate the understanding developed in computer science to the

understanding developed in those fields.

In the natural sciences, two important, different ways of

understanding can be discerned. The first kind is an understanding

of the physical, developed through experiment and testing. The

second kind is mathematical understanding, developed through

abstract, mathematical reasoning. I will relate understanding in

computer science to these familiar forms of understanding. This will

enable me to explain the development of understanding in computer

science in familiar terms.

10

Outline of my thesis
I will use the first part of my thesis to discuss scientific

understanding. I will start my thesis with a chapter about

scientific understanding in general. In this chapter, I will discuss

several concepts of scientific understanding. I will explain how

understanding is developed in science and I will show how scientific

theories can bring about such understanding. I will use this chapter

to define a clear concept of scientific understanding.

When I have defined my concept of scientific understanding, I will

use that concept to describe the two important forms of

understanding in natural science. First, I will describe how

scientists can develop an understanding of the physical world. The

field of physics is often seen as the ‘model science’ for natural

science. This field seeks to understand the physical world at its

most fundamental level. Therefore, I will use the practices of this

field as an example of scientific understanding of the physical

world. Then, I will describe the second important form of

understanding, which is mathematical understanding. I will show how

the field of mathematics develops new understanding, by studying

abstract, mathematical concepts.

After having described these two forms of understanding, I will move

on to the second part of my thesis. In this part, I will describe

and analyze the scientific understanding developed in computer

science. I will start with a chapter that explains the methodology

of this description. I will discuss the method I have chosen to

describe this form of understanding and I will explain why I have

chosen this method.

In the next chapter, I will use this method to describe the

understanding developed in computer science. I will show how several

historical developments changed our understanding of computers. As I

will show, this new idea of computing provided the basis for the

development of understanding in computer science.

In the next chapter, I will relate this new form of understanding to

the other forms of understanding. I will explain what kind of

understanding this is, how it is being developed and to what extent

11

it is different from the understanding developed in mathematics and

physics. In the last chapter, I will discuss what this means for my

research question and I will give recommendations for further

research.

References
Brey, P., Light, A., & Smith, J. M. (1998). Space-shaping

technologies and the geographical disembedding of place.
Philosophies of place, 239-263.

Brey, P., & Søraker, J. H. (2009). Philosophy of computing and
information technology. Philosophy of technology and
engineering sciences, 9, 1341-1408.
http://www.idt.mdh.se/kurser/comphil/2011/PHILO-INFORM-TECHNO-
20081023.pdf

Denning, P. J. (2007). Computing is a natural science Communications
of the ACM (Vol. 50, pp. 13-18).

Dijkstra, E. W. (1978). EWD682. The nature of Computer Science
(first draft). Edsger W. Dijkstra Archive
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD682.PDF

Eden, A. H. (2007). Three paradigms of computer science. Minds and
Machines, 17(2), 135-167. doi:10.1007/s11023-007-9060-8

Graham, P. (2004). Hackers & painters: big ideas from the computer
age. Sebastopol, CA: O'Reilly Media Inc.

Hartmanis, J. (1995). On computational complexity and the nature of
computer science. ACM Computing Surveys (CSUR), 27(1), 7-16.

Horsten, L. (2016, Winter 2016). Philosophy of Mathematics. The
Stanford Encyclopedia of Philosophy. Retrieved August 19, 2017,
from
https://plato.stanford.edu/archives/win2016/entries/philosophy-
mathematics/

Knuth, D. E. (1974). Computer science and its relation to
mathematics. The American Mathematical Monthly. Retrieved from
http://www.jstor.org/stable/2318994

Ladyman, J. (2002). Understanding philosophy of science. Abingdon:
Routledge.

Loui, M. C. (1995). Computer science is a new engineering
discipline. ACM Computing Surveys (CSUR), 27(1), 31-32.
doi:10.1145/214037.214049

Newell, A., & Simon, H. A. (1976). Computer science as empirical
inquiry: Symbols and search. Communications of the ACM, 19(3),
113-126. doi:10.1145/360018.360022

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and
brain sciences, 3(3), 417-424.

12

Chapter 2: Developing understanding in science
In the next chapter, I will review the literature in the philosophy

of science, in order to find an accurate description of the

development of understanding in science. I will use this account to

discuss the development of understanding in mathematics and physics

and relate this to the development of understanding in computer

science.

Understanding in the philosophy of science
Understanding is central to the activity of doing science.

Therefore, one would expect that the philosophy of science has spent

a great deal of attention at clarifying understanding. Strangely

enough, however, this does not seem to be the case.

A lot of work is focused on scientific explanation. These

philosophers seek to describe how theories explain things to us.

Understanding is mostly treated as a by-product of such scientific

explanation. A lot of scholars assume that understanding is the

result of a clear and accurate explanation.

For instance, Hempel (1965) conceives of an explanation as a

logically valid argument, in which the phenomenon to be explained is

deduced from one or more universal laws. The feeling of

understanding is no part of the logical chain that connects

phenomena with the matters explaining them. For Hempel, this feeling

of understanding is only a psychological, subjective byproduct of

possessing an explanation. Therefore, understanding is of no

interest to philosophers of science, while explanation is. Trout

(2002) even argues that focusing on understanding is dangerous,

because the feeling of understanding is subjective: People can feel

they have understood something, while in reality they do not possess

an understanding.

Other philosophers of science point out that a clear explanation

does not always bring about understanding. Often, an explanation

only leads to a sense of understanding in some people, leaving

others puzzled. So understanding is an active psychological process,

not a passive by-product of having taken in the right explanation.

Personal factors also determine whether a given explanation leads to

13

understanding or not. Therefore, explanations in themselves do not

suffice as a good account of scientific understanding.

Michael Scriven (1962) argues that these personal factors must be

taken into account also. Scriven also points out that understanding

is not as subjective as Hempel and Trout think it is. Understanding

can be tested in a more or less objective manner, as is being done

in school examinations. Michael Friedman (1974) also criticizes

theories that solely focus on explanations. Friedman argues that

these theories try to define a concept of explanation, but they do

not explain what it is about this particular concept, that brings

about understanding.

Therefore, if I want an accurate and useful description of

scientific understanding, I need to move beyond philosophical

accounts that focus on scientific explanations.

De Regt: Understanding as use

Henk de Regt (2009) tries to give an account of what understanding

is and how it is related to theories and explanation. According to

de Regt, an explanation brings about an understanding of a thing if

it enables you to reason about that thing.

According to de Regt, a thing T can be understood if a theoretical

explanation for it exists that is intelligible. Many general

theories also explain specific things. They do this by explaining a

general mechanism or regularity that is underlying these specific

cases. When such a theoretical explanation is intelligible to you,

you can use your understanding of the general mechanism to construct

your own explanation of specific thing T.

The theory brings about an understanding of things because it

enables us to reason about those things, constructing our own

explanations of those things. To have an understanding of a thing,

then, is being able to reason about that thing.

De Regt’s account provides an idea of what understanding means and

when it is present. But it does not tell us how theoretical

explanations bring about such understanding. What, exactly, makes a

14

theory ‘intelligible?’ And how exactly, do theories enable us to

reason about things?

Boon: Understanding as interpretation

Mieke Boon’s (2009) work on scientific understanding is specifically

aimed at this ‘how’ question. She explains how we can understand

things and how theories bring about understanding.

Like de Regt, Boon thinks that to have an understanding of a thing

is to be able to reason about it. According to Boon, theoretical

explanations provide understanding because they provide something

necessary for such reasoning: a set of concepts and relations, which

can be used for building conceptual models.

According to Boon, we grasp the fuzzy and confusing reality around

us through a process of active interpretation. We divide reality

into different concepts and draw relations between those concepts.

From these concepts and relations, we build the mental structures

that allow us to make sense of the world. These structures form

mental models of the things in the world. The concepts and

relationships of the model can be used to make inferences about the

thing it is representing. Therefore, these structures allow us to

reason about those things. Boon calls such a conceptual model an

interpretative structure.

Boon equals having an understanding of a thing with being able to

reason about it. Because these structures are necessary for such

reasoning, having an interpretative structure of a thing is a

necessary condition for understanding it. According to Boon,

theories provide us with an understanding of things by enabling us

to build an interpretative structure of those things.

Theories are conceptual frameworks, consisting of a description of

certain concepts and the relations that exist between them. These

concepts and relations can be used, for structuring and interpreting

things in terms of the theory. By structuring and interpreting a

thing with these concepts and relations, we build an interpretative

structure of it, in the form of a theoretical model. This allows us

to reason about the thing and therefore, to understand it.

15

According to de Regt, when a general theory is intelligible to you,

you can use your understanding of this general theory to create your

own explanations for specific things. Boon’s account explains

exactly how a theory allows you to create your own explanations.

If a theory is intelligible to you, you understand its framework of

concepts and relations. Therefore, you can use these concepts and

relations for creating interpretative structures of a specific

thing. This interpretative structure enables you to understand this

thing. This is how an intelligible general theory enables you to

create your own explanations of specific things.

When a general theory enables the understanding a specific thing by

providing a set of concepts and relations, this theory serves as an

interpretative framework for understanding that specific thing. By

using their understanding as a basis for making further inferences,

scientists can refine this understanding. This is how understanding

is gradually developed in science.

Understanding in different fields
In the previous sections, I have reviewed the literature in the

philosophy of science, in order to find an accurate description of

the development of understanding in science. Although most of the

literature focuses on scientific explanations, there were two

accounts that discussed scientific understanding. The account of de

Regt (2009) explains what understanding is, while the account of

Boon (2009) shows how the explanations from scientific theories can

bring such understanding about.

I will use their accounts to analyze and describe the development of

understanding in computer science, mathematics and physics. For each

field, I will analyze how they seek to understand the topic that

they study.

In the next few chapters, I will discuss what sorts of explanations

the field provides, how these explanations enable the understanding

of specific things, how the topic of study is to be understood, how

this idea is reflected in the field’s concept of a theory and how

this specific form of understanding affords reasoning about that

topic. These detailed accounts of understanding in different fields

16

will allow me to relate the understanding developed in computer

science to understanding in other fields.

References
Boon, M. (2009). Understanding in the Engineering Sciences:

Interpretative Structures. In H. W. de Regt, S. Leonelli, & K.
Eigner (Eds.), Scientific Understanding: Philosophical
Perspectives. Pittsburgh: The University of Pittsburg Press.

de Regt, H. W. (2009). Understanding and Scientific Explanation. In
H. W. d. Regt, S. Leonelli, & K. Eigner (Eds.), Scientific
Understanding, Philosophical Perspectives Pittsburgh:
University of Pittsburgh Press.

Friedman, M. (1974). Explanation and Scientific Understanding.
Journal of Philosophy, 71(1), 5-19.

Hempel, C. (1965). Aspects of Scientific Explanation and Other
Essays in the Philosophy of Science. New York: The Free Press.

Scriven, M. (1962). Explanation, Predictions and Laws. In H. Feigl &
G. Maxwell (Eds.), Scientific Explanation, Space and Time (Vol.
III). Minneapolis: University of Minnesota Press.

Trout, J. (2002). Scientific Explanation And The Sense Of
Understanding. Philosophy of Science, 69(2), 212-233.

17

Chapter 3: The development of understanding in

physics

In the previous chapter, I used the work of Boon (2009) and de Regt

(2009) to develop a general description of understanding in science.

In this chapter, I will use their account of scientific

understanding to describe the development of understanding in

physics.

I will begin this chapter with a discussion of the specific sort of

explanation that physics seeks. I will show how these explanations

lead to new understanding. Then, I will discuss what kind of

understanding this is. I will discuss how this particular kind of

understanding is reflected in the practices of the field. Next, I

will discuss the specific assumptions that underlie this way of

seeking understanding. I will conclude this chapter with a short

overview of the philosophical debate about understanding physical

reality.

The specific sort of explanation that physics seeks
Physics is the study of our material universe. The field concerns

itself with the behavior of physical matter, which is causing the

physical interactions and physical phenomena we observe around us.

As I will show, physics understands this physical world in a

specific manner. In the next sections, I will discuss what kind of

explanations physics seeks how these explanations lead to

understanding and how such an understanding helps physicists to make

sense of the world.

Physics wants to do more than describe what the world is like. It

wants to explain why it is like that. Why do physical phenomena

happen? Why do objects tend to fall towards the Earth? Why do

certain elements emit radiation? Why does salt dissolve in water?

The explanations physics seeks are general explanations. Physics is

not interested in explaining why any particular object happened to

fall to Earth. The field seeks to explain why objects in general

tend to do this. Or, to put it in even more general terms, it wants

to know why objects with mass attract each other.

18

Causes as a key to explaining the physical world

Physics seeks explanations in terms of causes. In natural science,

to explain a physical phenomenon is to understand what caused it.

There is a good reason why scientists want to understand the causes

of physical phenomena. They are the key to understanding our

physical world. If we understand what is causing the things

happening around us, we can reason about those things, connect

different things through a common cause, predict them and in many

cases, influence them. This understanding helps natural scientists

to grasp the workings of material universe we live in.

Physics is interested in a specific kind of causal explanation. In

daily life, the cause of a physical event is often taken to be

another physical event. For instance, people might say that a forest

fire is caused by a lightning strike. Physics however, looks for a

different sort of cause.

This is does not mean that physicists are somehow denying that

lightning strikes can induce forest fires. They have very good

reasons to believe that the one somehow induces the other. But to

natural science, the occurrence of such a lightning strike alone

does not fully explain the causes of the fire.

Experience has taught us that lightning strikes can induce forest

fires. But our experience does not teach us why the event of a

lightning strike results in a forest fire instead of green flashes

of light, or a glitter explosion. Nor does it teach us what it is,

that causes lightning strikes to set forests on fire. Therefore, to

the physicist, a preceding physical event, like a lightning strike,

does not provide a full explanation for the occurrence of a forest

fire.

Therefore, physics seeks the causes somewhere else. Physicists

believe that more complete explanation for physical phenomena can be

found in the behavior of matter. The specific ways in which matter

behaves determines the course physical events will take. Therefore,

these behavior patterns are seen as the real reason that things

happen the way they do. This means that understanding those patterns

is crucial for developing an understanding of the physical world.

19

Forest fires happen because the matter in forests and lightning

bolts is behaving in a particular way, causing the lightning strike

to set into motion a course of events that will result in a forest

fire. Therefore, to understand why the fire occurred, physicists

need to understand why the matter in the forest and the lightning

bolt behaves the way it does.

Physics does not seek an explanation for physical phenomena in the

occurrence of other physical phenomena. This is because the

occurrence of these events does not tell physicists very much. For

them, understanding the behavior of matter is the key to

understanding the causes of physical phenomena.

Explanation beyond matter

But an explanation for the behavior of matter cannot be found within

matter itself. Physical things behave in a certain way. But we are

not able to observe the causes of this behavior. Such causes cannot

be detected through any physical means. Therefore, physics must

assume that the behavior of matter is caused by things outside the

realm of the visible. These hidden causes are taken to govern the

world of visible things, but they are not visible things themselves.

One example of such a hidden cause is gravity. Gravity may not

appear ‘hidden’ to us, because we seem to observe it all the time.

But we never observe gravity itself. All we see are the effects it

has on the behavior of matter. Gravity wave detectors like VIRGO and

LIGO do not observe actual gravity waves. What they measure are

slight oscillations in the measuring equipment that are taken to

result from these waves. The effects are visible everywhere, but the

cause remains hidden.

Electromagnetism, the cause behind visible light is invisible as

well. We think we can see it, but the visible lights we observe are

not electromagnetism itself. They are a result of electromagnetism.

This hidden force causes material particles to act in certain way.

And when some of these particles reach our retinas, we observe

visible light. But the electromagnetic force behind the phenomenon

of light is never observed.

20

While physics seems to be a study of the visible, physical world,

the actual focus of the field is with the invisible. Physics seeks

an explanation for physical phenomena in a set of hidden causes,

because this explanation cannot be found in visible matter itself.

This may seem a bit contradictory to our ideas about natural

science, because physics seems to be explaining phenomena from basic

matter all the time.

For instance, the tendency of chemical elements to bond with other

elements is said to be caused by the basic structure of their atoms.

Some of those elements have empty spots in their electron shells.

‘Sharing’ their electrons with other elements can help them fill

those spots. Therefore, elements that ‘complete’ each other tend to

form chemical bonds. Apparently, the behavior of these elements is

caused by their material composition. This would imply that the

explanation for the behavior of matter can be found in the matter

itself.

However, this explanation merely involves the basic structure of the

atom. It does not follow from it. It would be impossible to derive

such an explanation from the material structure of the atom alone.

This is because the behavior of the atom is not fully determined by

this material shape. The atom may possess a number of electron

shells, which may or may not have empty spots in them. But this says

nothing about a possible tendency of the atom to do something with

these electron shells, such as wanting to keep them either full or

empty.

Therefore, the basic structure of the atom tells us very little

about the way it behaves. Because of this, physics has to seek an

explanation beyond the visible. The invisible force of

electromagnetism is taken to determine the atom’s ‘preference’ for a

full electron shell.

This example nicely illustrates that, even in stories about the

fundamental building blocks of matter, a full explanation is to be

sought beyond visible matter. Without the intangible force of

electromagnetism, the statement that atoms form bonds because their

shells aren’t full makes as little sense as the statement that

21

people move to Belgium because they have an uneven number of ping

pong balls in their pockets.

How these specific explanations enable understanding
I have shown how physics seeks to explain physical phenomena in

terms of hidden causes. Now, I will discuss how such explanations

enable the development of an understanding of the physical world. I

will show that such explanations bring about understanding by

providing ‘the missing pieces’, completing our picture of the

physical world.

From the perspective of physics, our view of the physical world is

incomplete at best. In this field, physical phenomena are taken to

be the result of hidden causes. This means, that if we observe a

physical phenomenon, we only observe half of it. We can see the

visible part, but the causes that are driving this phenomenon remain

hidden to us.

This limited, partial view of the physical world prevents us from

understanding the phenomenon. As explained by Boon (2009)

understanding something requires us to have an interpretative

structure of the thing. Such an interpretative structure is a model,

embodying our ideas of what the thing is like. This structure allows

us to reason about the thing and to understand how it works. If we

do not have a complete picture of something we cannot create an

interpretative structure of it. Therefore, we cannot have an

understanding of it.

Explanations in physics help us to complete our picture of those

phenomena. They do this by giving an account of the hidden causes.

Theories in physics often describe these hidden causes in general

terms. But, as Boon already explained these general descriptions can

be used to understand more specific matters also. They can serve as

interpretative frameworks. The concepts and relations from the

general theory are used to create an interpretative structure of the

specific thing, enabling scientists to understand that specific

thing.

22

In natural science, general theories can serve as interpretative

frameworks for specific phenomena, because they describe the causes

of these phenomena. If a specific phenomenon P would be caused by a

general, hidden cause C, then a description of general cause C would

also be describing the hidden cause behind P. That would mean that a

general theory describing C can be used to create a description of

the hidden causes behind P.

Such a description of P’s invisible causes provides physicists with

the missing piece they need to complete their picture of P. They can

combine this account with the visible aspects of P that they were

already familiar with. By doing this, they create a complete model

of P, describing both the visible phenomenon and its hidden causes.

Such a complete model of P allows for reasoning about P.

By making inferences about their model of P, scientists can make

inferences about P itself. The interpretative structure of P allows

them to explain past occurrences of P and to predict future ones.

They can use this structure to make connections between P and models

of other phenomena and hidden causes. It allows them to think about

P, to predict it and to control it to some degree. It gives them an

understanding of P they can work with.

The kind of understanding that is being developed
In the previous sections, I have explained where understanding in

physics comes from, by showing how this field seeks to explain and

how such explanations can bring about understanding. Now, I want to

discuss the nature of this understanding itself.

As I have argued an explanation from physics enables us to

understand a natural phenomenon, which, in turn, allows us to reason

about this phenomenon. But what does it mean to understand a

phenomenon through understanding its hidden causes? What sort of

things do you understand when you understand a phenomenon in this

way? How exactly, can you use such an understanding for making

inferences? And what kind of inferences are those? In the next

sections, I will show that the specific explanations from physics

lead to a specific sort of understanding, which in turn, affords a

specific kind of inference.

23

Understanding in physics: understanding by proxy

As I have shown, theories in physics enable us to understand a

phenomenon P by telling a story about a possible hidden cause of P.

This hidden cause provides the missing piece we need to complete our

model of P. Such a complete model, incorporating both the visible

and the invisible aspects of P enables us to reason about P.

Therefore, the theory has provided us with an understanding of P.

However, these theories do not complete our understanding of P by

providing the real missing piece. They merely fill in the blanks by

providing ideas of what such a missing piece could look like. This

is because they cannot provide an account of P’s actual hidden

cause. An understanding of P’s actual hidden causes is unattainable

to us, because these causes are taken to be fundamentally

inaccessible to us.

Since these causes are taken to be invisible, they cannot be

directly observed by us. These causes also do not seem to follow

from logical necessity. We can use logic to deduce that a statement

like ‘In my street, it is either raining or not raining” must

necessarily be true. But it is very hard to show that logic dictates

that gravity must necessarily exist, or that the speed of light must

necessarily be 299,792,458 meters per second. No one, not even the

greatest minds in history, has even come close to successfully

providing such an argument. Therefore, it is most likely that the

nature of these causes cannot be deduced by logic alone.

Because these causes are invisible to us and because we cannot

deduce their nature from logic, they are inaccessible to us. We can

only know them in an indirect manner. By observing visible

phenomena, we can make inferences about their possible, underlying

causes. But the real nature of their causes will always remain a

secret to us. Therefore, these hidden causes can never be directly

understood by us.

Since we cannot have a direct understanding of these hidden causes,

physics must provide an alternative for this. The field does this by

building theoretical models of the hidden causes. Those models

provide a proxy for understanding the real hidden causes. By

24

understanding those models and reasoning about them, we indirectly

reason about the hidden causes they represent. These models enable

us to make indirect inferences about these hidden causes. Therefore,

they replace the direct understanding that we lack.

This means that, in physics, we never understand the actual hidden

causes. These are taken to be inaccessible to us. Instead, we

understand a theoretical model of those causes, based on our ideas

of these causes. Therefore, to have an understanding of P’s hidden

causes actually means: to have an understanding of our ideas of P’s

hidden causes. Understanding in physics is an understanding by

proxy.

How the nature of this understanding is reflected in the

theories of the field
The indirectness of the understanding created by physics is

reflected in its concept of a theory. As I have shown, physics

explains physical phenomena by providing a cause for these

phenomena. But because such causes are invisible to us and cannot be

deduced trough logic, we cannot have a direct understanding of them.

This means that we cannot directly describe this reality. We can

only make indirect inferences about it.

Therefore, in physics, theories are not descriptions of that which

is the case. Instead, theories and theoretical models express ideas

of what could be the case. This means that the concept of a theory

in physics is very close to the notion of a theory as it is used in

daily speech. They are beliefs about the nature of an unknown

reality that is arrived at by evidence and logical inference.

The inferences that this understanding affords

Physics provides a specific sort of explanation for physical

phenomena, which leads to a specific, indirect kind of

understanding. This in turn, affords a specific kind of reasoning

about these phenomena. The practice of developing understanding in

physics is based on this specific way of reasoning.

As I have explained, physics understands physical phenomena in an

indirect way. The understanding of a model of phenomenon P serves as

a proxy for the unattainable, direct understanding of the actual P.

25

This model is used for making inferences and predictions about the

behavior of P.

Because an understanding of the actual P is impossible, scientists

cannot know whether their model of P matches the actual P. It could

very well be that the actual P is different from the model of P. And

such a difference could result in different behavior. To be useful

for making inferences and predictions about P, the predictions of a

model must match the behavior of the actual P. Therefore, physicists

have to check the predictions from their model against the behavior

of the real P. This makes physics an empirical science.

If the predictions of the model do not match the behavior of the

real P, it means that the model is not useful for reasoning about

the real P. Then, the model needs to be revised. If the real

behavior of P does match the predictions from the model, it means

that the model is useful for predicting the behavior of the real P.

Therefore, according to this specific test, the model does not have

to be revised.

Such a match does not imply that the real P matches the model,

however. We can only observe that the material behavior of P matches

the behavior predicted by the model. We can never observe whether

the hidden causes of P match the ideas expressed in the model. It

could be the case that P’s underlying causes are totally different

from the model, but happen to result in the same behavior as the

model predicts.

For instance, the Newtonian model of classical mechanics predicts

the motion of physical bodies very well. Only at very high speeds,

near the velocity of light, the predictions from this model begin to

fall apart, indicating that underlying causes of the motion of these

bodies are different from the causes described by Newton’s model.

How such inferences lead to the further development of that

understanding

Such empirical tests are more than validity checks for the models.

They play a central role in the development of those models.

Therefore, they are of paramount importance to the development of

understanding in physics.

26

Checking the inferences based on an idea of P against the behavior

of the actual P provides valuable feedback on how the idea of P

relates to P’s actual behavior. This feedback allows for a

refinement of the initial model. These refined ideas, in turn

provide a basis for further inference and testing, leading to

further refinement of the model.

Therefore, tests that disconfirm ideas can be seen as more

informative than test that confirm them, because the disconfirming

tests indicate that the model needs to be revised. Therefore, these

tests provide the basis for the refinement of the model. These ideas

form the basis of Popper’s philosophy of falsification (Popper,

1934), an approach to science that views the falsification of

theories to be the main driver of progress in natural science.

By a constant cycle of inference, testing and revision, crude

initial ideas about the hidden causes of P are gradually developed

into a more refined model which better predicts the behavior of P.

By having a more refined and more useful model of P, we have

developed a better understanding of P. This is how understanding is

developed in physics.

Physics uses mathematics to describe its theoretical understanding.

Therefore, the theoretical models of physics are mathematical

descriptions. Physicists use the language of mathematics to describe

a structure that represents important aspects of P. This

mathematical representation of P guides their reasoning about P.

The assumptions that underlie this idea of understanding
In the previous sections, I have shown that the field of physics

seeks to understand our physical reality in a very specific manner.

Physicists try to explain the phenomena of this physical universe by

offering hypothetical hidden causes for those phenomena.

There is an important assumption that underlies this specific way of

seeking understanding. This practice assumes that these hidden

causes are the best way to understand our physical universe. This

key assumption in turn, is based on assumptions about what the

nature of this physical reality is like and what we can know of this

reality. These assumptions are metaphysical. This means that they

27

cannot be proved or disproved by logic or physical evidence. Hence,

they remain assumptions.

In the next sections, I will discuss the assumptions that underlie

the idea of understanding in physics. First, I will discuss the

assumptions that the field makes about the nature of physical

reality. Next, I will explain how this specific idea of reality

determines what we can know of this reality. Lastly, I will explain

how these ideas imply that our physical world can best be understood

in terms of such hidden causes.

Assumptions about the nature of reality

The practices of developing understanding in physics are based on

the assumption that physical reality can best be understood through

learning of its hidden causes. This view is built on a number of

implicit assumptions about the nature of this physical world.

For instance, this view presupposes that things like ‘hidden causes’

exist in the first place, because phenomena somehow ‘need’ a cause

to happen. It also presupposes that learning about the hidden cause

of a phenomenon actually clarifies things, instead of making the

rest of the universe more puzzling. In the next paragraph, I will

discuss the most important implicit assumptions I believe to

underlie this specific worldview.

Implicit assumption 1: All events must have a cause

In order to explain physical events in terms of hidden causes,

physics has to make an important assumption about the nature of

reality, which cannot be proved or disproved.

These hidden causes have never been observed by anyone. Still, a

belief in them is taken to be justified. This is because the

physical structure of visible matter cannot explain why a physical

phenomenon P occurs. Therefore, the true cause of P is taken to lie

elsewhere, beyond the visible.

But in itself, this conclusion does not follow from the premises. If

X cannot be found here, it does not necessarily follow that X must

be somewhere else. The one thing only follows from the other under

the condition that X certainly exists. If it is not certain that X

28

exists, the fact that X is not found here could also mean that X is

nowhere. Therefore, the justification for hidden causes is only

valid when we are certain that a cause for P exists.

But we are not certain of this. We think that all events must have a

cause, but this is just an assumption that we make. We have no

factual basis for this. We do not know whether the nature of

physical reality really requires all events to be caused by

something else. Perhaps things simply happen, out of themselves,

without any external reason. Perhaps, our physical universe just

works the way it works, with no further explanation to it.

It is impossible for us to establish whether these hidden causes

really exist or not. If they exist, they are invisible to us. We

will never be able to observe whether there really is some hidden

force behind the regularities observed in nature, or whether these

regularities simply are the way they are. Therefore, the belief that

all events must have a cause is a metaphysical belief: it cannot be

proved or disproved by physical evidence. In order to justify

seeking explanations in terms of hidden causes, physics has to

assume that this belief is true.

Implicit assumption 2: The hidden causes of these events are

universal in nature

If you want to explain physical phenomena with hidden causes in

general terms, you must not only assume that these causes must

exist, you must also assume that these causes are universal in

nature. The influence they exert on matter must be uniform across

time and space.

If these hidden causes do not possess a universal nature, the nature

of causes would be specific to certain times, certain places or

perhaps, even to singular events. Such specific causes can only

explain their own specific effects. They cannot explain the behavior

of matter and the physical phenomena that result from them in

general terms. Learning about the hidden cause of one phenomenon

would tell us little about the rest of the universe.

29

Therefore, a reality with non-universal causes would make the

explanations of physics impossible. This means that physicists have

to assume that the hidden causes of our world are indeed universal

in nature.

Implicit assumption 3: These hidden causes explain, but they cannot

be explained

The hidden forces of nature are taken to be the causal explanation

of all the complex material interactions that happen in our physical

world. These causes however, are not taken to have an explanation

themselves.

These causes are a basic property of this physical world, meaning

that they are just the way they are. Their nature cannot be further

explained through the use of logic, or at least not in any trivial

sense. It can also not be explained by invoking a possible cause

behind the causes. If such a cause behind the cause exists, it is

not taken to be accessible to human inquiry, not even in an indirect

sense. From a scientific point of view, it would be useless to

speculate about such a thing.

The statement that science cannot find a cause behind the causes may

sound a bit counterintuitive. After all, it is perfectly possible

that a future “theory of everything” shows that all fundamental

forces of nature can be reduced to one and the same thing. This

basic force of nature would then be the cause of all other forces.

It appears then, that science would be able to find the cause behind

the causes.

But actually, finding a single basic force is not the same as

finding the cause behind the causes. The nature of such a basic

force would explain the nature of the other forces. But the nature

of basic force itself is not explained. Such a theory does not tell

us where this single hidden cause comes from and why it is the way

it is. Basically, this theory only reduces the number of mysterious

causes from several to one. We would still be stuck with a

mysterious, hidden force, for which we have no explanation.

30

Implicit assumption 4: The phenomena that result from these causes

follow the rules of logic

These hidden causes are not only taken to be universal, they also

are logical. The material behaviors and interactions they give rise

to follow common rules of logic. If phenomenon P can only occur in

the absence of phenomenon Q and there is a circumstance C under

which hidden cause A will induce phenomenon Q, we can conclude from

this that P will not happen under circumstance C.

Knowledge of this reality

The nature of our physical reality determines what can be known of

this reality. As I will show, the specific worldview discussed above

has some important consequences for the ways in which we can know

this world. I will discuss the most important of these consequences.

Consequence 1: These causes are invisible to us

These causes lie beyond the visible. Therefore they cannot be

detected by physical means, such as the human eye and scientific

instruments.

Consequence 2: The nature of these causes cannot be deduced by us

These causes are taken to be a basic property of reality, which

means that their nature does not follow from something else, like

logic, or a cause behind the causes. They just are the way they are.

This means that their basic nature cannot be deduced from something

else.

Consequence 3: The nature of these causes can be inferred by us,

from the behavior of physical matter

Because, according to assumption 4, these hidden forces cause stuff

to behave in a manner that makes logical sense, we can use the

behavior of that stuff to make logical inferences about the causes

that underlie it.

Consequence 4: We can generalize the inferences we make to other

phenomena

31

Because these hidden causes are taken to be universal, we can be

sure that the inferences we make about them do not only hold for

that one specific case that we are studying. They can be generalized

to all other cases of the same phenomenon. Therefore we can use

inferences from a limited set of cases to explain the behavior of

phenomena in general terms.

From worldview to understanding

As I have shown, the field of physics makes a number of basic

assumptions about the nature of physical reality. The basic

assumptions in this worldview, in turn, imply that there is a

certain way in which this reality must be understood. These ideas

underlie the central idea of understanding in natural science. In

physics it is believed that our physical world can best be

understood through understanding its hidden causes.

In the next paragraphs, I will show how this idea of understanding

follows from this specific worldview. Firstly, these assumptions

imply that these hidden causes are the key explanation of this

physical universe. Secondly, these assumptions imply that it is

actually possible for us to obtain this key explanation. Therefore,

these hidden causes form the most fertile avenue for understanding

the physical world.

From the basic assumptions that physics makes about the nature of

reality, it follows that ‘key explanations’ exist. These key

explanations are explanations that are both complete and general.

This means that they fully explain why events happen and do so in

general terms. In this universe, these key explanations come in the

guise of hidden causes. These hidden causes are key explanations

because they are both complete and general explanations for the

occurrence of physical events.

Firstly, these hidden causes are full explanations. As I have shown,

visible matter alone does not suffice as a full explanation for

physical events. However, according to implicit assumption 1, all

things must have a cause. Therefore, a full causal explanation for

these events must exist, even if it cannot be found in the visible.

This explanation is taken to lie in a set of invisible causes. These

32

hidden causes explain events in a way that visible matter alone

cannot. Therefore, these hidden causes are full explanations.

Secondly, these hidden causes are also general explanations.

According to implicit assumption 2, these hidden causes are

universal. The same causes are behind many different events that

occur across time and space. This means that, the causes that

explain one event simultaneously explain many other events also.

These hidden causes therefore, truly are key explanations. These

hidden causes offer a complete explanation of why things happen and

do so in general terms. Such explanations enable a far greater

degree of understanding than descriptions of the physical could

provide. Therefore, these causes are indispensable to understanding

the physical world.

Not only do these assumptions imply that such a key exist, they also

imply that it is possible to obtain this key. While, according to

these assumptions it is not possible to have a direct understanding

of those causes, an indirect understanding of them can be achieved.

From assumptions, 1 and 3 it follows that these causes cannot be

observed (Consequence 1) and they cannot be deduced (Consequence 2).

Therefore, they are inaccessible to us, making it impossible to have

a direct understanding of those causes. But according to implicit

assumption 4 these invisible forces cause matter to behave in

logical ways. This makes it possible to learn about these causes in

a more indirect manner: by using logical inference (Consequence 4).

Their nature can be inferred from visible phenomena and the way they

behave, using a cycle of theoretical reasoning and empirical

testing. Through this kind of inference, a more indirect form of

understanding can be developed, embodying ideas about what could be,

instead of what is. This allows us to have an understanding of the

hidden causes.

The basic assumptions made by physics imply that the hidden causes

are the key explanation, indispensable to understanding the physical

world around us. They also imply that it is possible to obtain this

key, through developing an indirect understanding of these hidden

33

causes. This is why physics believes that our physical world can

best be understood through understanding its hidden causes.

Philosophy of science: discussing the search for hidden

causes
As I have shown, the development of understanding in physics is

tightly connected to a specific philosophical worldview. The field

entertains a number of ideas about the nature of reality and the

ways in which this reality can be understood. These issues have been

discussed by philosophers also. I will conclude this chapter with a

short overview of their viewpoints.

In his Phaedo, Plato already pointed out that the visible state of

the physical is not sufficient to explain why a specific event

occurs. If Socrates is sitting in an Athenian prison, the visible,

physical state of his body helps us to explain why he is able to

sit. But it does not explain why he is sitting, instead of standing

or running. Like the case of the forest fire, a full explanation

must be sought beyond the visible.

Plato believed that everything in the world had a specific purpose

and was ‘driven’ to act out its purpose. Socrates was sitting

because, at that moment, sitting was the action that best served him

in acting out his goal or purpose. Maybe this comfortable posture

allowed him to think more clearly and better prepare for what was

coming (Plato, trans. 1966).

Aristotle believed that the purposes of different things could

ultimately be reduced to just a few basic purposes. In a machine,

every small screw has a specific purpose. This specific purpose can

be explained in terms of the specific component it is a part of. And

the purpose of this component, in turn, can be explained in terms of

the purpose the machine is serving.

In a similar vein, the purposes of specific objects, animals, plants

and people could be explained in terms of the purpose of the

materials they consisted of. And the purposes of these different

classes of matter, in turn, could be explained in terms of their

purpose within the universe. Aristotle described these basis causes

in his classical work De Caelo, among else (Aristotle, trans. 1922).

34

Aristotle thought that these basic purposes were necessary truths,

which could be known by intuition. For him, this intuition provided

a model for explaining the world. The occurrence of specific events

could be deduced from our existing knowledge of the general. To

understand an event, was to understand why it followed from these

basic purposes. In the medieval Western world, his ideas became the

dominant model for seeking understanding (Ladyman, 2002).

After the Middle Ages, people’s ideas about seeking understanding

slowly began to shift. In his Novum Organum, (1620) Francis Bacon

criticized Aristotle’s ideas. Bacon was not convinced that

Aristotle’s ‘natural purposes’ were necessary truths. There could be

other explanations for the occurrence of physical things also.

This meant that the method of explaining things from pre-given

purposes was deeply flawed. When you accept these purposes as a

given, you will not consider the possibility that there might be

other explanations for things, let alone look for them. You would

never find out whether your initial ideas are justified or not,

because you only develop explanations that confirm them. Therefore,

Bacon argued, if you follow Aristotle’s method, you will never be

able to learn anything new.

If we want to learn about the world, we should stop explaining it in

terms of our own pre-conceived ideas. We should see the world as it

really is, not as we think it is. To observe the world in an

objective manner, we should clear our minds from-pre-existing

judgments. Only then are we able to observe what is really going on

there.

Therefore, in order to develop true understanding, Bacon proposed

that people should start with a careful and objective observation of

the physical phenomenon. The scientist would base her ideas on her

observations of the phenomenon only. Received wisdom, cultural

norms, moral values or commitment to an existing idea should play no

role here. The scientist had to be prepared to throw all her

carefully developed ideas about a phenomenon out of the window as

soon as the phenomenon seemed to contradict them.

35

By a careful and objective observation of a phenomenon, at different

occasions and under different circumstances, people could develop an

idea of the true mechanism behind it, which Bacon called ‘forms’.

According to Bacon, the invisible, true form of things produced the

phenomena we observe in the world. By discovering the nature of

these invisible forms, mankind would be able to explain and control

the physical world.

These ideas provided the basis for our modern conception of natural

science. As I have shown, the practice of inferring the visible from

the invisible is still very present in modern physics. Over the

years, the Baconian idea of doing science has received fierce

criticism. This method is often presented as a method to ‘let the

facts speak’, free of superstitious assumptions. However, as I have

shown in this chapter, this method is based on quite some

assumptions itself.

This method seeks to explain physical phenomena by claiming that

they are caused by an invisible mechanism. Because this mechanism is

invisible, its existence can never be proved or disproved by ‘the

facts’. Therefore the Baconian scientist has to assume that there is

a mechanism behind everything we see in the world, despite the fact

that no one has ever actually seen such a mechanism. That is quite

an assumption, for a method that claims to be based on verifiable

facts. David Hume (2003) among others, has criticized this form of

science, for making unwarranted metaphysical assumptions.

Apart from issues with metaphysical assumptions, ‘letting the facts

speak’ turns out to be harder than suspected in general. Bacon

advocated a science based on objective observation. The actual

behavior of the phenomenon should be guiding our judgment, instead

of our pre-existing ideas. But according to several philosophers,

such objective judgment may not at all be possible (Ladyman, 2002).

Hanson (1965) argues that our ideas of the world shape the way we

perceive it. This means that are not able to perceive things ‘as

they are’, without our view of the world getting in the way to some

extent. Kuhn (1970) argued that scientific theories are never the

product of pure, disinterested observation only. They are always

36

influenced by something else, such as the scientist’s personal

background, the beliefs of his community, historical circumstances

and many other things. For Kuhn, science is anything but a

disinterested, objective observation of the facts.

These criticisms, all pertain to science’s ability (or inability) to

provide us with objective truths. However, the philosophical school

of pragmatism has pointed out that understanding does not need to be

objectively true in order to be useful (Hookway, 2016). More

recently, Boon endorsed a similar viewpoint (2009). Even if a theory

does not accurately represent the true state of affairs, it still

can yield accurate predictions. And if a theory enables us to

accurately predict the behavior of phenomena, it can serve to

explain and control these phenomena.

Bacon hoped that his new science would one day enable us to explain

and control the world. The technological and scientific marvels of

our modern world, suggest that, for a large part, we have succeeded

in doing this.

References
Boon, M. (2009). Understanding in the Engineering Sciences:

Interpretative Structures. In H. W. de Regt, S. Leonelli, & K.
Eigner (Eds.), Scientific Understanding: Philosophical
Perspectives. Pittsburgh: The University of Pittsburg Press.

de Regt, H. W. (2009). Understanding and Scientific Explanation. In
H. W. d. Regt, S. Leonelli, & K. Eigner (Eds.), Scientific
Understanding, Philosophical Perspectives Pittsburgh:
University of Pittsburgh Press.

Hanson, N. R. (1965). Patterns of discovery: An inquiry into the
conceptual foundations of science: CUP Archive.

Hookway, C. (2016). Pragmatism The Stanford Encyclopedia of
Philosophy. Retrieved August 20, 2017, from
https://plato.stanford.edu/archives/sum2016/entries/pragmatism/

Hume, D. (2003). A Treatise of Human Nature (J. P. Wright, R.
Stecker, & G. Fuller Eds.). London: Everyman Paperbacks.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd
ed.). Chicago: The University of Chicago Press.

Ladyman, J. (2002). Understanding philosophy of science. Abingdon:
Routledge.

Popper, K. (1934). The Logic of Scientific Discovery. London, United
Kindom: Hutchinson.

37

Chapter 4: The development of understanding in

mathematics

Introduction

In the previous chapter, I have discussed the understanding that is

developed in physics. I have based my description on the work of

Boon (2009) and de Regt (2009) about understanding in science. In

this chapter, I will use their work to describe the understanding

that is developed in mathematics.

First, I will explain what kinds of things mathematical theories

describe. Then, I will show how these descriptions bring about

understanding. I will show that they bring about understanding,

because they help us to develop an understanding of our intuitive

concept of structure. Then, I will explain how these mathematical

theories help us to expand this intuitive concept. Next, I will show

how my explanation of understanding of mathematics fits within the

context of the larger debate in the philosophy of mathematics. I

will argue why I have chosen this particular viewpoint to explain

understanding in mathematics.

Mathematics as descriptions of structure
Theories in mathematics cover such a huge variety of subjects. While

many people associate the field of mathematics with the study of

numbers or spatial objects, mathematics does not confine itself to

either of those topics. The field has developed theories about all

kinds of things, ranging from geometry and algebra to communication,

codes, conflict situations, waiting lines and even the theories of

mathematics itself.

But while the subjects of mathematics seem hugely varied, they bring

understanding in the same way. These theories do not bring

understanding by describing actual things. They bring understanding

by describing a particular type of structure. Mathematical theories

define a basic structure and show what kinds of structural

properties logically follow from this basic structure.

For instance, algebra describes the nature of mathematical equations

by describing the structure that underlies these equations. The

theory is a description of the relationships that exist between the

38

different operators and operands in an algebraic equation. Geometry

describes the structure of the spatial relations that exist between

spatial objects. Communication theory describes the structure of the

different relations that exist between the basic properties of

messages and communication channels. And category theory describes

the structural pattern that underlies the theories in mathematics

itself.

At this point, some readers may wonder why this would set

descriptions in mathematics apart. After all, the concepts and

relations of a theory in physics can be viewed as structures also.

Doesn’t that mean that theories in physics are also descriptions of

structural patterns?

While I admit that these stories about structure sound very similar

to each other, there is a subtle difference between them. The

difference is that physics describes other things through providing

structures, instead of describing structure itself. These structures

are descriptions of actually existing, physical things. Structural

descriptions in mathematics, on the other hand, do not describe the

nature of actual things. They describe the nature of structure

itself, independent of any actual instances of such a structure.

Some theories in mathematics may create the impression that they do

describe the nature of actually existing things. This is because

they are sometimes referred to as ‘the mathematical theory of

conflict’ or ‘the mathematical theory of communication’. These terms

are a bit misleading, however. Like other theories in mathematics,

these theories do not describe the nature of actual things. They

describe the nature of a specific kind of structural pattern.

This doesn’t mean that these theories have nothing to do with those

actual things. The process of defining the basis of such a

structural pattern is often informed by our ideas about these actual

things. For instance, when we develop a mathematical theory of

conflict, we define a type of structure that represents what we

believe to be the main ingredients of actual conflicts: actors,

available information, possible courses of action, expected pay-offs

and the relationships that exist between those things.

39

But after we have defined our basic structure, our knowledge of the

actual thing no longer plays any part in our theory. We derive the

rest of the theory from this structural definition, showing what

kinds of structural properties logically follow from such a basic

definition. Therefore, this theory is a description of the

properties of a certain type of structure, not a description of the

actual thing.

How describing ‘structure’ brings about understanding
In the previous section, I have shown that theories in mathematics

all describe a particular type structure. These descriptions enable

us to expand our intuitive understanding of structure. We all

possess an intuitive concept of structure. This basic concept of

structure is indispensable for us to grasp the world. In the next

paragraph, I will discuss this basic concept of structure and

explain how this concept helps us to understand the world.

Our concept of structure

To us, it appears as if reality possesses a specific structure. This

means that for us, it is possible to divide reality into several

discernable objects, between which several specific relationships

exist. Intuitively, we all have ideas of what this specific

structure must be like. This means that the human mind somehow

developed a conceptual understanding of this structure.

Understanding this concept requires an understanding of the notion

of structure in general. Therefore, the basic component for this

understanding is a concept of structure itself. This concept of

structure, in turn, consists of an understanding of the notions of

an object and a relationship.

Most of us seem to understand what an object is. We conceive of

objects as separate entities, which are discernable from other

entities. This means that we somehow understand the idea of existing

as a separate entity, being discernable from other entities. Next to

understanding what an object is, we also understand the notion of a

relationship. This allows us to understand how discernable things

can be connected to each other.

40

This understanding is not as trivial as it may seem at first. The

concept of an object appears to be a very simple concept. But it is

very hard to explain it without using terms that already presuppose

an understanding of the notion of an object (like ‘entity’

‘discernable from’ and ‘other’). We cannot put into words what an

object or a relationship is, but somehow, we have an understanding

of these things.

Together, these two basic concepts enable us to grasp the concept of

structure in general. This notion of structure allows us to

interpret reality around us as an instance of a structure,

consisting of several, discernable objects and relationships.

Next to understanding structure in general, we also developed an

understanding of the specific structure we perceive in our universe.

This means that we have developed an idea of the specific objects

and relationships we discern in our reality.

For instance, we understand some of the objects in our universe as

material objects. In our concept of structure, this entails a

specific relationship with space and with time. Material objects

occupy a certain region of space and time. My chair, for instance,

takes up a certain amount of space and exists during a specific time

period, from its creation until its destruction.

This means that these objects are related to other objects that

exist in space and time. My chair exists somewhere in space.

Therefore, it has a relative position to other objects that exist

somewhere else in space: below my desk, inside my house, east from

the prime meridian, for instance. Next to existing in space, my

chair also exists in time. Therefore, it also has a relative

position to all other objects existing in time. My chair was created

after the middle ages ended, but is older than the Rotterdam central

railway station and it has lasted longer than the statue built at

Burning Man 2004.

In our concept of structure, not all objects occupy a region of

space. Non-material objects like Harry Potter, Thursday or the

number three cannot be found at a particular spot in this universe.

Therefore, these objects are not spatially related to other objects.

41

Harry Potter cannot be above the number three, or adjacent to my

chair.

Next to relationships of space and time, we also have an

understanding of other sorts of relationships. For instance, we

understand the relation of similarity. We can relate objects to each

other by being similar or dissimilar in respect to some property. We

understand the concept of magnitude, which means that we can relate

objects by being greater than or smaller than each other. And we

understand the relationship between the part and the whole. This

means that we can view objects as a whole, consisting of smaller

parts, which can be seen as objects themselves.

We understand that this part-whole relationship works in two

directions. Therefore, objects can be viewed as part of a larger

object also. And we understand that we can extend this part-whole

relationship indefinitely: My house is part of my street, my street

is part of my neighborhood, my neighborhood is part of my town, my

town is part of my region and so on.

Our understanding of structure is an understanding of relationships

My brief description of our concept of structure may leave the

philosophically inclined reader with many, many questions. Why do

material objects exist in time and space? Can some non-material

objects also have an existence in space? Can we really lump abstract

concepts, made-up fictional characters and non-tangible parts of the

material universe in the same category? Do objects like abstract

concepts and fictional characters even exist independently of us?

And if so, how do those things ‘exist’?

However, for this concept, these questions are not very relevant.

These questions concern an understanding of the nature of reality.

But this concept is not an understanding of the actual nature of

reality. It is an understanding of how we can relate things to each

other.

For instance, this concept does not involve an understanding of the

actual nature of space. Instead, it provides an understanding of how

objects are related to each other in space. We understand how things

can be above, inside or adjacent to each other in space. But space,

42

as a phenomenon in itself, is not understood through this concept.

In a similar vein, this concept does not tell us what ‘non-material

objects’ are and how they can be said to exist. It only enables us

to understand how we can relate these objects to other objects.

Where does this notion come from?

At first sight, our understanding of structure may appear to be a

trivial understanding. But although basic, this concept is not

trivial at all. Like the concept of objects and relations, concepts

like similar, before, adjacent to, part and whole, or greater than

cannot be explained in terms that do not already presuppose an

understanding of these concepts. And yet, an understanding of these

concepts comes natural to us.

Even non-human animals possess an understanding of these concepts,

to some degree. For instance, Hunt, Low, and Burns (2008) showed

that wild robins can discern between small quantities of tasty

mealworms, like three and four worms. The robins preferred holes

with larger quantities of worms. And when the researchers secretly

removed some of the worms from the holes, the robins kept looking

for the ‘missing’ worms. This means that these robins understand the

notion of an object and a collection. They also understand that

collections can be larger or smaller than other collections of

objects and they can remember how big particular collections are.

And, as young as zero to three days after birth, human infants

already grasp that the concept of magnitude applies to space, time

and quantity (de Hevia, Izard, Coubart, Spelke, & Streri, 2014).

Non-human animals have no language to formulate and communicate

ideas in, which means that they cannot teach abstract concepts to

their young. Human infants also do not possess language. And at

three days after birth, they almost have little to none experience

of the world. But still, they are able to grasp abstract concepts

like quantity and the relation between quantity, time and space.

Therefore, it seems unlikely that they have learned these concepts

from experience.

In 1787, Immanuel Kant already argued that this concept is not

learned from experience. Kant views our concept of structure as a

43

precondition for learning from experience. Without this concept, we

would be unable to make any sense of the world.

This makes it impossible to learn this concept from experience. It

would require already possessing the concept that we have yet to

learn. Therefore, our concept of structure must come from somewhere

else. It must be an innate part of the human cognitive system. This

means that we do not have a concept of structure because we perceive

it in the world, but we perceive the world because we have a concept

of structure.

According to Kant, reality itself does not come to us as a

structure. Our senses do not really perceive objects and

relationships. They only perceive sounds, vibrations, smells,

colors, shapes, bodily sensations and accelerations. It is our brain

that is actively creating a world full of structure out of these

inputs. It views these sensory inputs as if they were coming from a

world full of discernable objects.

Changes in sensory stimuli are interpreted as signifying differences

in objects. For instance, to our brains, changing color stimuli

signal the presence of a discernable object, or a discernable part

of an object. And if the intensity of background noise suddenly

changes, our mind interprets this change as coming from a distinct

source: an object that is producing a noise (a dog barking) or

blocking it (someone closing the door).

This process of interpretation cuts the stream of stimuli up into

several discernable objects. Then, our mind uses its understanding

of relationships to draw connections between these objects. It may

connect these objects through time, space, similarity, magnitude or

being part of a greater whole. By drawing these connections, our

brain changes the original stream of sensory inputs into a world of

discernable, related objects. This process lets us perceive reality

as full of structure.

Such a perception of reality is necessary for us, in order to make

any sense of the world. This is because this lets us perceive

reality as consisting of objects and relationships. These objects

and relationships are the key ingredients for developing an

44

understanding of the world, because they enable us to reason about

reality. In order to make any meaningful inference, we always need

an object to reason about and a relationship to reason with.

Therefore, objects and relationships are indispensable to drawing

inferences about our perceptions of reality. Without such objects

and relationships, we would not be able to draw any meaningful

conclusion from our perceptions. We would not be able to learn

anything from our sensory experiences and we would never develop an

understanding of reality.

In order to be able to make sense of the world, our mind needs to

understand the world in terms of a structure, consisting of a set of

discernable objects and relations. This is also a core tenet of

Mieke Boon’s work about scientific understanding. In order to gain

an understanding of a thing, we need to have an interpretative

structure of it (Boon, 2009). Therefore, the notion of structure is

fundamental to our ability to understand.

If structure is our brain’s way of understanding the world, it comes

as no surprise that we perceive structure everywhere. All matters

that we can think of possess structure: physical objects,

hypothetical objects, abstract objects and even objects that are

totally fictional. For our minds, there is no other way to conceive

of these objects. If things also exist in different manners, we are

not able to comprehend this. The basic idea of structure underlies

all of our thinking.

How mathematical theories expand this intuitive concept of

structure
In the previous sections, I have shown that theories in mathematics

are descriptions of structure. These descriptions bring about

understanding, because they enable us to expand our intuitive

concept of structure, which we use to make sense of the world.

In this section, I will show how mathematical theories enable us to

extend this intuitive concept of structure. Although our concept of

structure is innate, it is possible to extend it.

Our intuitions form the basic core of our understanding of

structure. They provide us with an understanding of how objects can

45

be related to each other. But we do not have an intuitive

understanding of all the things that follow from these basic ideas.

This requires reasoning about these ideas. We can use our intuitive

understanding of structure as a starting point for further logical

inference.

Theories in mathematics enable us to do this. The structures they

describe are explicit formulations of our intuitive ideas of

structure. They describe our fuzzy intuitions as clear structures,

consisting of a clear set of concepts and relations. With these

concepts and relations, we can reason more precisely about these

intuitive ideas, increasing our understanding of them.

Mathematical theories as interpretative structures

In the previous chapters, I discussed Boon’s account of scientific

understanding. I explained that in order to understand a thing we

need to have an interpretative structure of that thing. Such an

interpretive structure provides a clear set of concepts and

relations which enable us to reason about that thing. Therefore, we

can develop an understanding of it. I showed how theories in physics

provide interpretative structures of physical phenomena, which

enable us to understand those phenomena.

When it comes to understanding in mathematics, it might not be

entirely clear why we need such an interpretative structure. After

all, as I have shown, the field of mathematics is all about further

developing our intuitive understanding of the structure of our

perceived reality. So, apparently, this is an understanding we

already have.

And having an understanding of this structure, in turn, implies that

we also understand which objects and relationships can be discerned

in this reality. In the previous sections, I explained that this is

indeed the case. We intuitively understand how objects are related

to each other through time, space, quantity and other things.

So why would we need an interpretative structure, to further develop

this understanding? Why is it necessary to borrow the concepts and

relations from another theoretical structure? If we want to reason

about our intuitive concept of structure, wouldn’t it be much

46

simpler to use the objects and relationships from this concept of

structure itself?

But this is not as straightforward as it seems. If we want to reason

about these objects and relationships, we need to know what we are

talking about. Therefore we need a clear understanding of what

objects there are and how those are related. And our intuitive

concept of structure does not provide us with a clear notion of

structure.

Our basic understanding of structure is an implicit, intuitive form

of understanding. It enables us to intuitively ‘see’ how things are

related, when we encounter them in our world. But it is an

understanding without words. Therefore, it does not provide us with

a body of formal knowledge that specifies which types of objects

there are and how they are related. And if we cannot specify the

relationships between objects, we lack a clear starting point for

making further inferences.

If we want to use these intuitions for further inferences we have to

transform them. Our initial, intuitive understanding of how things

in the world relate to each other must be changed into a clearly

described set of objects and relations, in order to have a starting

point for further inference. This is what mathematical theories do.

They serve as an interpretative structure for developing a further

understanding of these intuitive ideas.

Mathematics, understanding and philosophy
In this chapter, I explained how the field of mathematics can

provide new understanding. In the philosophy of mathematics, this

question is the subject of much heated debate. Therefore, it appears

as if it is very difficult to provide a satisfying answer to this

question. However, I believe that this is not as complicated as it

may look at first.

In the next section, I present an overview of this debate. Then, I

will argue that much of this philosophical debate about is based on

a misunderstanding. This misunderstanding is caused by confusing

mathematics with natural science. Then, I will explain why I have

chosen to explain mathematical understanding as an understanding of

47

structure. Because this account does not suffer from this confusion,

it is able to explain the relationship between understanding and

mathematics in a satisfying manner.

The philosophical debate about mathematics
Over the years, philosophers and mathematicians have sought to

explain how mathematics brings about understanding. They tried to

find out what sorts of things in this world are explained by

mathematical theories. They also wanted to establish what

mathematical theories say about these things.

This debate was not solely motivated by a philosophical interest in

mathematics. People also sought a justification for the theories of

mathematics. Natural scientists justify their claims with evidence

and logical reasoning. But what reason do we have to accept the

statements in mathematical theories as true? In order to explain

what makes a statement true, one needs to know what this statement

is about. Therefore, people needed mathematics to have a clear

subject. Several competing accounts of the subject of mathematics

have been put forward (Horsten, 2016).

Mathematical realists argue that the science of mathematics is about

real aspects of objective reality. There are different ideas about

what aspects of this reality are being studied. Mathematical

platonists argue that mathematics is about mathematical objects,

that exist as abstract things outside of time and space (Linnebo,

2017). However, it is difficult to understand how these objects

could exist outside time and space. And if these objects exist out

of time and space, it is impossible for them to have a causal link

with our temporal, physical universe. Therefore, it is hard to see

how we, as physical beings in a physical universe, can have

knowledge of these ‘mathematical objects’(Horsten, 2016).

Another version of mathematical realism is mathematical naturalism,

as put forward by Quine (1951). In this view, there is no principal

difference between mathematical facts and empirical facts, like the

facts discovered in physics. But if that is the case, it is hard to

explain why our mathematical intuitions seem so very different from

other facts discovered trough experience. To us, statements like

48

‘between any two points, a straight line can be drawn’ feel as

necessary truths, not as something we learned over time, after

encountering many points with straight lines between them.

Others have argued that mathematical theories are not about ‘the

mathematical’ but describe something else. For instance, in the late

19th century, the school of logicism tried to prove that mathematical

theories actually describe a sophisticated type of logic (Horsten,

2016). However, their attempts to reduce the foundations of

mathematical theories to more basic logic have failed.

In the early 20th century, the formalist school sought a solution to

this problem in another direction. For the formalist, mathematics is

not ‘about’ anything. Therefore, mathematical theories aren’t about

anything either. These theories simply describe a certain structure

and do not refer to anything outside this structure. They can be

understood as meaningless, made-up structures (Zach, 2016).

These made-up structures acquire meaning by being ‘borrowed’ to

describe other things. For instance, the system of Euclid’s geometry

was in itself meaningless. It only acquired meaning because it could

be used to describe actual geometrical spaces. This is what makes

the science of mathematics useful, despite not being about a

meaningful subject itself.

The formalist account of the subject of mathematics is not without

problems either, however. Mathematicians prefer games that

correspond to their own mathematical intuitions. Apparently, they

want mathematical theories to represent their mathematical

intuitions in a correct fashion. This would mean that these theories

do refer to something ‘mathematical’ outside themselves (Horsten,

2016). This means that these mathematical structures aren’t as

meaningless as the formalists would like them to be2.

There is a lot of confusion and debate, about how mathematical

theories bring about understanding. Because of this, it seems hard

to provide a satisfactory answer to this question. However, I think

that much of this confusion stems from a misunderstanding of

2 I will discuss the formalist school and their approach to justification
in more detail in chapter seven.

49

mathematics as a science. Therefore, I believe that this question is

easier to answer than we think.

The confusion between mathematics and natural science

The root of this misunderstanding lies in a tendency to confuse the

development of understanding in mathematics with the development of

understanding in physics. In many ways, the natural sciences,

especially physics, are being seen as ‘model sciences’. There is a

good reason for this. As scientific practices, the natural sciences

are easy for us to understand.

The methods and practices in those fields are tightly connected to a

specific view of reality. This specific of reality places the

practices of these fields within a clear context. The development of

understanding in these fields can be understood as the development

of understanding of the Baconian universe. In the Baconian universe,

the visible is caused by the hidden, so an understanding of the

visible is developed through studying the hidden.

These ‘Baconian’ sciences provide a clear and exemplary model for

the development of scientific understanding. Therefore, I believe

that it is implicitly assumed that the development of understanding

in other fields must be understood in the same manner. Like the

Baconian field of physics, other scientific fields are also taken to

bring about understanding by studying a special class of things,

existing in this reality. These things are not necessarily tangible,

visible things. They can exist in other ways too. But they are a

part of our objective reality.

But the field of mathematics doesn’t have a clear picture of what

the world is like. Therefore, the field cannot tell us what things

in this world it studies to create new understanding. Despite the

lack of such a story, the field is very able to provide new

understanding. This is the point where people start to get confused.

They think that mathematics must be explaining something that exists

in this world. Otherwise it would not bring about understanding. So

they start looking for that thing.

Mathematical realists try to explain mathematical understanding by

claiming that the objective universe is endowed with a mathematical

50

aspect. Mathematical theories would bring about understanding

because they describe and explain this aspect. These people face the

difficulty of having to explain where this mathematical aspect fits

in with the rest of our objective reality. Others, like the

logicists and the formalists, try to get around this by taking a

more modest approach. They try to connect the theories of

mathematics to the things we already know to exist and are familiar

with. They run into trouble too, however, because these things never

quite fit the theories of mathematics.

Explaining how mathematical theories enable us to develop new

understanding is very difficult, because many people seek to explain

this in the wrong way. They think that mathematical theories bring

about understanding because they explain some object or aspect of

our reality, like Baconian sciences do. But mathematical theories do

not help us understand by describing reality outside us. As I

already explained, they are not about the nature of reality. They

explain how we can relate things to each other.

These theories further expand our intuitive concept of structure.

This intuitive concept of structure, in turn, helps us to make sense

of reality. As I have demonstrated in this chapter, the development

of understanding in mathematics can be explained as the development

of this intuitive concept. That is why I have chosen this approach

for my discussion of understanding in mathematics.

My viewpoint is part of a larger tradition of explaining

mathematical understanding. Kant (1998) already argued that

mathematical intuitions are a product of the human cognitive system.

Before the Second World War, the school of mathematical intuitionism

argued that Kant’s ideas could be helpful in explaining mathematical

understanding. (Iemhoff, 2008). And more recently, Lakoff and Núñez

(2000) proposed a cognitive science of mathematics.

References
Boon, M. (2009). Understanding in the Engineering Sciences:

Interpretative Structures. In H. W. de Regt, S. Leonelli, & K.

Eigner (Eds.), Scientific Understanding: Philosophical

Perspectives. Pittsburgh: The University of Pittsburg Press.

51

de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A.

(2014). Representations of space, time, and number in neonates.

Proceedings of the National Academy of Sciences, 111(13), 4809-

4813.

de Regt, H. W. (2009). Understanding and Scientific Explanation. In

H. W. d. Regt, S. Leonelli, & K. Eigner (Eds.), Scientific

Understanding, Philosophical Perspectives Pittsburgh:

University of Pittsburgh Press.

Horsten, L. (2016, Winter 2016). Philosophy of Mathematics. The

Stanford Encyclopedia of Philosophy. Retrieved August 19, 2017,

from

https://plato.stanford.edu/archives/win2016/entries/philosophy-

mathematics/

Hunt, S., Low, J., & Burns, K. (2008). Adaptive numerical competency

in a food-hoarding songbird. Proceedings of the Royal Society

of London B: Biological Sciences, 275(1649), 2373-2379.

Iemhoff, R. (2008, Winter 2016). Intuitionism in the Philosophy of

Mathematics. The Stanford Encyclopedia of Philosophy. Retrieved

August 20, 2017, from

https://plato.stanford.edu/archives/win2016/entries/intuitionis

m/

Kant, I. (1998). Critique of pure reason (P. Guyer & W. W. Allen,

Trans. P. Guyer & W. W. Allen Eds.). Cambridge Cambridge

University Press.

Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes from: How

the Embodied Mind Brings Mathematics Into Being New York: Basic

Books.

Linnebo, Ø. (2017). Platonism in the Philosophy of Mathematics. The

Stanford Encyclopedia of Philosophy. Summer 2017. Retrieved

August 20, 2017, from

https://plato.stanford.edu/archives/sum2017/entries/platonism-

mathematics/

Quine, W. V. O. (1951). Two Dogmas of Empiricism. The Philosophical

Revieuw, 20-43.

Zach, R. (2016, Spring 2016). Hilbert’s program. The Stanford

Encyclopedia of Philosophy. Retrieved August 19, 2017, from

52

https://plato.stanford.edu/archives/spr2016/entries/hilbert-

program/

53

Chapter 5: Describing understanding in computer

science

Introduction

In the next chapter, I will describe the specific kind of

understanding that is developed in computer science. In this

chapter, I will explain the methodology of this description. I will

discuss the method I have chosen to describe this form of

understanding and I will explain why I have chosen this method.

Describing understanding in computer science
According to Kuhn (1970) each scientific field is based on a

specific underlying paradigm. This paradigm shapes the way a field

seeks understanding. Therefore, a field’s way of understanding can

be explained by the paradigm underlying it. This means that, if I

want to describe the understanding developed in computer science, I

need to study its underlying paradigm.

Such a paradigm consists of a set of ideas. These are ideas about

what kind of thing the field is studying and how this thing should

be understood. The ideas of this paradigm provide the field with a

clear set of research goals, a common language to formulate problems

in and a number of solution strategies. Therefore, they shape the

field’s specific way of seeking understanding.

In his work, Kuhn mainly discusses fields in empirical science. But

non-empirical fields have underlying paradigms too. For instance, I

have shown how mathematics develops its own specific way of seeking

understanding. The field of mathematics shares certain ideas about

understanding structure. In the field of mathematics, structure is

perceived to be an abstract concept. This abstract concept is to be

understood through the creation of formal descriptions. These ideas,

about understanding structure, form the paradigm for the field of

mathematics.

Describing current paradigms

The beliefs in such a paradigm show us how a field seeks to

understand its subject. But studying these paradigms may not always

be straightforward. Although the practices of a field are shaped by

54

its underlying paradigm, these practices may not be the best place

to look when trying to understand this paradigm.

This is because the beliefs in a paradigm are often taken for

granted. They are considered to be a point of departure for study

and discussion, not the subject of study and discussion. Therefore,

they are almost never made explicit in the field’s actual research

practices.

This is similar to questioning whether or not the sun will rise

again tomorrow. People want to get ahead with making plans for

tomorrow, so they simply assume that the answer to this question is

yes. This prospective answer is a starting point for further

discussion, not a part of the discussion itself. From a

philosophical viewpoint, it is a perfectly justified question to

ask. But philosophically questioning all your core beliefs won’t get

you anywhere anytime soon when you want to get ahead with things.

In a similar vein, scientists are not interested in questioning the

foundations of the field all the time, because that doesn’t get them

ahead in the research that they are doing. Therefore, these

foundations are not part of the scientific discussion.

This means that the field’s textbooks and research papers will

rarely, if ever, explicitly discuss those beliefs themselves. These

textbooks and research papers will only discuss how to solve

problems according to those beliefs. Therefore, a field’s current

research practices may not provide much insight into the specific

sort of understanding it develops.

These fundamental beliefs only become part of the discussion at the

formation of a new paradigm, when it is still unclear how something

should be understood. Scientific fields can be in need of a new

paradigm because the old paradigm starts to break down, or because

they never had one in the first place.

Because these core beliefs are only part of the discussion during

the formation of a paradigm, the formation period is more

informative than the paradigm itself. Therefore, if I want to

discuss the current paradigm in computer science, I need to study

55

the period in which this paradigm developed. Therefore, my

description of understanding in computer science will consist of a

historical study, which shows how computer science’s current way of

understanding emerged.

Studying the history of a paradigm
In an interesting historical study, Nofre, Priestley, and Alberts

(2014) describe the emergence of the first paradigm for the field of

computer science.

These authors show that, in the second half of the 1950’s, people’s

understanding of computing underwent an important change. They argue

that this new way of understanding of computing provided the first

paradigm for the scientific study of computers. Around this new

paradigm, the field of computer science emerged. Therefore, this new

way of thinking allowed the field of computer science to develop

into a separate, scientific discipline.

These authors describe the emergence of computer science as the

emergence of a new paradigm. This makes their study very relevant to

my thesis. Therefore, this study will be a foundation for my

historical research.

My use of sources
In my history study, I have made use of two kinds of sources.

Primary sources are materials that were published at that time, like

books, articles and proceedings, intended to share the state-of-the

art of programming knowledge at that time. Secondary sources are

materials that were published at a later moment, meant to reflect on

that time, like histories of programming and personal memoirs of

computer pioneers.

When it comes to drawing a picture of a particular time period,

primary and secondary sources each have their own advantages and

disadvantages. One advantage of primary sources is that they are a

more faithful reflection of people's understanding of a problem at a

particular time.

Often, people have the tendency to fill in their recollection of the

past with hindsight knowledge. Many histories of scientific

56

discoveries are portrayed as a search for an answer to a well-

defined and well-understood problem, necessarily ending in finding

'the' solution. But at that time, for the people studying the

problem, it might not have been so obvious what the problem was.

Perhaps, people did not even realize there was a problem in the

first place. And if the problem is not so obvious, that which was

later hailed as 'the' solution, might at first, not have been

recognized as a solution at all. Only in hindsight, a clear picture

of the problem and its solution will emerge.

Primary sources, originating from the time period one aims to

inscribe, do not have this distortion. These sources are a

reflection of how people at that time, understood their field. These

sources can therefore be very revealing. For instance, terms used in

these sources tell a lot about the concepts underlying them. Because

these concepts are often not explicitly explained, one has to find

them by reading between the lines, looking how and where different

terms were used. In this way, one can trace back how people at that

time understood the things they were working on.

While primary sources are informative, they do not provide a

complete picture. From the early days of programing, there is not

very much literature available. Although many computers were used at

research institutes and universities, computers themselves were not

yet seen as an object of scientific study, so developments in

computing were often shared informally, instead of publishing

scientific books and papers about it.

The literature that is available is often meant to communicate a

particular new idea. These sources are not meant to give a broad

overview of the developments at that time. Therefore secondary

sources are needed also. In this chapter, I use several secondary

sources Nofre et al. (2014) Campbell-Kelly, Aspray, Esmenger, and

Yost (2014); Nijholt and van den Ende (1994) have done some

important historical research, placing the development of

programming languages in a wider perspective, involving the interest

of different actors, like businesses and computer experts who wanted

to claim legitimacy for their field as a separate science. The

research by Nofre et al. (2014) is important because it describes

57

the conceptual change that led to the emergence of a new paradigm in

computer science.

A specific conception of computer science

In their article, Nofre, Priestley and Alberts discuss the emergence

of computer science. However, their history is not the history of

computer science. It is the history of one particular conception of

computer science. As I will show, Nofre, Priestley and Alberts

attach a very specific meaning to the term ‘computer science’. These

authors define computer science as the formal study of computing.

Not everybody agrees with this specific vision of computer science.

Some people may think that this view of computer science is too

narrow. This discipline encompasses more than formal, theoretical

research. Many other accounts of the history of computer science

define this field in a much broader sense.

However, as I will explain, I believe that there are good reasons to

prefer the account of Nofre et al. (2014) over alternative accounts

of the history of computer science.

Nofre, Priestley and Alberts: Computer science as the formal study

of computing

Nofre, Priestley and Alberts view computer science as the formal

study of computing. This particular view is revealed by the starting

point they choose for their history.

These authors could have chosen to define the introduction of the

computer as the starting point for computer science. After all, that

was the period when people started designing them, building them,

working with them, learning about them. The first modern, stored-

program computers were introduced at research institutions shortly

after World War II. And the more primitive ancestors of modern

computers, programmable calculation devices and automatons, had

existed since antiquity3.

Another starting point could be the moment when the theoretical

principles behind modern, automated computing were first formulated.

3 For instance, the Antikythera mechanism is a mechanical device that could
be used to predict astronomical positions. This mechanism was found in a
shipwreck near the Greek island of Antikythera and is estimated to be more
than 2000 years old.

58

This happened before the first modern computers were built, in the

1930’s (Church, 1936; Turing, 1936). These theoretical principles

are built on mathematical foundations, from the early 20th and 19th

century, which, in turn can be traced back to older work. These are

all important milestones, all of which can be viewed as being the

origins of the developments in modern computer science.

But that is not what Nofre, Priestley and Alberts do. These authors

make a different choice. They claim that computer science did not

emerge until the second half of the 1950’s, after people’s thinking

about computers underwent a radical shift. People realized that

computing could be understood as an abstract concept, which could be

understood in formal, mathematical terms.

This means that these authors do not think that computer science

emerged with the introduction of the computer. They also do not

think that the field emerged with the formulation of the first

principles of automated computation. The authors think that computer

science emerged with a new way of thinking about computers.

Therefore, for these authors, computer science is not defined by

having knowledge of computers. It is defined by a specific way of

thinking. And this new way of thinking is the formal way of

thinking.

Why the history of the formal study of computing is relevant to my

thesis

These authors have some compelling reasons to equal the notion of

computer science with this particular way of thinking. This new way

of thinking changed the practical field of computing into a science.

All theoretical branches of computer science are based on this

paradigm of formal thinking.

But not everybody may agree with their vision of computer science.

People may find their conception of computer science too narrow.

They could point out that computer science encompasses much more

than formal, theoretical research. Therefore, when you equal

computer science with the formal study of computers, you reduce an

entire field to just one single facet.

59

However, as I will show, the narrow facet that these authors discuss

is exactly the aspect that I am interested in. In my thesis, I want

to show how computer science can develop scientific understanding.

This means that I need to understand how computer science works as a

science. Therefore, in this chapter, I want to describe the

emergence of computer science as a science.

In their study, Nofre et al. (2014) show that the emergence of

computer science as a science coincides with the emergence of the

formal paradigm. Before the emergence of this new form of thinking,

people also developed valuable insights about computing. Many of

these insights became the foundations for the field of computer

science. In their study, Nofre et al. (2014) show how these insights

led to the emergence of this new way of thinking.

But only when the formal way of thinking became commonplace, the

practical discipline of computing could develop into a field of

scientific study. This new way of thinking provided a shared

understanding of computing. This, in turn, enabled the development

of a set of shared goals and research methods. In other words: the

field of computing acquired its first scientific paradigm. From this

moment on, people in computing started doing science.

By describing the emergence of computer science as the formal study

of computers, these authors describe the emergence of computer

science as a science. This is only a small piece of the puzzle, but

it is the piece that I need. This makes their study very relevant to

my thesis.

To what extent does a story from the past reflect computer

science of today?
I have chosen to describe the understanding developed in computer

science with a history study describing the emergence of computer

science in the 1950’s. As explained in the previous sections, there

are compelling reasons to do this. But this approach may also raise

some critical questions. To what extent, is the understanding that

Nofre et al. (2014) describe, representative for the understanding

developed in computer science today?

60

In their article, Nofre et al. (2014) argue that the conceptual

change they describe, set the scene for computer science as we

understand it today. Also, Priestley (2011) has argued that these

changes introduced a new way of thinking about programming, which

still influences our ideas about programming today. The practices of

modern computer science seem to support these claims.

Modern-day theoretical computer science still studies computation as

an abstract, formal concept. Active subjects in the field are, for

instance programming language theory, the complexity of

computational problems and the use of formal, mathematical methods

to verify the correctness of computer programs. According to

Priestley (2011), these were the problems that were defined as

important at the beginning of the new field of computer science.

The understanding of computing described by Nofre et al. (2014) is

not only dominant in the theoretical fields of computer science. The

more applied branches of computer science focus more directly on

problems related to the effective functioning of real-world systems.

But they also study aspects of computation as an abstract,

mathematical concept.

For instance, the field of databases is concerned with the efficient

storage and retrieval of data, which is an essential part of digital

computation. They study these databases as logical structures and

seek to describe their practices with several mathematical

languages. The subfield of distributed computing focuses on how

mathematical computation procedures can be broken into different

parts and be distributed between different processors. And the field

of computer graphics studies mathematical procedures which

effectively process and display graphical images.

Therefore , I have very good reasons to believe that the paradigm

described by Nofre et al. (2014) does not only reflect the

development of understanding of computer science in the early

1960’s. It also reflects the development of understanding in

computer science today.

61

References
Campbell-Kelly, M., Aspray, W., Esmenger, N., & Yost, J. R. (2014).

Computer: a History of the Information Machine. Boulder,

Colorado: Westvieuw Press.

Church, A. (1936). An Unsolvable Problem of Elementary Number

Theory. American Journal of Mathematics, 58(2), 345-363.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd

ed.). Chicago: The University of Chicago Press.

Nijholt, A., & van den Ende, J. (1994). De Geschiedenis van de

Rekenkunst: Van Kerfstok tot Computer (The History of

Computing: From Tally-Stick to Computer).

Nofre, D., Priestley, M., & Alberts, G. (2014). When Technology

Became Language: The Origins of the Linguistic Conception of

Computer Programming, 1950–1960. Technology and culture, 55(1),

40-75.

Priestley, M. (2011). A science of operations: machines, logic and

the invention of programming: Springer Science & Business

Media.

Turing, A. M. (1936). On computable numbers, with an application to

the Entscheidungsproblem. Journal of Math, 58, 345-363.

62

Chapter 6: The development of understanding in

computer science

Introduction

In this chapter, I plan to describe how computer science develops

new understanding. In the last chapter, I have shown the best way to

describe understanding in computer science is to describe how this

way of understanding emerged. This means that my chapter about

understanding in computer science will be a historical study. In

this study, I will describe the development of the paradigm of

modern computer science.

For a large part, my history study will be based on the work of

Nofre, Priestley, and Alberts (2014). They show how practical issues

with writing computer programs set in motion a chain of events.

Together with economic developments and political ideals, these

events eventually changed our understanding of computers and

programming languages. This new way of thinking became a new

paradigm for the new field of computer science.

First, I will use the article of Nofre et al. (2014) to discuss how

people’s understanding of programming languages changed during the

second half of the 1950’s. Then, I will show how a combination of

technical inventions in computer programming, economic developments

and political ideas brought about this change. Next, I will argue

how exactly, these developments changed our understanding of

computing. Then, I will argue how this new way of thinking led to

the emergence of the new field of computer science.

Programming and Language, a Conceptual Shift
Since the first electronic, digital computers, people have been

talking about programming these machines in terms of ‘language’.

Early computer experts explained the activity of programming as

‘explaining a problem in the language the machine can

understand’(Nofre et al., 2014). The concepts of programming and

language still seem intimately related today. Programming is done in

a programming language.

However, the use of the word ‘language’ hides an important

conceptual shift. The pioneer’s ‘language’ was not the same as the

63

modern programmer’s use of the same word. In their article Nofre et

al. (2014) show that pioneers and modern-day computer experts have

very different ideas about the activity of programming. The concept

of programming of the early pioneers was closely connected to their

view of the computer itself, whereas our modern view of computing is

more abstract. I will discuss how these pioneers viewed programming

and contrast this with the present-day view of this activity.

The Computer: A Clever Robot Servant

When the first electronic, digital computers came into use, these

machines were portrayed as almost sentient beings. These machines

were lightning-fast calculation wizards, that could crack difficult

mathematical problems many times faster than even the smartest

humans could.

The most advanced of these machines were the stored-program

computers. Earlier computers had to be manually set up to perform

specific calculations, by plugging several switches. The stored-

program computer could be instructed in a much simpler way. It was

able to ‘read’ a program of coded instructions, provided along with

its input data. Depending on the data it was fed, it could even

modify these instructions. This provided these stored-program

computers with a flexibility never encountered before in a machine.

The concept of the stored-program computer would become a blueprint

for the modern computer.

Therefore, it was no surprise that people were impressed by these

machines. Newspapers wrote about ‘electronic brains’ and ‘robot

calculators’ (Berkeley, 1949; Nijholt & van den Ende, 1994; Nofre et

al., 2014). Not only the popular press, but also the builders and

inventors of the computers used human-like analogies when talking

about these machines. For instance: John von Neumann modeled his

design of an electronic computer after human neurons, (Nofre et al.,

2014) Grace Hopper expressed the efforts towards simplifying

programming computers in terms of the ‘education’ of a computer

(Hopper, 1952) and Alan Turing asked himself in a famous paper

whether machines could ‘think’ (Turing, 1950).

64

This conception of the computer has its roots in the fascination the

American people had with robots since the Great depression (Nofre et

al., 2014). Robots were seen as the hallmark of technological

progress. Also, viewing the computer as a machine with human-like

capabilities expressed the hope that the electronic computer could

someday replace the human computers. At that time, large

computational tasks were carried out by large groups of female

office workers (Nofre et al., 2014)

This particular conception of the computer influenced how people

thought of operating computers. Ordinary machines are operated, but

the computer, like a clever human servant, received instructions

about the task to be carried out. The use of the word instruction is

quite common in the early literature about computers. It can be

found in several papers and books: (Berkeley, 1949) (Burks,

Goldstine, & von Neumann, 1946; Campbell, 1952; Carr III, 1952;

Hopper, 1952; Hopper & Mauchly, 1953; Laning Jr & Zierler, 1954;

Levin, 1952) to name but a few.

The Language the Machine Can Understand

According to Nofre et al. (2014) it is this anthropomorphic view of

the computer that brought forth the first use of the word ‘language’

when talking about computers and programming.

Of course, beneath all its cleverness, the computer was an ordinary

electrical device (albeit very advanced for that time). It worked by

manipulating patterns of electrical signals. These were manipulated

according to a set of rules, which were hard-wired in the machine.

In themselves, these patterns meant nothing. But these pattern

manipulations were isomorphic to calculations of mathematical

functions. Therefore, the output of the computer could be

interpreted as the output of the represented function. This left the

burden of doing the actual calculation to the computer. The current

patterns in a computer consisted of a series of high and low

voltages, which were used to represent zeroes and ones. These zeroes

and ones, in turn could be used to represent all kinds of other

information.

65

If one would get this machine to perform a series of calculations,

(run a program) one had to feed it a series of these current

patterns. The computer would then read this series as a set of input

data and a set of instructions. It would, according to its inner

hard-wired rules, carry out the corresponding operations on the

input data, and deliver the desired output.

People extended the clever robot servant analogy to this job

(preparing the computer for specific programs). Just like a human

servant who only spoke a foreign tongue, the robot servant also had

to be addressed in its own language. People started to refer to this

as the machine language. The term machine language was in use as

early as 1947 (Nofre et al., 2014).

The term ‘machine language’ does not pertain to one language, but

rather to a set of internal languages. Computers have different

processors, with different sets of hard-wired instructions

available, and different memory sizes and arrangements. To stay with

the robot servant analogy: different servants spoke different

languages. The term ‘machine language’ is a term for the collection

of the different internal languages of different machines.

Programming as Translation

These ideas about the computer (as a clever robot servant which had

to be instructed in its own machine language) imply a certain view

of programming. The programmer had to translate: from the terms

humans use to express a solution to a mathematical problem4, to the

series of machine instructions that corresponded to this solution.

The concept of ‘human terms’ did not so much pertain to the use of

common, everyday language use. Rather it referred to formal

mathematical notation systems. There was a long tradition of viewing

mathematics as a language, the language nature, science and logic

expressed themselves in (Nofre et al., 2014).

4 In this thesis, the term ‘mathematical problem’ pertains to mathematical,
arithmetical and logical problems in the widest sense of the word. I am not
only talking about scientific and calculations, but also about jobs like
managing databases with employee records, making a fun computer game, or
calculating insurance premiums.

66

These systems allow humans to express procedures for solving

mathematical problems in an abstract way. These abstract procedures

are called algorithms. Algorithms can be translated to a computer.

For instance, if one wants to know how much 5 percent of 2327 is,

one has to divide the number 2327 by 100, and then multiply the

result of this division by 5. This procedure can be generalized by

replacing the specific numbers by letters. Then, it can be expressed

in the common system of writing equations that many children learn

at high school. The percentage algorithm will look like this:

y= (x/100) * p

This algorithm could be translated to a corresponding series of

steps for a given processor. This involved many more steps than the

steps expressed in the abstract mathematical formula. One had to

specify instructions for loading the required numbers from memory to

its processor registers (small bits of memory inside the processor),

performing the needed operations, handling and storing intermediate

results, and writing the resulting number from the processor

register to the computer's memory.

Not only did the programmer have to specify each move of the

processor, also (especially in the beginning), each machine was

different. Computers had different sets of instructions available,

different registers, and different memory sizes and arrangements.

Part of the art of programming was dealing with the idiosyncrasies

of the computer one was working on. The challenge lay in finding the

most efficient way to run a general algorithm on a specific machine.

The translation therefore was a translation from the general to the

specific, from the abstract world of mathematics to the inner

workings of the concrete machine. Or, as quoted in an early paper by

Hopper and Mauchly (1953)“It is (the programmer’s) job to bridge the

gap between the problem stated in terms of accounting procedures or

mathematical equations and the specific coded instructions which

control the computer system”(p.470).

But it was also a translation from the human programmer to his

clever robot servant. Many early papers and books explicitly refer

67

to programmers as being human, to emphasize the contrast between the

programmer and the machine.

Automatic Programming Systems

Very soon however, more and more aspects of this translation process

became automated. These developments made it possible to move away

from instructing the processor in its minutest details. These

programs were referred to as automatic coding systems’ of ‘automatic

programming systems’ (I will discuss these developments to a greater

detail later on in this chapter).

By the early fifties, there were programs that allowed the

programmer to describe a calculation in very general terms, using a

notation system akin to common mathematical notation. The computer

took care of filling in the details. In our present view, the

notation systems these programs used can be viewed as primitive

programming languages.

But at that time, these notations were not viewed as languages

(Nofre et al., 2014). When computer experts of that time talked

about language, they either meant: the formal language of

mathematics or the language of the machine. They did not conceive of

autocoding systems and their notations as a language in itself.

These systems were conceived of as an aide for the process, and

nothing more.

This all has to do with the then-prevalent view of programming as

mere translation, and not as conceptualization. Ideas about how to

tackle a certain problem were formed in the abstract world of

mathematical language. Only after having conceptualized an

algorithm, the job of programming began: this algorithm had to be

translated to the particular machine. These notation systems were

seen as a part of the translation labor, and not as part of the

conceptual labor that preceded the programming job. They did not

seem to belong to ‘the world of ideas’ like formal mathematical

notation systems.

Also, these notations were part of particular translation programs

built for specific computers. This made it even less obvious to see

them as abstract languages, like formal notation systems. These

68

languages could also not be classified under the category of machine

languages. They were purely there for the convenience of the

programmer. The computer did not use them as an internal language.

Below all the automatic code functionality, computers still work by

manipulating ‘zeroes and ones’.

Therefore these notations fell outside of the two ways of using the

word language in computing at that time. At that time, the concept

of a programming language did not exist yet. Paradoxically while the

first programming languages were being developed by computer

scientists, they were not perceived of as languages. The idea of

programming languages as a phenomenon did not materialize until the

conceptual shift Nofre et al. (2014) talk about, took place. I will

discuss this shift in a later section of this chapter.

The then prevalent view of programming also influenced how computer

experts viewed working with automatic programming systems.

Programming meant finding a translation between a mathematical

solution to a problem and the corresponding machine code. Automatic

programming systems (hence the name) were there to take this job

from the programmer. Working with automatic programming systems was

therefore not the same as programming, just like turning on the

dishwasher is not the same as doing the dishes.

For instance, Grace Hopper expressed the hope that the automation of

programming would enable the programmer to become a mathematician

once again (Hopper, 1952) Brown and Carr III (1954) wanted to shift

the burden of programming to the computer. The notations automatic

programming systems used were called ‘pseudo-code’, because they

were not part of the ‘real’ programming job.

Programming as Conceptualization

As said before (Nofre et al., 2014) have argued that modern-day

computer experts and computer pioneers in the 1940’s and early

1950’s had a very different view of the activity of programming.

While both groups use the word ‘language’ when talking about

programming computers, they use this word in a very different way.

One of the important changes in the second half of the 1950’s was

that people started to use the term programming languages. The

69

notations used in automatic programming systems were further

developed, and became to be seen as languages in themselves. This

change was accompanied by a shifting idea about the activity of

computer programming.

While programming in the early 1950 was seen as translation, modern-

day computer experts see programming as conceptualization. Part of

the programmer’s job is to conceptualize a more or less elegant

algorithm for some mathematical problem. This conceptualization is

often done in terms of the programming language the programmer is

working with. When the programmer comes up with an algorithm, it is

formulated in terms of the input language for the computer, and can

be directly used as input to the computer. No additional translation

step is needed. Working out solutions for given problems, and

conveying those solutions to the computer go hand in hand.

In the early 1950s these two worlds were still more or less

separated from one another. First, the programmer thought of an

algorithm in terms of the formal mathematical systems she learned in

high school. Only after doing this, she would move on to the

programming job: translating her ideas to corresponding computer

commands. Since the second half of the 1950’s these two worlds began

to converge.

This had its effects on the status of working with an automatic

coding system. At first people saw the activity of programming as a

translation between abstract algorithm and concrete machine. Working

with automatic programming systems was not seen as real programming,

because one left the job of translation to the computer. But later,

people started to see the activity of programming as the

conceptualization of viable solutions. Because working with

automatic coding systems also involves coming up with algorithms,

people started to treat this activity as proper programming.

From Notations to Languages

The conversion between conceptualization and program writing is

closely connected to another kind of change. Programming languages

came to be seen as proper mathematical objects, on a par with other

formal and logical systems. Like these formal systems, programming

70

languages are used to express mathematical problems and solutions.

Once part of a translation process with mathematics as input,

programming languages have become mathematics themselves.

These languages seem to have moved into the abstract, the world of

ideas, away from the actual machines they were running on. This is

closely connected to programming languages becoming platform-

independent in the late 1950’s.

Early automatic coding systems were still closely tied to one type

of computer. Later systems could be used on more than one type of

machine. For different types of computer, different translation

programs were written. All programs however, accepted the same

notation system. In this way one could write one program, using this

notation system that could then be translated to different types of

computer. Notation systems were no longer tied to one particular

(type) of machine.

The focus shifted away from actual computers. At first, the

technical challenge of automatic programming lay in getting it to do

its translating job efficiently on the machine it was running on.

Later however, developers of programming languages focused on the

design of the language itself, with the translation to a particular

computer being seen as a mere implementation detail. The concrete

machine disappeared from the stage, leaving the notation system as

an abstract entity, a language in itself.

A Brief History of Programming
In their article, Nofre et al. (2014) argue that our understanding

of programming underwent an important shift. In the previous

sections, I have discussed this shift. I have shown how programming

was conceptualized in the early fifties. I have argued that

computing, since then, has made an important conceptual shift. But

how exactly, did this shift happen? Which kind of developments made

it possible?

I have done a historical study, in which I researched the events

that led to this conceptual shift. In the next section, I will

discuss these events.

71

Automating the Programmer's Job

As shown in the previous section, instructing the computer directly,

in its own internal machine language, was a very cumbersome job. One

had to specify each move of the processor in its minutest detail.

Also, input and instructions consisted of long strings of zeroes and

ones, looking meaningless to the human, so next to cumbersome, this

job was also error-prone. This led people to search for ways to

automate parts of this process. These efforts gradually converged in

the first automatic programming systems. Some of these systems are,

in hindsight, seen as the first primitive programming languages. In

the next sections, I will discuss these developments.

Mnemonic codes

Soon after the introduction of the first digital electronic

computers at research institutes and universities, some groups

working with these computers came up with the idea of a ‘mnemonic

code’. When designing a program, a programmer would write down codes

like ADD STR or MUL, shorthand for add, store or multiply. When the

concept program was finished, it was assumed that the next job for

the programmer would be to translate it into zeroes and ones, before

feeding it into the computer.

The director of the EDSAC project, (one of the world’s first digital

computers) asked one of his students, David Wheeler, to write a

program that would read programs written in mnemonic code and

convert them to the corresponding machine (Campbell-Kelly, Aspray,

Esmenger, & Yost, 2014). The resulting program made it possible for

programmers to insert programs written in mnemonic codes directly

into the computer, instead of typing in endless series of zeroes and

ones.

Subroutines

When doing calculations on a computer, often the same calculations

are needed over and over again. In 1945, computer pioneers J.

Presper Eckert and John Mauchly wrote about the idea of subsidiary

routines. Instead of programming the same set of instructions

multiple times, such a calculation could be programmed once and then

stored in memory. Programmers could use this ready-made mini-program

in their own programs, by instructing the computer to load it in to

72

memory and then execute it. The term subsidiary routine was

abbreviated to ‘subroutine' (Nijholt & van den Ende, 1994).

System programs

To start the system up, computers were equipped with system

programs. These programs were at the base of everything the computer

did. They were 'hard-wired' in the computer’s circuits, and were

loaded when the computer was switched on. These system programs

would accept the programs prepared by programmers as input, convert

them to actual electrical signals and make the processor run the

program. In some cases, the hard-wired circuits would cause the

master program itself to be loaded into memory, to run it as a

normal program. This meant that certain places in memory could not

be used by normal programs, for they would erase the master program.

Any programmer working with a computer needed to know this before

she would enter her program (Nijholt & van den Ende, 1994)

Symbolic addressing

Because of issues like this, programmers had to be aware of the

computer's memory, which locations could be used and which could

not. Subroutines made this task even more complicated. Like the

master program, subroutines also needed a place in memory, for the

subroutine instructions themselves and for storing the subroutine's

intermediate results. Therefore, the master programs were assigned a

new responsibility. They were to manage the computer’s memory.

Instead of letting the programmer specify specific memory addresses,

the master program allocated these memory addresses. The programmer

only had to refer to a ‘symbolic’ address while the master program

kept track of the ‘real’ address of this value. This was called

relative or symbolic addressing. Symbolic addressing made the use of

subroutines less complicated (Nijholt & van den Ende, 1994).

Generators

The idea of letting computers do their own 'housekeeping' was

developed further in 'generator' programs. Programmer Betty

Holberton wrote the first generator program (Hopper, 1981). Her

Sort-Merge Generator was designed to merge two files. It accepted

the specifications of the targeted files as input, and used that

input to produce a series of machine instructions. These

73

instructions would merge the files in the desired way. The generator

was designed in such a way that the resulting program would handle

the allocation of memory locations also correctly.

SHORT CODE

The idea of using subroutines was also carried further, in the SHORT

CODE program. This program was suggested by John Mauchly, and

written by R Logan, W Schmitt and A Tonik (Sammet, 1969). Its goal

was to give the BINAC computer extra functionally. The limited

hardware of that time could not process floating point numbers. The

conversion had to be done arithmetically. This program made that

conversion easier.

The program also offered a coding system, which the programmer could

use to specify equations with. Instead of guiding the processor

step-by-step through a series of operations, one could write down a

series of codes, each standing for a mathematical symbol or a

number. Together these codes would form an equation which the

program would recognize. The program would then call in a series of

subroutines, which delivered the desired result.

This was different from what Wheeler had done. Mnemonic codes, like

the Wheeler system, were easier to remember than strings of bits,

but these notations still corresponded one-to-one to processor

instructions. This meant that one still had to instruct a processor

into the minutest details of the calculation. SHORT CODE made a move

away from these instructions, making it possible to instruct the

BINAC on a more general level. SHORT CODE was later reprogrammed to

be used on another computer, the UNIVAC.

The A-0 compiler

In 1951, Grace Hopper received an assignment to build a number of

mathematical subroutines for the UNIVAC computer. The routines were

to be standardized in such a way that everybody could use them.

Hopper decided to write a program that would allow the user to list

the subroutines she wanted to use. The subroutines were assigned

unique ‘call words’. The user typed in a series of call words for

the subroutines she wanted to use. After each call word she would

enter some specifications needed for that particular calculation.

The program took in these lists and compiled a ready-made program

74

from the available subroutines. This program was called the A-0

compiler.

The reason it got called a compiler was that each subroutine was

given a ‘call word’ because the subroutines were in a library, and

when you pull stuff out of a library you compile things. It’s as

easy as that. (Hopper, 1981a, p. 10)

This program produced its own machine language programs, and took

care of the memory management task. The A-0 compiler was based on a

different principle than SHORT CODE. SHORT CODE would read

instructions one by one, decode them and for each decoded

instruction, call in the corresponding subroutine. The A-0 compiler

would read a complete coded program, like the Sort-Merge generator

did. Only after it finished ‘reading’ this entire program, it would

start compiling a corresponding machine language program.

Automatic Programming
In 1953 Grace Hopper and John Mauchly wrote a paper in which they

discussed several ways in which the computer could assist the

programmer with her job. In this paper they defined the concept of a

compiler as a program that creates a complete program, instead of

translating and linking subroutines at each step (Hopper, 1981;

Hopper & Mauchly, 1953).

The difficulty and error-proneness of programming was at that time

an important bottleneck for computing (Hopper & Mauchly, 1953).

There was a shortage of trained programmers, and “the cost of

programmers associated with a computer center was usually at least

as great as the cost of the computer center itself”(Backus, 1981, p.

26). But still, the idea of automating machine programming was not

easily accepted. “We found that we had to change from being research

and development people and turn ourselves into salesmen, and get out

and sell the idea of writing programs this way to customers”

(Hopper, 1981, p. 14).

The A-2 compiler

After some time working with the A-0 compiler, “the long and

cumbersome way of writing the input specifications to the A-0

compiler were becoming apparent and it seemed much better to have a

75

shorter way of writing that stuff” (Hopper, 1981a, p. 12).

Therefore, Hopper and her team devised a new scheme for coding

input, which was more akin to the input format of the SHORT CODE

system. Like SHORT CODE, this compiler also allowed for instruction

on a more abstract level than machine instructions.

Instead of listing series of call words, the new compiler made use

of three-digit ‘code words’. The programmer could specify an

operation, two input variables and one result variable, coded in

these words. For instance, a typical instruction would be: ADD 00A

00B 00C which would mean: Add the values stored in A and B and store

the result in C. The computer was to recognize the coded programs

and to generate the corresponding machine programs (Hopper, 1981;

Sammet, 1969). In 1953, Hopper and her team augmented the A0

compiler with new code that enabled the compiler to recognize this

new input scheme. The resulting compiler was called A2.

Synthetic computers

In the early 1950’s more automatic programming systems came into

use. These programs aimed to simplify the programmer’s job. Most of

these systems were aimed at overcoming the hardware limitations of

that time, such as the lack of floating point functionality. These

systems tried to overcome that problem by letting their program

simulate the behavior of a virtual, more advanced processor, called

a synthetic computer. This virtual processor could handle floating

point numbers, and was equipped with extra (virtual) registers. It

was therefore easier to program.

Programmers wrote a set of instructions for this virtual processor.

The program would then read these virtual processor instructions and

translate those into instructions for the real processor (including

the arithmetic conversion from floating to fixed point numbers).

These programs made programming somewhat easier, but this came with

a price. They typically slowed the computer down with a factor of

five to ten (Backus, 1981). According to Backus, experience with

slow and inefficient automatic programming systems led many

programmers to believe that machine language programming could not

be automated.

76

These automatic programming systems typically did not abstract away

from machine language. It is true that the programmer gave her

instructions in another format than the computer’s actual machine

code. They were, like in the SHORT CODE system, using a pseudo-code.

But that did not change the fact that they still were instructing

every move of a processor, albeit a virtual one.

Algebraic Translators

While most automatic programming systems at that time did not

abstract away from processor instructions, there were some systems

that did, like the A-2 compiler. Another example is the algebraic

translator’, developed for the MIT Whirlwind, in 1954 by J.H Laning

and N Zierler. The notation used by this system resembled ‘natural’

mathematical notation. Unlike SHORT CODE or the A2 compiler, the

programmer could write numbers, operators and letters directly,

without having to translate them in some digit code.

Statements looked like this:

c = 0,5 / d

or

a = c + d

These systems were referred to as 'algebraic' because their input

notations aimed to resemble formal algebraic notation as closely as

possible. Some of these systems made use of a compiler, and

therefore resemble modern-day programming languages, (although they

were not platform-independent yet.) The notations these systems used

are in hindsight, seen as the first 'real' programming languages.

But at that time, the concept of a programming language did not

exist yet. Algebraic translators were first of all a class of

automatic coding programs. The conference proceedings of the 1954

MIT summer sessions also show that, at that time, many people did

not seem to notice the importance of moving away from specific

processor instructions.

Laning and Zierler’s algebraic translator gets only three pages in

the 28-page document. The rest of the document is devoted two other

77

automatic programming systems, that are based on the principle of a

virtual processor. (Proceedings Symposium on Automatic Programming

Digital Computers, 1954). In the introduction of the text several

techniques for simplifying programming are discussed. These include

mnemonic codes, subroutines and relative addressing. But to a

functional algebraic translation system (like Laning and Zierler's)

these techniques are mere implementation details, instead of

competing alternatives.

FORTRAN: Between Programming Language and Automatic Programming

System

Between 1950 and 1955 the use of computers became more wide-spread.

Next to the military and research institutes, insurance companies,

universities and government agencies also purchased computers to

help them with their work. The first production line computers, the

Remington Rand UNIVAC and the IBM 701 became available (Nofre et

al., 2014). In 1954 users of the 701 formed a special user

association, called SHARE in order to share ideas and knowledge

(Nijholt & van den Ende, 1994). These new users were plagued by all

sorts of problems. Because in the early 1950’s programming was still

so very close to the inner working of the processor, even relatively

simple tasks took a lot of programmer effort. Also, programs written

for one computer could not be transported to another type of

computer. This would make upgrading to a new system very costly,

since all the programs had to be re-written for the new machine

(Nofre et al., 2014).

This of course was a problem for the manufacturers of those

machines. IBM tried to remedy this by encouraging the exchange of

programs between their customers. Sharing knowledge was hoped to

prevent duplication of work. Because the 701 was a production-line

machine, programs written on a 701, could in principle be run on

other 701’s. If a user knew of somebody else who had already written

a program for a task she wanted to accomplish, she could use that

person for that program, instead of writing it herself. Still, their

efforts did not prevent a significant duplication of work from 701

users.

78

John Backus, a programmer at IBM tried to tackle the problem from a

different angle. Perhaps, instead of preventing duplication of

effort, perhaps it would make sense to tackle the difficulty of

programming itself. Backus was thinking among the same line as

Hopper, Laning and Zierler, although at that time, he did not know

of Laning and Zierler’s work (Backus, 1981). His solution was to

write an automatic programming system that abstracted away from

specific processor instructions, (or in other words an algebraic

translator). This program was to be written for IBM’s newest model,

the IBM 704. The program would be called FORTRAN, (FORmula

TRANslator).

His superiors said yes to the program, but the company did not

expect serious results from the project. They thought of it as a

research project. At that time, many people thought that machine

language could not be automated (Backus, 1981; Campbell-Kelly et

al., 2014).The project was located next to the elevator room, and

was not part of the product plan for the 704.

Backus and his team started working on the project in the beginning

of 1954 and were finished in April 1957. Together, FORTRAN took 18

man-years to complete (Nijholt & van den Ende, 1994). Although more

ambitious and complex than previous algebraic translators, this

program did not seem to differ fundamentally from these earlier

systems. Like earlier systems, FORTRAN was first and foremost a

computer program, with a corresponding notation system. Most of the

effort went into getting the program to do its job in an efficient

way. Designing the notation system only came second (Backus, 1981).

Also, like earlier algebraic translation-systems this program was

designed for a specific machine: the IBM 704.

But unlike the A-2 compiler and the algebraic translator, FORTRAN

was built for an assembly-line computer. This meant that even though

it was not platform independent, it still could run on many

different machines. FORTRAN turned out to work very efficient.

Programs were developed in much shorter times, days instead of weeks

(Campbell-Kelly et al., 2014). And because there were many 704’s in

use, many people could profit from FORTRAN. This made the system a

79

huge success. For the first time, an algebraic automatic programming

system was widely used.

Although Backus never had meant his system to be platform-

independent (Backus, 1981) the success of the FORTRAN system turned

out to reach beyond the 704. At that time, another algebraic

automatic programming system, the IT system, had been successfully

adapted to work on multiple machines. Inspired by this work, IBM

designed a system to adapt FORTRAN to one of its other models, the

IBM 650. A second version of FORTRAN was made available on several

other IBM models. In the early sixties, FORTRAN was also used on

non-IBM computers (de Beer, 2006; Nofre et al., 2014).

Backus seemed mainly interested in abstracting away from specific

processor instructions. But the success of FORTRAN was important to

a movement that searched for another kind of abstraction. At that

time, many people thought that the future of computing lay in

universality. Regardless of the type of computer, computers should

understand the same language, so that programs could be exchanged

between different computers. The wide adaptation of FORTRAN on

different machines showed them that this was technically feasible.

This, inspired efforts to create a universal computer language. One

attempt to build such a language would be a catalyst to the

conceptual shift that created our modern idea of a programming

language.

The Search for Universality

In their article (Nofre et al., 2014) explain how the proliferation

of computing installations, and the growing role of industry in

computer building, brought about a search for universality in

computing. Before the 1950’s, computing was mostly confined to a few

military research institutes and universities. The computers they

used were often built by these organizations themselves. In the

early 1950’s, businesses and government agencies started to use

computers also. Building computers became a commercial activity.

All these different actors brought their own interests with them.

Many organizations working with computers wanted to control the

costs associated with programming computers. They sought for ways to

80

port computer programs from one type of machine to another. Computer

manufacturers were also aware of this problem, and encouraged

collaboration and knowledge sharing between users. Computer users

shared their knowledge in user groups. Scientists also supported

initiatives to create portable computer programs, because they felt

that a greater interchangeability of computer programs would benefit

the exchange of computer knowledge.

Despite the fact that computer manufacturers generally supported the

exchange of knowledge, scientists saw the new commercial interests

in computing as a threat to the free exchange of information. Up

until then, computer centers ran on government and military funding.

The military tended to encourage collaboration and the free exchange

of knowledge. It was feared that computer manufacturers would try to

protect their business secrets and replace this open atmosphere with

secrecy.

In the early 1950’s, different scientists came up with the idea of a

universal computing language. This would be a language that was not

connected to any particular machine. For instance, Gorn (1954)

discusses the possibility of a universal code that was to be “more

or less independent of the machine” (p.75). Such a language was

hoped to stop the treat of computer manufacturers becoming too

powerful:

Nevertheless, as an alternative of the commercial capture of the

computer and data processing field by one make of machine, or

arbitrary ruling on machine specifications by government fiat, one

now has the interesting possibility of a common, universal, external

language arrived at by mutual agreement and persuasion, which can be

matched to the internal structure of numerous computers by ‘black

boxes’ which translate and generate the required computer internal

programs. (Brown and Carr, 1952, pp. 89-90)

Note the use of the term language, instead of ‘notation system’. The

proposed universal language was not part of an automatic programming

system. Rather, it was seen as a language in itself, a free-standing

entity, not connected to any computer in particular. These are the

first signs of a changing meaning of the word ‘language’ in

81

computing. When in previous times, computer experts talked about

language, they either meant machine language or abstract,

mathematical languages. Now, the notations that simplified coding

were also seen as languages.

The success of FORTRAN, which had an advanced notation system, and

could be ported to different machines, showed that, such a universal

language was technically feasible. This fueled the effort to develop

such a universal language. In the early sixties, different

initiatives were taken to develop a universal computing language.

One of these initiatives was COBOL (Common Business Oriented

Language), an initiative from the Ministry of Defense. This was an

automatic programming system akin to FORTRAN, but designed for use

in businesses. The idea was that if all organizations would use

COBOL for their data-processing, they could exchange programs. The

first COBOL compilers were built in 1962. The ministry of Defense

required firms who wanted to do business with them to use COBOL

(Nijholt & van den Ende, 1994).

Another initiative to achieve portability between different systems

was UNCOL (Universal Computer Oriented Language). This initiative

took a different approach than COBOL. It did not depend on the

willingness of all users to adopt one single language system.

Instead it accepted the proliferation of languages as a given (Nofre

et al., 2014).

The idea was to develop a ‘universal’ machine language, UNCOL. This

language was more or less like the synthetic computer systems

described earlier. Like those systems, the language described every

move of a virtual processor. Synthetic computers were developed to

overcome the hardware limitations of their real processors. The

synthetic processor was therefore more or less independent of the

particular processor running it. This gave it a kind of

universality. The developers of UNCOL hoped that that universality

would be the key to a universal computer language.

Unlike synthetic computer style languages the UNCOL language was not

meant for human programmers. Instead, it was meant as an

intermediate step in a bigger translation process. This process

82

combined two compiling steps. First, it would take a program in a

higher level language, like COBOL or FORTAN. This program would be

translated into UNCOL. This process would be the same on every

machine. After that, a machine dependent compiler would take the

UNCOL program and translate that into instructions for its own

processor. It was hoped that this system would enable programs in

different languages to run on different computers, enabling the free

exchange of programs. But the development of such a system turned

out to be harder than expected, and the development of UNCOL was

stopped in 1962 (Nofre et al., 2014).

FORTRAN itself, despite the portability and easy programming it

offered, was not considered a candidate for this computing lingua

franca. This was done intentionally. As said before, many people

feared the growing influence of commercial computer builders. If

IBM’s FORTRAN were to become the universal computer language, it was

feared this would further strengthen its already dominant position

(Rosen, 1967).

ALGOL

At the same time, in Europe, academics also made efforts to develop

a universal computing language. In 1957, a group of European

academics sent a letter to the president of the largest computer

association in the United States, the ACM. They proposed

collaboration between US and European computer experts, to create a

common formula language (Nofre et al., 2014).The ACM agreed to this

collaboration. The language was to be called International Algebraic

Language (IAL). Later, the language was renamed to ALGOL

(ALGOrithmic LANguage). It was this language that brought about the

conceptual shift that is at the basis of our modern understanding of

programming.

This initiative differed from the initiatives before it. The

academics saw their new language as a scientific project. Of course,

a universal computing language would be a great aid for scientists,

for it would facilitate the exchange of information. But the

scientific ambitions of this project stretched beyond this. The new

language was to turn computing itself into a subject of scientific

study.

83

The language was designed to describe algorithms, the general

solution procedures behind the computations carried out by

computers. Describing these algorithms in a clear and concise way

would make it easier to study these algorithms. This meant that the

language needs to make use of a precise and elegant notation system.

But control statements also mattered. These statements describe the

overall structure of the computation that is performed. They

designate in which order the different steps of the computation are

to be carried out, and the conditions under which different actions

are to be carried out. The language needed to have a set of control

statements that would give the language a clear structure. These

statements should not depend on the idiosyncrasies of the machine

the language was originally developed for (many programming

languages of that time suffered from this). A clear set of control

statements would allow scientist to reason in an abstract way about

the structure of computation.

The idea was that computing in itself was a topic worth of

scientific study, and the new language would make a clear

description of computing possible. Next to this, of course it was

also hoped that this language would become the computing lingua

franca that would make the easy exchange of programs possible.

Language, True Language and Nothing but a Language

Because from the beginning ALGOL’s developers conceived of their

project as an abstract language, they took different approach from

the approach Backus followed with the development of FORTRAN (and

all the algebraic translators before FORTRAN). FORTRAN had started

as a program for the IBM 704. Getting this compiler program to run

efficiently had been the biggest challenge for developers. The

corresponding formula notation only came second. The developers of

ALGOL did the exact reverse. Language design came first. Getting the

compiler to work not even came second; they did not even bother to

build a compiler at all. ALGOL was not an algebraic translating

program. Like natural and formal languages, it was a language, but

also nothing but a language.

From the standpoint of universality, the choice not to provide a

corresponding compiler made sense. The designer’s job was to provide

84

a universal language, a tool that would enable different computers

to communicate with each other. Getting this tool to work in

specific situations was not the task of the tool designer, but the

task of the workman using the tool.

In the beginning however, there were some problems with this no-

compiler approach. Although the designers tried to describe their

language in a clear and concise way, they could not prevent some

subtle ambiguities creeping in. This led to different

interpretations of the language. This in turn resulted in different

legal ALGOL compilers. The language that was to be the single

universal programming language, now knew a variety of local

dialects! No good news for its developers, so they decided to make

some improvements (Nofre et al., 2014).

To avoid different interpretations the syntax and semantics of the

new language were precisely defined. John Backus (who also was part

of the ALGOL team) got the idea to describe the syntax by means of

an ‘artificial grammar’, a formal notation for describing the rules

according to which legal statements in the language should be

formed. This notation, called BNF (Backus Naur Form) was analogue to

the notation used by logician Emil Post (Nijholt & van den Ende,

1994). The new language was called ALGOL ‘60.

This new language, with its explicit emphasis on abstraction, was

the final step in a long process of abstracting away from the inner

workings of the actual machine. Nofre et al. (2014) argue that the

real, physical computer became increasingly black-boxed, hidden

behind a set of abstract principles.

This process started with the first automated coding systems and was

accelerated by the promises of universal, machine-independent

languages. Automated coding systems such as SHORT CODE or Laning and

Zierler’s algebraic translator, enabled the programmer to leave the

cumbersome details of programming to the computer. The machine-

independent language FORTRAN enabled the same program to run on

multiple machines, separating computer programs from specific

machines. And ALGOL went yet another step further, by viewing their

85

programming language as an abstract, mathematical language, detached

from any actual translation program for that language.

Closing the black box: A new understanding of computation
These developments detached the notion of a computer program from

the notion of an actual computing process. In the next section, I

will argue that this separation led to two important realizations.

These two realizations provided the cornerstones for a new,

scientific understanding of computation.

I will show how the disconnection between computer and computer

program could bring about these new insights. Then, I will show how

these new insights enabled a new way of thinking about computation,

providing a new paradigm for the scientific study of computation.

Cornerstone one: a subject to study

The first of these two key insights was brought about by a shift in

people’s understanding of computer programs. Initially, people’s

understanding of computer programs was intimately tied to the

specific way actual machines carried out these programs. But

technical developments, such as automatic programming and universal

languages, caused the notion of a computer program to become

disconnected from the specific type of machine it was running on.

These developments changed people’s understanding of computer

programs. They started to approach programming on a higher level of

abstraction, independent of the specific machine the program would

run on. Over time, people started to realize that they had developed

an abstract conception of computer programs. They now understood

computer programs in terms of algorithms.

This abstract conception of computer programs became a topic of

interest to many people. Viewed as actual machine processes,

programs are just one particular solution on one particular machine.

But when understood as general algorithms, they illustrate how

entire classes of problems can be solved, providing insight in the

principles of algorithmic (machine) calculation itself. Therefore,

these programs can be understood as instances of algorithmic

computation. This was an interesting phenomenon in itself, beyond

86

the mere technicalities of specific computers. These programs

started to become recognized as a topic worth of scientific study.

This was the first of the two key insights, from which the field of

computer science would emerge. It provided the subject for this

field to study. Computer science would become the study of

algorithmic computation.

Cornerstone two: a way to understand

The second of these two key insights was brought about by a shift in

people’s understanding of algorithmic notation formats, like the

algebraic notation that was used in Laning and Zierler’s algebraic

translator. Like computer programs, people’s understanding of these

algorithmic notation systems was initially closely tied to a

specific machine.

These notation formats were able to describe computing on an

abstract level, independent of any specific machine. But although

these notation systems were machine-independent, their initial goal

was anything but. They were built for a specific machine. They were

part of a program that could translate this abstract, algebraic

description into the internal language of this machine.

For instance, Laning and Zierler’s algebraic translator was built

for the Whirlwind computer. And although FORTRAN became the first

machine-independent notation system, it was initially designed to

work on just one system, the IBM 704. Therefore, these notation

languages were still understood as being tied to a specific machine.

But when the automation of machine programming and the ideals of

universality disconnected the understanding of computing from the

actual machine, the initial goal of these notation formats became

less prominent.

Initially, constructing machine language programs was viewed as the

final objective of the programming process. But gradually, this

activity became a less important step in the process. Eventually,

87

this activity would become nothing more than an implementation

detail, completely handed over to the computer5.

When the construction of actual machine programs became less

prominent, other aspects of the programming activity became more

prominent. Drafting a mathematical sketch of the general algorithm

had always been a preparation stage for the ‘real’ job. When that

job was taken over by the computer, the algorithmic sketch gradually

became to be viewed as ‘the real job’.

This changed people’s perception of these notation formats. Because

the goal of building machine programs moved to the background, their

function in a machine language translation system became less

relevant to people. Describing the general algorithmic structure of

the program had now become the main activity of programming.

Therefore, their function as a general description format for

algorithmic computation became all the more relevant to people.

Gradually, people started to focus on the notation itself, while the

rest of the translation program moved to the background.

This led to the second important insight. The activity of

programming now consisted of describing general algorithmic

procedures to the computer. These algorithmic notation formats

provided a precise, mathematical notation to describe these

procedures in. Therefore, people started to realize that these

notation systems could be viewed as a formal language for describing

computation.

At this point, these notation systems stopped viewed as being a part

of a translation program and became to be viewed a languages in

themselves. They were seen as the formal, mathematical language of

algorithmic computation. According to Nofre et al. (2014) these

notations had become abstract structures. Therefore, people no

longer understood them as connected to any specific program6.

5 In one of his famous EWD writings, Edsger Dijkstra (1989) beautifully
reflected on this development, ‘After all, it is no longer the purpose of
programs to instruct our machines; these days, it is the purpose of
machines to execute our programs’ (p. 5).
6 The idea of describing computation with a formal language was not
entirely new. The builder of one of the earliest modern computers, Konrad

88

This was the second important insight that enabled the field of

computer science to emerge. As I have explained above, the first key

insight provided the field with its topic of study: algorithmic

computation. The second key insight provided an idea about how to

understand this form of computation.

People realized that programming languages could be used to study

these algorithms (Nofre et al., 2014; Priestley, 2011). Later, the

discipline also made use of other mathematical descriptions, to

capture certain specific aspects of computing. But programming

languages provided the first powerful means to describe this form of

computation.

These ideas were the foundation for the new paradigm, around which

the field of computer science emerged.

The emergence of a paradigm

The ALGOL language played an important role in the establishment of

the new paradigm of computer science. It was designed to be a

description tool for the study of algorithmic computation. But it

also served another function. It helped to establish the new

paradigm, by ‘communicating’ the ideas of this new paradigm.

The design of this language expressed an idea about what kind of

subject was studied here. According to the design of this language,

the study of computing is the study of the abstract. ALGOL was

designed to resemble the artificial languages of formal language

theory, developed by logicians in the 1930’s. Because it was meant

to be a purely abstract language, not an automatic coding system, it

had no corresponding translation program. This design emphasized the

abstract nature of the subject, clearly distinguishing it from the

physical computer.

Previously, studying computers had pertained to: studying specific

machines. It was an engineer’s job to gather knowledge of these

Zuse, already developed a programming language for the description of
computer programs in 1945 (Nijholt & van den Ende, 1994). His views
however, did not receive much attention initially. This was probably
because at that time, people’s idea of programming was still connected to
programming a specific machine. Therefore, they saw no use in describing
programming in abstract terms.

89

machines. This was applied knowledge, mainly of interest to the

engineer, who sought to improve the machines (and only indirectly of

value to scientist and the rest of the world, who of course, did

benefit from better computers).

The academics behind ALGOL wanted to shift attention from the

machines themselves to the principles behind those machines. These

principles were abstract principles, independent of any existing

computer. Therefore, they were a topic worth of scientific study in

itself.

By doing this, they claimed a distinct scientific status for

computing. From then on, computer science was established as a

scientific field, with a corresponding set of practices,

terminology, textbooks, journals and all the other things that come

with a mature scientific field (Nofre et al., 2014). These academics

had succeeded in their scientific ambitions for their new language.

As said before, this conceptual shift moved programming notations

into the domain of formal mathematical languages. This made that the

properties of programming languages could be studied with the

conceptual tools that were used study other formal systems. For

instance, Ginsberg and Rice proved that the notation BNF was

equivalent to a family of formal grammars described in a paper by

Noam Chomsky (Chomsky, 1956; de Beer, 2006; Ginsburg & Rice,

1962).This gave rise to a whole new body of literature that

connected programming languages with formal linguistics, logic and

meta-mathematics (the study of properties of mathematical deduction

systems).

In this chapter, I described how the paradigm of computer science

emerged. Using the work of Nofre et al. (2014), I have shown how in

the 1950’s, people’s understanding of computer programs changed.

This conceptual shift provided the two cornerstones for the

development of understanding in computer science.

But what kind of understanding is this? What does it mean to seek

understanding of algorithmic computation, as executed by computer

programs? How can a programming language help in the development of

this understanding?

90

In the next chapter, I will analyze this form of understanding. I

will relate it to the understanding developed in mathematics and the

understanding developed in the field of physics. This will allow me

to show to what this understanding is similar to these traditional

forms of understanding and to what extent it is different.

References
Backus, J. (1981). Paper: The History of Fortran I,II and III. In R.

L. Wexelblat (Ed.), History of Programming Languages.

Pennsylvania: Academic Press.

Berkeley, E., C. (1949). Giant Brains or Machines That Think. New

York: John Wiley & sons, inc.

Brown, J., & Carr III, J. (1954). Automatic Programming and its

Development on the MIDAC. Paper presented at the Symposium on

Automatic Programming for Digital Computers, Washington, DC.

Burks, A. W., Goldstine, H. H., & von Neumann, J. (1946).

Preliminary Discussion of the Logical Design of an Electronic

Computing Instrument. The Institute for Advanced Study.

Campbell-Kelly, M., Aspray, W., Esmenger, N., & Yost, J. R. (2014).

Computer: a History of the Information Machine. Boulder,

Colorado: Westvieuw Press.

Campbell, R. V. (1952). Evolution of Automatic Computation. Paper

presented at the Proceedings of the 1952 ACM national meeting

(Pittsburgh).

Carr III, J. W. (1952). Progress of the whirlwind computer towards

an automatic programming procedure. Paper presented at the

Proceedings of the 1952 ACM national meeting (Pittsburgh).

Chomsky, N. (1956). Three models for the description of language.

Information Theory, IRE Transactions on, 2(3), 113-124.

de Beer, H. (2006). The history of the ALGOL effort. Masters Thesis,

Technische Universiteit Eindhoven, Department of Mathematics

and Computer Science.

Ginsburg, S., & Rice, H. G. (1962). Two families of languages

related to ALGOL. Journal of the ACM (JACM), 9(3), 350-371.

91

Gorn, S. (1954). Planning Universal Semi-automatic Coding Symposium

on Automatic Programming for Digital Computers (pp. 74-83).

Washinton D.C: Navy Mathematical Computing Advisory Panel

Hopper, G. M. (1952). The Education of a Computer. Paper presented

at the Proceedings of the 1952 ACM national meeting

(Pittsburgh).

Hopper, G. M. (1981). Keynote Adress. In R. L. Wexelblat (Ed.),

History of Programming Languages Pennsylvania: Academic Press.

Hopper, G. M., & Mauchly, J. W. (1953). Influence of Programming

Techniques on the Design of Computers. Proceedings of the IRE,

41(10), 1250-1254.

Laning Jr, J., & Zierler, N. (1954). A program for translation of

mathematical equations for Whirlwind I. Engineering Memorandum

E-364: MIT Instrumentation Laboratory.

Levin, J. H. (1952). Construction and use of subroutines for the

SEAC. Paper presented at the Proceedings of the 1952 ACM

national meeting (Pittsburgh).

Nijholt, A., & van den Ende, J. (1994). De Geschiedenis van de

Rekenkunst: Van Kerfstok tot Computer (The History of

Computing: From Tally-Stick to Computer).

Nofre, D., Priestley, M., & Alberts, G. (2014). When Technology

Became Language: The Origins of the Linguistic Conception of

Computer Programming, 1950–1960. Technology and culture, 55(1),

40-75.

Priestley, M. (2011). A science of operations: machines, logic and

the invention of programming: Springer Science & Business

Media.

Proceedings Symposium on Automatic Programming Digital Computers.

(1954, 13-14 May 1954). Paper presented at the Symposium on

Automatic Programming Digital Computers, Washington DC

Rosen, S. (1967). Programming Systems and Languages, A Historical

Survey. In S. Rosen (Ed.), Programming Systems and Languages.

London: McGraw-Hill.

Sammet, J. E. (1969). Programming languages: History and

fundamentals. New Jersey: Prentice-Hall, Inc.

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind,

433-460.

92

Chapter 7: Analyzing Understanding in Computer

Science

Introduction

To describe the development of understanding in computer science, I

conducted a literature study about the history of computer science.

By showing how this form of seeking understanding emerged, I was

able to describe the specific way computer science seeks

understanding. In my literature study, I established that computer

science, as a scientific discipline, seeks an understanding of

algorithmic computation. The field does this by describing this

computation with programming languages and other mathematical

models.

In this chapter, I will relate this form of seeking understanding to

the more traditional forms of understanding. I will start with a

short discussion of these forms of understanding. Then, I will

explain why computer science does not seem to fit in with these

forms of understanding. I will present my view about the

understanding developed by computer science and provide a short

outline for the rest of this chapter. Then, I will move on to the

main part of my analysis.

Different kinds of scientific understanding
The chapters about understanding in physics and understanding in

mathematics show that there are different kinds of scientific

understanding. Scientists can seek an understanding of the nature of

our physical world. Or they can seek to develop an understanding of

our basic concept of structure. These are different kinds of

understandings of different ‘things’. Therefore, each form of

understanding is developed in a different way.

Understanding the physical world versus understanding structure

Understanding of the physical world is developed through finding

causal explanations for physical phenomena. These phenomena occur to

us without an observable cause. We strongly feel that all things

must have a cause in order to occur, but we are not able to see

these causes. Therefore, we assume that these phenomena must be

caused by something invisible. To explain why these phenomena

93

occurred, we therefore need to discover what sort of hidden thing

has caused them.

Because these causes are unobservable to us, their nature can only

be inferred from the phenomena that result from them. Therefore, in

order to draw inferences about these hidden causes, we need to

observe these physical phenomena. We have to check whether the

actual behavior of a phenomenon matches the ideas we have formed

about it. An understanding of a physical world therefore, is an

empirical understanding. It is built on actual experiences with

actual physical phenomena.

We can also develop our understanding of structure. We perceive

structure everywhere around us. Therefore, this structure appears to

be a fundamental part of our reality. This would imply that our

understanding of structure is an understanding of reality. But this

is not the case. The structure we perceive in the world is not a

part of objective reality.

Our experience of structure is created by our own brains. Our brains

use an innate, pre-existing notion of structure, to interpret the

inputs they receive. Through this active process of interpretation,

our brains make us experience the world as a world filled with

structure. This enables us to make sense of this reality.

Because our concept of structure is not a part of objective reality,

it cannot be found in this reality. Therefore, our understanding of

this concept is not developed by seeking it in objective reality. It

is developed through analysis. This means that we carefully examine

our pre-existing notion of structure, in order to reason about this

notion.

Theories in mathematics provide formal descriptions of our concept

of structure. Such a precise description enables us to reason more

precisely about our intuitive ideas of structure. This enables us to

further develop our understanding of these ideas.

Why computer science doesn’t seem to fit in these categories

Most fields in natural science can be understood as seeking one of

these forms of understanding. The classical experimental sciences,

94

such as chemistry, biology and physics, seek an empirical

understanding of actual things. The subfields of mathematics use

analysis to seek an understanding of our abstract concept of

structure.

But computer science is strange. Somehow, it seems difficult to see

where computer science would ‘fit’ within this picture. It is

different from abstract mathematics. But it doesn’t seem to fit in

with the classical experimental sciences either.

I believe that it is difficult to categorize computer science,

because the field has developed its own, specific way of seeking

understanding. This manner of developing understanding doesn’t fit

in with either of those categories, because it actually incorporates

elements of both. Computer science studies algorithmic computation,

which, as I will show, is an understanding of structure. But on the

other hand, the development of this understanding involved

‘empirical’ experiences with actual computers.

In this chapter, I will explain how computer science can develop an

understanding of structure through experience with physical objects.

First, I will compare the field of computer science with the field

of mathematics. I will argue that computer science is similar to the

field of mathematics, because both fields seek to develop an

understanding of structure.

Then, I will discuss the different ways in which these fields

develop an understanding of structure. The field of mathematics

develops an understanding of structure by creating formal

descriptions of this structure. But computer science also uses

programming languages to describe structure. I will explain how

programming languages help in developing an understanding of

structure.

Next, I will explain why the empirical understanding developed in

computer science is not the same as the understanding developed in

natural science. Then, I will show that physical objects do not only

help us to understand the physical world. They can also help us to

develop our understanding of structure.

95

Finally, I will explain why computer science was able to develop

such a different way of understanding structure. I will show why the

field’s specific subject allows physical objects to play a powerful

role in developing an understanding of this subject.

Computer science and mathematics: Why an understanding of

algorithmic computation is an understanding of structure
In the previous chapter, I have established that computer science

seeks an understanding of algorithmic computation. But what sort of

phenomenon is this? Can we understand ‘algorithmic computation’ as a

physical phenomenon? Or is it a part of our intuitive concept of

structure? Does that mean that computer science, like mathematics,

is an abstract study of structure? Or does it, like physics, also

study a part of the physical world?

In the next section, I will argue that algorithmic computation, as

being studied by modern theoretical computer science, is part of our

concept of structure. Therefore, in respect to the subject it

studies, the field of computer science is therefore more akin to

mathematics than it is to physics.

According to Nofre, Priestley, and Alberts (2014) computation only

became a topic of scientific study after people started to

understand computer programs in more abstract terms. This implies

that the field does not seek to understand computation as a physical

phenomenon.

Scientists and engineers had been developing and building physical

computers for years. But they never reported anything worthy of

scientific investigation. People only started to notice interesting

phenomena when they started to view computer programs as abstract

objects. This means that the phenomena computer science seeks to

understand were not found within in the physical computer.

Therefore, it is unlikely that these phenomena were connected to the

physical workings of the computer. The phenomena that computer

science seeks to understand are abstract phenomena.

Further developments in this field only confirm this view. In my

history study, I discuss how the physical computer got ‘black-

boxed´. All references to actual, physical implementations were to

96

be avoided. Computing processes had to be described as abstractly as

possible. These descriptions used the formal language of mathematics

(Nofre et al., 2014). The newborn field wanted to make it absolutely

clear that it was studying an abstract idea of structure, instead of

a physical device.

Of course, computer science is about understanding actual, physical

computing too. We seek an understanding of abstract computing

processes because we want to understand and improve actual computing

processes. Therefore, one could make the argument that in the end,

this field does seek to understand physical computing processes.

But that doesn’t mean that this field is developing a ‘physical’

type of understanding. That would be to confuse the subject of the

field with the goals of the field. Understanding actual computing is

one of the field’s end goals. But the understanding developed in

order to reach that goal is an abstract understanding of structure.

Therefore, computer science, like mathematics, seeks an

understanding of structure.

Describing structure: formal theories versus programming languages

In the previous section, I have shown that the phenomenon studied by

computer science is a part of our concept of structure. Therefore,

computer science seeks to develop an understanding of structure,

just like the field of mathematics does.

But there is also an important difference between computer science

and mathematics. I have shown that mathematics understands structure

by creating formal descriptions of this structure. Computer science,

however, also uses another kind of description. Next to using

‘traditional’ mathematical descriptions, this discipline also makes

use of programming languages.

Why does computer science often prefer such a different kind of

model? How are these languages related to more traditional,

mathematical descriptions of structure? And how can programming

languages describe the structure of algorithmic computation? In the

next section, I will try to answer these questions.

97

First, I will explain how traditional mathematical descriptions help

us understand algorithmic computation. Then, I will explain why

programming languages are so fruitful for understanding algorithmic

computation.

How traditional mathematical descriptions help us to understand

algorithmic computation

According to Nofre et al. (2014) the field of computing was able to

develop into a scientific discipline after people started to think

of computer programs as abstract algorithms. The notion of the

algorithm as an abstract mathematical structure however, predates

the modern computer. Before the introduction of the modern computer,

algorithmic procedures were already carried out by humans. Humans

still do this. A child that is doing long division in school is

carrying out an algorithm.

Mathematicians tried to understand these procedures as abstract

structures. In the second half of the 1930’s they developed the

first mathematical descriptions of algorithmic computation. In the

next paragraphs, I will show how the creation of this description

enabled mathematicians to develop an understanding of algorithmic

computation.

Computation in mathematics

The mathematical study of computation emerged from the formalist

movement in mathematics. In the 19th century and in the early 20th

century, people realized that mathematical theories, used to

describe and understand structure, could also be understood as

structures themselves. This inspired Hilbert’s movement of formalism

at the beginning of the 20th century

In the last section of my chapter about the development of

understanding in mathematics I already briefly discussed the

formalist movement. The formalists argued that mathematical theories

had no meaning outside their own theoretical structure. Therefore,

the mathematical truths derived from these theories had meaning

within that theoretical structure only.

The truth or falsehood or a mathematical statement followed from its

consistency with the structure of the theory and nothing else.

98

Therefore, the formalists understood mathematical truths as being

produced by a formal system. Mathematical theories were formal axiom

systems and the derivation of mathematical truths was a number of

operations on that system, according to a fixed set of rules.

The formalist movement sought to unify existing mathematics in such

a formal axiom system. In formalism truth of a statement follows

from consistency with the system it is derived from. Therefore, in

order to be able to derive mathematical truths, this system has to

be consistent itself. This consistency would provide the science of

mathematics with the justification the formalists were looking for.

This meant that the formalists also needed a proof that this axiom

system was consistent. The proof, of course, also needed to consists

of formalist ‘rule manipulations’ (Zach, 2016).

In order to do this, the existing practice of mathematics needed to

be described in terms of an abstract, formal structure.

Mathematicians started to study the structure of mathematical

theories and the structure of mathematical reasoning. From the

efforts to describe the structure of mathematical reasoning, the

mathematical study of computation emerged.

The first mathematical descriptions of computation

The formalization of mathematical reasoning involved a formal

definition of the notion of an effective procedure or algorithm. As

procedures for solving mathematical problems, these algorithms allow

us to calculate the output values for a certain mathematical

function.

They consist of a clear series of steps, which transform our initial

input value(s) into the desired output value. These operations are

very important, because they form the link between the inputs of a

function and its outputs. Without this clear link, it is impossible

to calculate an output from an input. Not all functions have an

algorithm that provides such a clear link. And not all clear

99

algorithms are executable7. Therefore, not all mathematical functions

are computable.

Providing a formal description of the structure of such algorithms

was certainly not an easy job. The formalists sought to understand

the different theories of mathematics as belonging to one unified

logical structure. Because they wanted to reason about mathematics

as one single thing, they needed to describe the structure of

mathematics in very general terms. This included algorithmic

reasoning.

The formalists were not interested in to describing the structure of

specific algorithms. They wanted to describe the mathematical

algorithm as a generalized notion. This algorithm would be described

in terms of the relationships between its operational steps and the

output it provided. Such a generalized description would enable them

to understand how in general, mathematical algorithms can provide

the desired outputs for functions, without needing to go into the

details of specific theories.

Independently of eachother, Alonzo Church (1936) and Alan Turing

(1936) developed mathematical descriptions of this underlying

structure. By describing this structure, they were able to

demonstrate how algorithms work on an abstract level. Their

descriptions showed that all algorithms consist of a similar kind of

operational steps. For all algorithms, following these steps will

lead to correct outcomes in a similar fashion.

Their descriptions were very different from each other. Turing

described algorithmic computing with a fictional calculating machine

that performed these abstract steps mechanically. His machine could

scan and recognize a limited number of input symbols. After

recognizing a specific symbol, it mechanically performed an

operation that corresponded to the symbol it had scanned. Turing

showed how the basic operational steps of his machine allowed it to

7 It is possible for an algorithm to be clear but not executable. Computer
science has shown how this can be the case by describing algorithms that
involve consulting a non-existing oracle.

100

execute all possible algorithms. By doing this, he proved that all

executable algorithms consist of the same basic steps.

Church described the structure of computing with a cleverly devised

calculating system. His lambda calculus consisted of a number of

symbols to encode functions. His calculus also had a few simple

rewriting rules. The rewriting process of his calculus formed a

precise description for the abstract process of computation. All

calculation processes in mathematics follow the same pattern as this

process. This process allowed him to demonstrate how the steps of

algorithmic computation result in the desired output, independent of

the specific algorithm that is being carried out.

These descriptions may look very different, but ‘under the hood’

they are very much the same. They describe the same class of

functions. Also, the steps these theories describe produce correct

results in a similar fashion. This means that these different

descriptions are mathematically equivalent to each other. They use

different terms, but they describe the same underlying structure.

These mathematical theories describe all the different algorithms in

mathematics with just a few simple rules. These basic steps form the

building blocks of all algorithmic computation. With these basic

building blocks, you can construct any algorithm you can think of.

Therefore, Church’s and Turing’s descriptions form powerful

languages for expressing algorithms. These languages enabled

mathematicians and logicians to understand computing and to reason

about it.

A few years later, the first stored-program computers were

developed. These computers built on the technology used in older

types of computer, but also made use of the new mathematical

insights about computation.

A mathematical understanding of algorithmic computation

The mathematical descriptions of Church and Turing express our

understanding of the underlying structure of algorithmic

computation. Although they use different models to describe this

structure, computer scientists understand this structure in exactly

the same way as mathematicians do.

101

If computer science would have a different conception of this

underlying structure, they would be studying a different kind of

structure than mathematics. Then, the term ‘algorithmic computation’

would pertain to different phenomena in these fields. This is not

the case. Computer science studies the phenomenon of algorithmic

computation as it was first described by mathematicians in the

1930’s.

In mathematics and computer science, the word 'computing' has a

specific meaning. To compute something means: to determine the

output value for a specific input value of a function by following

the steps of an algorithm.

The theories of Church and Turing describe the process of such

computation. Computation is a form of mathematical reasoning,

especially when it is done by a human: “To calculate the side

opposite to the right side of the triangle, I must take the squares

of the length of the base and the right side and…” This may create

the impression that the theories that describe computation also

describe the contents of a mathematical reasoning process. This is

not the case, however.

Theories of computation only describe the structure that is

underlying these computational processes. They describe the basic

steps that are taken in these processes and show how these basic

steps relate to the outcomes of these processes. But they do not

describe the mathematical reasoning behind such algorithms.

They do not tell us how the steps in an algorithm reflect our

understanding of the corresponding mathematical function, or why the

steps in these procedures will produce correct output values of this

function. They do not tell us what the outcomes of these processes

actually mean. The algorithmic languages of Church and Turing do not

discern total nonsense from correct formulations of established

mathematical understanding8.

These descriptions do not go into the details of these mathematical

inferences, because they are created to describe algorithmic

8 Or, as computer scientists and software engineers often say: ‘garbage in,
garbage out’.

102

processes in general. The underlying structure of the computational

process is something that all mathematical algorithms have in

common. But the mathematical reasoning in these different algorithms

is specific to a particular theory.

How programming languages help us to understand algorithmic

computation

Before the emergence of computer science, the study of algorithmic

computation was a specialized subfield of mathematics. But when

people started to think about algorithmic computation in terms of

computer programs and programming languages, this subject developed

into the blossoming, independent discipline of computer science.

Apparently, these programming languages were very fruitful for the

understanding of algorithmic computation.

In the next section, I will explain why these languages offer such a

fruitful description of algorithmic computation. I believe that

these languages are so useful because they are an abstraction of the

modern, stored-program computer. As I will show, the abstraction of

stored-program computing is a very powerful model for thinking about

algorithmic computation.

Programming languages as abstract models of the stored-program

computer

Modern programming languages are designed to be abstract. But they

are abstracted descriptions of a specific kind of algorithmic

computation. They describe computation as it occurs in modern,

stored-program computers. As I have argued in my previous chapter,

these languages do not refer to the details of specific machines.

But they do refer to a generalized idea of electric stored-program

computing. These languages are full of concepts that refer to the

way actual stored-program computers function.

For instance, in these languages algorithmic procedures are

expressed as computer programs, which consist of a set of input data

and a sequence of instructions. This is exactly the way in which a

stored program computer receives its data and instructions. These

instructions involve the manipulation of this input data in a

sequential, stepwise fashion. These instructions include operations

on the data itself, reading and writing to memory, memory allocation

103

and jump instructions that change the sequential order of the

program.

This does not mean that these descriptions are fundamentally

different from mathematical descriptions of algorithmic computation.

As I already explained, computer scientists understand the structure

of algorithmic computation in exactly the same way as mathematicians

do. All modern, general-purpose9 programming languages are equivalent

to the classical descriptions of Church and Turing.

But although all these theories and languages describe the same

thing, they describe this thing in different ways. Church describes

algorithmic computation as a mathematical calculus. Turing presents

a thought experiment with a hypothetical computing device. And

modern programming languages use the abstracted notion of the

stored-program computer to describe algorithmic computation. By

invoking different models, these descriptions build forth on

different bodies of existing understanding.

I believe that programming languages are fruitful because they use

the model of the abstract stored-program computer. As I will show in

the next paragraphs, this model builds on a special body of existing

understanding.

Why this model is so powerful

Programming languages built on our existing understanding of the

actual stored-program computer. The fruitfulness of these languages

shows that this body of understanding proved to be very useful.

I believe this device was able to provide us with such

understanding, because it actually is two things at once. As a

physical device, it allows us to develop a refined, hands-on

9 General programming languages are Turing complete. But for specialized
programming languages, there are some notable exceptions. For instance,
Vertex Shaders are very simple processor cores, used for rendering computer
graphics. Graphical processor units consist of hundreds or even thousands
of such cores, all running in parallel. Older shader models, do not possess
a looping capability, which means that they are not Turing complete.
Therefore, the specialized languages that were used to write programs for
these shaders are also not Turing-complete. See also
https://stackoverflow.com/questions/24569439/are-gpu-shaders-turing-
complete

104

understanding while working with it. But at the same time, this

device is also a precise description of algorithmic computation.

Modern, stored-program computers can perform any computation from a

few basic, hard-wired building blocks. They are built to recognize a

particular encoding of algorithms, expressed in a few basic symbols.

The standard symbol set for this became the binary symbol set,

consisting of nothing more than the symbols 0 and 1. After scanning

their input, these machines automatically perform the corresponding

operation.

Like the descriptions from Church and Turing, these machines had a

symbol set an encoding system and a set of hard-wired ‘rewriting

rules’. Like the descriptions of Church and Turing, they could

express every possible computation with this combination of symbols

and rules. And because the rewriting rules and the encoding system

had to steer a mechanical device with no human ingenuity, they were

expressed in a very precise manner, avoiding any ambiguity or

vagueness.

Therefore, these mechanical computers can be viewed as formal,

precise descriptions of algorithmic too. These descriptions are

mathematically equivalent to the work of Church and Turing. This is

because they express exactly the same class of functions: all

functions for which a clear and executable algorithm exists. The

difference is that these computers describe computation in hardware,

instead of describing it in a research paper.

Of course, this was not the only difference here. The models of

Church and Turing were designed to describe algorithmic computation

as simply and elegantly as possible. But the stored-program computer

is a device that actually has to work when you switch it on. To be

able to run a program, the computer’s processor, instruction set,

power supply, input tape, vacuum tubes and many other things

interact in a dazzlingly complicated manner. Even the earliest, most

basic computers were already incredibly complex. This makes it

nearly impossible to comprehend the functioning of such a device all

at once.

105

This enormous complexity seems to disqualify the computer from being

a good model for understanding computation. But despite its huge

complexity, people were quickly able to develop a substantial

understanding of it. This is because the computer is not only a

theoretical model, but also a practical machine people have to work

with.

Trying to comprehend a thing by looking at it from a distance is not

the most effective way to develop an understanding of it. Actually

working with a model, interacting with it, receiving feedback from

it, can build a much deeper form of understanding. As a flexible

device with a practical use, the stored-program computer generously

allowed for such interaction.

By learning how to program these computers, the first computer

pioneers gradually started to grasp how everything fit together.

Through interacting with an actual computer, observing its

functioning, these people were able to develop a deep understanding

of it.

Because each stored-program computer is a model of algorithmic

computation, these pioneers also developed a deep understanding of

algorithmic computation in general. They learned to understand how

this form of computation worked, because they learned how their

stored-program computer did it. As a model and a machine, these

computers were able to provide a powerful understanding of

algorithmic computation.

However, although this body of understanding was powerful, it was

far from perfect. Firstly, this understanding was needlessly

complex. You do not need to understand the detailed inner workings

of an actual stored-program computer to understand how stored-

program computing works in general. Secondly, different computers

handle the details of computation in a slightly different way. This

means that different computers ‘describe’ stored-program computation

in a different way. Therefore, the development of the modern stored-

program computer did not just offer one model for thinking about

computation. It offered dozens of different models.

106

Therefore, as a model of computation, the actual stored-program

computer had some severe drawbacks. To really be of use, this model

had to be transformed. It had to be changed into a model that

ignored the unnecessary machine details but preserved the general

idea of stored-program computation.

In the second half of the 1950’s, partially out of the accumulation

of practical experience, the notion of the modern programming

language emerged (Nofre et al., 2014). These modern programming

languages provided such a model.

By using the notion of a stored-program computer, these models built

forth on people’s existing understanding of stored-program

computation. By using an abstract model of stored-program

computation, they disconnected specific machine details from the

general, underlying idea. This resulted in a much simpler

description which facilitated reasoning about this existing

understanding. This, in turn, enabled the development of a shared

understanding of stored-program computation.

Stored-program computation is a form of algorithmic computation.

Therefore, these languages were also fruitful for understanding

algorithmic computation in general. Because of this, these languages

proved to be very powerful models for the study of computation.

Computer science and empirical science: How the physical

can help to understand the abstract
In this chapter, I will relate computer science to the development

of understanding in empirical science. In the last section, I

explained that computer science seeks an understanding of structure.

This means that computer science is not a classical empirical

science such as physics.

In the chapters about physics and mathematics, I have shown that

these two forms of understanding are entirely different from each

other. Therefore, computer science as the study of structure has

little to do with the way natural sciences develop understanding.

However, I have also shown that experiences with actual computers

were indispensable to the development of computer science. This

107

‘empirical-ness’ seems to set the field apart from the field of

mathematics also. So, what is it, then? Does it stand somewhere ‘in

between’ those fields? And what would that mean? How exactly, can a

scientific field stand ‘in between’ these different kinds of

understanding?

In the last part of this chapter, I will address these questions. I

will show how computer science stands ‘in between’ empirical science

and mathematics. I will do this by explaining how the field

incorporates empirical elements into the study of abstract

structure.

In my chapter about understanding in physics, I discussed how the

field of physics develops understanding. The field uses experiments

with physical phenomena to infer the nature of the hidden causes

behind them. But there are more ways in which experience with the

physical can develop our understanding.

In the next paragraph, I will discuss the other way in which the

physical brings about understanding. I will show how computer

science uses of this way of understanding. Then, I will show how

this sets the field apart from the more classical practices of

mathematics.

Physical objects as models for understanding

Physical objects can also help us to develop understanding by

serving as physical models. When we want to develop an understanding

of something, we can create a physical model of this thing. This

model represents our understanding of this thing.

Inscribing our understanding into a physical model is useful,

because it allows us to ‘offload’ part of our understanding. By

placing our internal understanding into an external model, we free

up mental resources. We no longer have to keep the entire thing ‘at

the top of our heads’ when we are reasoning about it. We can choose

to play with the physical model of this understanding instead. We

can look at the model from different angles and rearrange bits and

pieces, to see what happens.

108

Such ‘tinkering’ creates a fertile feedback loop between the ideas

in our minds and the understanding embodied in the physical model.

For instance, James Watson and Francis Crick arrived at the

structure of the DNA molecule by playing with cardboard models of

the different compound elements of DNA ("The Discovery of the Double

Helix, 1951-1953,").

Physical models can help us to develop an understanding of physical

things. But they can also help to develop understanding of abstract

concepts. For instance, mathematical objects can be represented by

knitted and crocheted objects, which often are quite beautiful10.

Physical processes as physical models for understanding

Physical objects can bring about understanding by serving as models.

But we are not only interested in understanding how things are. We

also want to understand how they develop. That means that we are

interested in understanding processes too. Processes can also be

modeled by the physical.

Physical objects represent our understanding of a thing at a

specific moment in time, or a specific state. Physical processes

represent our understanding of how processes unfold over time. The

unfolding of the physical model-process reflects the unfolding of

the process we seek to understand.

For instance, the behavior of flows and currents in rivers can be

studied by mimicking those flows and currents with an electrical

current in an analog computer. Before the large-scale introduction

of stored-program computers, this is how people calculated the

effects of dams, bridges and levees. By using various transistors,

resistors and capacitors, people were able to create a flow of

electric current that corresponded with the flow of the real river11.

10 For some nice examples of such knitted objects, see:
http://mentalfloss.com/article/86016/6-math-concepts-explained-knitting-
and-crochet

11 This is where the ‘analog’ in the term ‘analog computer’ comes from. The
electrical current was studied as an analogy for the current in the actual
river. The word ‘computer’ in the term ‘analog computer’ suggests a close
relationship to other kinds of computers, like the digital stored-program
computer. And in many respects, these machines are much alike. Both are
intricate devices, built to perform complex calculations.

109

Like ship model basins or wind tunnels, analog computers contain a

small-scale physical process, which serves as a model for another

process. One example of such an analog model is the MONIAC. This

device uses colored water, contained in a series of transparent

reservoirs, to model the flow of money in the British economy12. It

is a beautiful example of how a physical process can serve as a

model for our understanding.

The examples of ship model basins and wind tunnels may raise some

questions here. On the one hand, these environments can be viewed as

models. They are a scale model for the aerodynamic and hydrodynamic

processes in our actual skies and seas. But on the other hand, the

processes in these environments are not an ‘analogy’ to the

processes we seek to understand. These environments allow us to

study the actual behavior of water and wind. They are the same

processes, only on a smaller scale. Doesn’t that also qualify them

as actual experiments?

I admit that it is very hard to make a clear distinction between a

process serving as a model and an actual experiment in a controlled

environment. However, I believe that it is not really necessary to

make such a strict distinction here.

In my view, the terms ‘model’ and ‘experiment’ are not an either-or

category. They pertain to the functions a process can fulfill in the

development of understanding. Many processes, like the processes in

wind tunnels and water basins, actually fulfill both functions. They

bring about understanding by being an experimental phenomenon and by

serving as a model process.

But from the perspective of modern theoretical computer science, there is a
world of difference here. For theoretical computer scientists, the term
‘computation’ pertains to algorithmic computation. And unlike digital
computers, analog computers do not arrive at their results by this kind of
computation. They do not carry out a stepwise calculation procedure. They
predict the behavior of the process by actually recreating the process (or
some aspect of it) on a smaller scale.
Therefore, to the theoretical computer scientist, analog computers are more
akin to scale models, than they are to digital computers.
12 For instance, see https://www.inc.com/magazine/19950915/2624.html The
Wikipedia article: https://en.wikipedia.org/wiki/MONIAC

110

A physical process as a model of computation

I have explained that experience with physical objects and processes

can bring about understanding, because these physical things can

serve as models. In this section, I will show that computer science

makes use of such physical models too.

Computer science, like mathematics, seeks to develop an

understanding of structure. The study of structure is the study of

the abstract. It is not about understanding the actual world. It is

about understanding an abstract concept of this world. People who

seek to understand structure seek to develop an understanding of our

intuitive concept of structure, as we perceive it in this world.

Structure, however, is not only perceived in the world around us.

Certain aspects of mathematical reasoning itself can also be

understood as mathematical structures. Church (1936) and Turing

(1936) showed that the stepwise process of mathematical calculation,

could be described as a mathematical structure also.

As a stepwise calculation procedure, algorithmic computation is not

only a structure, but also a process. This means that it can be

understood by modeling it with a physical process. This is what

happens in the insides of a digital computer. The bit-flipping

electronic processes in digital computers represent the process of

algorithmic computation.

Therefore, the processes in the digital computer provided a physical

model for understanding algorithmic computation. The stored-program

computer proved to be the most fruitful model. Over the years,

people have been working on this type of computer, further

developing their understanding of this model.

People found ways to instruct the stored-program computer in human

language. They noticed that even the behavior of the simplest

program is often very hard to predict. They have learned how to

connect different programs seamlessly together, in one ‘system

program’. They developed ways to let such a system program control

different computing processes, in an ‘intelligent’ manner. By

writing bigger and bigger programs, they learned how complex

computations can be built from simpler ones. They have developed

111

ways to manage the inherent complexity of such programs. They

learned how to make the most efficient use of the computer’s

processor and memory. And they learned how input data could best be

structured to make this possible.

By working with the stored-program computer, people were able to

develop a deep understanding of stored-program computation. And

because stored-program computation is a physical model for

algorithmic computation, people also developed a deep understanding

of algorithmic computation. This allowed the study of algorithmic

computation to develop into an independent, blossoming scientific

discipline.

Computer science is an abstract field, which seeks an abstract

understanding of structure. Therefore, this field does not

literarily refer to these experiences with stored-program computers.

In computer science, this understanding is described in abstract

terms only. But although these concepts are abstract, they are built

on experiences with actual stored-program computers.

These abstract insights are applied to the design and operation of

actual computers. This changes the practice of working with actual

computers. This in turn, leads to new experiences with stored-

program computation. This creates new ‘practical’ understanding,

which is a basis for developing new abstract insights. In computer

science, abstract understanding and actual experience provide a

fertile feedback loop, enabling the development of new

understanding.

Or, as Edsger Dijkstra (1989) put it, “computing science is -and

will always be- concerned with the interplay between mechanized and

human symbol manipulation” (p. 5).

Mathematical reasoning as a physical process

In the previous section I explained that we can place part of our

understanding outside us, by creating physical models. These models

are external representations of our understanding. I have shown that

computer science also externalizes its understanding in a physical

model. By externalizing its understanding, computer science adds an

interesting twist to this story.

112

Algorithmic computation is an aspect of our mathematical reasoning

process. Therefore, by creating a physical model of this process, we

create a physical model of our own reasoning process. This means

that we are placing this reasoning process outside us. Our mental

reasoning process becomes a physical phenomenon, which can be

observed.

In this respect, the newspaper headlines of the 1950’s about

‘machines that think’, were spot-on. Algorithmic reasoning has

become something the machine can do for us. We press the buttons of

the machine, to establish the outcome of an algorithmic reasoning

process.

How a physical process creates an ‘empirical’ mathematics

This ‘twist’ sets the field of computer science apart from many

other fields in mathematics. It changes computer science into a

partially empirical field. While mathematics studies our concept of

structure by reasoning, computer science studies the structure of

this reasoning itself. This mental reasoning process is also an

abstract structure. But because it is externalized into a physical

process, it becomes a physical phenomenon. This enabled computer

science to become empirical.

As a physical phenomenon, algorithmic computation allows for

interaction. It can be tested and observed. The possibility to test

and observe is vital to understanding algorithmic computation. This

is because algorithmic processes are very complex. Therefore, even

the outcomes of the most simple of programs are often impossible to

predict beforehand.

This interaction creates a powerful feedback loop between people’s

ideas and the physical phenomenon. Through their interaction with

this phenomenon, computer scientists were able to develop a deep

understanding of algorithmic computation.

Because of this, computer science stands in between empirical

science and mathematics. Like mathematics, it seeks an understanding

of abstract structure. But the structure it studies has a specific

nature. This allows it to be externalized into a physical process.

113

By studying this physical process, computer science is able to study

this structure in an empirical manner.

References
Church, A. (1936). An Unsolvable Problem of Elementary Number

Theory. American Journal of Mathematics, 58(2), 345-363.

Dijkstra, E. W. (1989). On the cruelty of really teaching computing

science. Communications of the ACM, 32(12), 1398-1404.

The Discovery of the Double Helix, 1951-1953. The Francis Crick

Papers. Retrieved August 21, 2017, from

https://profiles.nlm.nih.gov/SC/Views/Exhibit/narrative/doubleh

elix.html

Nofre, D., Priestley, M., & Alberts, G. (2014). When Technology

Became Language: The Origins of the Linguistic Conception of

Computer Programming, 1950–1960. Technology and culture, 55(1),

40-75.

Turing, A. M. (1936). On computable numbers, with an application to

the Entscheidungsproblem. Journal of Math, 58, 345-363.

Zach, R. (2016, Spring 2016). Hilbert’s program. The Stanford

Encyclopedia of Philosophy. Retrieved August 19, 2017, from

https://plato.stanford.edu/archives/spr2016/entries/hilbert-

program/

114

Chapter 8: Computer science as a science

Introduction

In this thesis I wanted to develop a better understanding of

computer science as scientific field, by showing how computer

science was able to develop new scientific understanding. I have

formulated this aim as a research question with two sub-questions.

Research question: How can the field of computer science develop new

understanding?

Sub-question 1: What kind of thing does computer science seek to

understand?

Sub-question 2: How does computer science develop an understanding

of this thing?

In the previous chapters, I have related computer science to physics

and mathematics. The development of understanding in physics and

mathematics better corresponds to our classical ideas of doing

science. By linking computer science to the understanding in these

fields, I was able to explain the understanding developed in

computer science in familiar terms.

In this concluding chapter, I will use the results of this

discussion to answer my research question. I will reflect on the

strengths and weaknesses of my approach. Then, I will discuss the

implications of my results and give some recommendations for future

research.

Sub-question 1: What kind of thing does computer science

seek to understand?
In my thesis I have been able to answer the first sub-question. I

have shown that computer science seeks to understand algorithmic

computation as an abstract concept.

Algorithmic computation is the process of calculating an output from

the input of a specific function by following the steps of a

mathematical solution procedure. Humans can perform algorithmic

computation. But the steps of an algorithm can be carried out by a

machine too.

115

Computer science seeks to understand these algorithms as an aspect

of our intuitive concept of structure. In this sense, computer

science is akin to mathematics. In my chapter about mathematics, I

have shown that mathematics is able to develop understanding through

developing our intuitive concept of structure.

We are born with an intuitive idea of the structure of reality. By

interpreting reality in terms of this structure, we are able to

understand it. We see structural patterns in the winds and waves, in

the size of animal populations, in the behavior of human beings and

everywhere else. The field of mathematics seeks to further develop

this concept of structure.

We understand algorithmic computation as a structure too. This

structure was first described by Church (1936) and Turing (1936).

Computer science has refined our understanding of this concept of

structure. This means that computer science does not actually seek

to understand actual algorithmic computation processes. It seeks to

develop our understanding of the underlying structure of these

processes. Computer science therefore, seeks to develop an

understanding of algorithmic computation as an abstract concept.

Sub-question 2: How do they develop an understanding of

this thing?
In my thesis, I have also been able to answer my second sub-

question. I have found out how computer science is able to develop

an understanding of the structure of algorithmic computation.

Computer science combines reasoning about formal descriptions of

algorithmic computation with experience with a physical model of

algorithmic computation.

In my chapter about mathematics, I explained how the different

subfields of mathematics seek an understanding of the different

aspects of our intuitive concept of structure. When mathematicians

want to further develop their understanding of a specific structure,

they try to precisely articulate their intuitive ideas about this

structure. This enables them to create a precise description of this

structure. This description provides a clear starting point for

further inference about this basic structure. By reasoning about

116

this basic structure, they learn what this basic structure entails

and what kinds of things follow from it.

Computer science took quite a different route. The study of

algorithmic computation started like many other mathematical

subjects. Mathematicians articulated their intuitive ideas about the

structure of algorithmic computation into a precise, formalized

description (Church, 1936; Turing, 1936). They used this structure

to make mathematical inferences. But after a few years, something

else happened: the first stored-program computers were developed.

Because stored-program computers are physically able to perform the

process of algorithmic computation, they are a physical model for

this process. By externalizing their understanding of algorithmic

computation in a physical device, people had created a machine that

was able to do such computations.

Mathematical descriptions of structure bring understanding because

they allow you to reason about them. But this ‘description’ could do

parts of this reasoning itself. People could observe what their

concept of algorithmic computation entailed, by putting this concept

to work. This model afforded a kind of interaction that traditional

mathematical descriptions could not provide.

Actually working with a model, interacting with the model and

receiving feedback from it, can build a deep form of understanding.

This understanding may be much deeper that the understanding you

develop by reasoning about a model. By working with the first

stored-program computers, many people were able to develop a deep

understanding of algorithmic computation, whether they realized this

or not.

In the late 1950’s and early 1960’s, the modern conception of a

programming language emerged. Programming languages are formal,

mathematical descriptions of the structure of algorithmic

computation. These models described algorithmic computation with an

abstract concept of the stored-program computer. By offering an

abstract description of the stored-program computer, this model

built forth on people’s existing understanding of stored-program

computers. People were now able to express and communicate the deep

117

understanding of computation they developed by working with actual

computers.

This newly developed understanding gave the mathematical study of

algorithmic computation a new impulse. People used their existing

understanding of stored-program computation to study algorithmic

computation in an abstract sense. This new approach proved very

fruitful. It enabled the mathematical study of computation to

develop into the new field of computer science.

These new computer scientists had taken an interesting detour in

their path towards understanding the structure of algorithmic

computation. Usually, people begin with formalizing their intuitions

in a mathematical model. Then they use that model as a starting

point to develop their understanding further. But in computer

science, many people started with developing their understanding by

working with a model (the computer) and then developed formalized

descriptions of their understanding.

Research question: How can the field of computer science

develop new understanding?
I have shown that computer science seeks to understand the structure

of algorithmic computation. This means that computer science is a

study of the abstract. But, I have also shown that practical

experiences with actual computers were indispensable for the

development of this understanding.

Answering my two sub-questions brings me to my final research

question. How can the field of computer science develop new

understanding?

In my thesis, I have shown that this field emerged out of

experiences with actual computers. These practical experiences led

to abstract insights about the structure of algorithmic computation.

The abstract insights were applied to the design and operation of

actual computers. This influenced the practice of working with

actual computers. This created new ‘practical’ understanding. This

new understanding, in turn, was a basis for developing new abstract

insights, which influenced the development of actual computers. And

so on. The emergence of this field had started a fertile feedback

118

loop between the physical and the abstract. Through this feedback

loop, computer science can develop new understanding of the

structure of algorithmic computation.

This practice sounds similar to the development of understanding in

applied science and engineering. For instance, in the field of

aerodynamics, practical experience with actual aircraft generates

understanding of airflow behavior. This leads to the development of

mathematical models that describe this behavior. These mathematical

models influence the development and design of new aircraft, which

provide new practical experience, which leads to new models, and so

on.

But there is a difference between these two practices of developing

understanding. The field of aerodynamics is using abstract

mathematics to develop an understanding of a physical process.

Mathematical models of airflow behavior are abstract descriptions of

structure, which are used to describe the behavior of actual

airflow. By going back and forth between the mathematical model of

the process and the actual process, the field is able to refine its

model and thereby their understanding of the physical process.

The field of computer science is doing the reverse. It makes use of

a physical process to develop an understanding of an abstract,

‘mathematical’ structure. By going back and forth between the

physical process and the mathematical descriptions of the abstract

structure, they are able to refine their understanding of this

abstract structure.

The strengths and weaknesses of my analysis
In my thesis, I have chosen to adopt a specific approach. I have

chosen this approach because I believed that this approach was best

able to answer my research questions. However, this approach also

has some weaknesses. In the next section I will reflect on the

strengths and weaknesses of this approach.

In my thesis, I explained understanding in computer science by

relating it to other forms of scientific understanding. Because of

this approach, I could use familiar terms to explain understanding

in computer science.

119

But there are some drawbacks to this approach also. By analyzing

understanding in computer science ‘in familiar terms' I have

analyzed understanding in computer science in terms of what I

already know. Therefore, I might have missed some important aspects

of this new kind of understanding, which do not really fit these

traditional forms of scientific understanding.

Also, my approach requires me to have a clear conceptual description

of those other forms of understanding. In order to be a clear

conceptual description, those concepts have to abstract away from

the many nuances and complications of the actual scientific process.

Therefore, my description ignores many of such nuances and

complications.

I did not study real lab rooms and faculties, to uncover the process

of developing understanding as it actually happens within the rich

context of the scientific enterprise. I also did not go into issues

such as quantum mechanics, or the ‘mathematization’ of fundamental

physics.

Developments in quantum mechanics have challenged the assumption

that everything must have a cause, which is an important part of the

metaphysical worldview underlying physics. And currently, in the

most fundamental branches of physics, research practices consist for

a great deal of developing mathematical models to describe the

fundamental properties of matter. In my chapter about physics, I did

not discuss what those issues meant for the development of

understanding in physics. Therefore, my descriptions of the

development of understanding in physics and mathematics do not

reflect the actual development of understanding in those fields.

My description of understanding in computer science is based on a

historical study of computer science. As I have argued in my chapter

about methodology, there are good reasons to use a history study for

such a description. Also, there are good reasons to believe that

this history study also reflects the development of understanding in

computer science today. That is why I have chosen this approach. But

there are also drawbacks to this approach. My description does not

120

reflect the full complexity of all the current practices in computer

science.

A better understanding of computer science

Because of these weaknesses, my analysis may not capture the full

reality of the development of understanding in computer science.

However, as I explained in my introduction, the goal of my thesis

was never to show to what extent computer science is really like

mathematics or physics. My intention was to find a way to understand

and talk about the science part in computer science. I believe that

I have succeeded in fulfilling this ambition.

My analysis provided me with a set of concepts that allowed me to

talk about understanding in computer science in a clear manner.

These concepts have allowed me to tackle the confusion surrounding

computer science, by ‘demystifying’ the development of understanding

in computer science.

To many people, it is not always clear how the field is able to

combine elements from two very different kinds of inquiry.

Therefore, many people have come to view computer science as a

mysterious mix of mathematics and natural, empirical science. Newell

and Simon (1976) have beautifully formulated this confusion:

We would have called it an experimental science, but like astronomy,

economics and geology, some of its unique forms of observation and

experience do not fit a narrow stereotype of the experimental

method. None the less, they are experiments. Each new machine that

is built is an experiment. (p. 114)

My descriptions of mathematics and physics gave me a clear

conceptual picture of the development of understanding in these

fields. This allowed me to explain the development of understanding

in computer science. I was able to identify the different

mathematical and empirical elements in this development process and

to show how they worked together to produce new understanding. I

demystified the development of understanding in computer science, by

showing that it seeks an understanding of structure, through using a

physical model.

121

It could very well be possible that not everyone will agree with my

conclusions. But even then, I believe that I have succeeded in

providing a better understanding of computer science as a science.

This is because my analysis has provided a set of clear concepts and

relations. These enabled me to think and talk about the practices of

computer science. And, as Boon (2009) has shown, clear concepts and

relations are the key to developing new understanding. Hopefully,

this analysis will be helpful to others in formulating their own

views.

Implications for future research
My findings point to a number of interesting avenues for further

research, which may help us to develop a better understanding of

computer science as a science. In this final section of my thesis, I

will discuss some of these issues.

Analyzing a new way of doing science

My thesis shows that computer science has created a new way to

understand structure. Therefore, the practices of computer science

could be viewed as a new way of doing science. What kind of issues

did computer scientists encounter when pioneering with this new way

of doing science? How do these issues relate to the nature of their

‘model’? And how did they find ways to deal with those issues?

Also, this new method of doing science is hard to grasp for many

people. Many even contest that computer science is a science.

Somehow, we do not clearly see what computer science is and does.

The methodology of other sciences, such as biology and physics,

seems much more straightforward.

You do not need to understand Darwin’s theory of natural selection,

or the Standard Model of Particle Physics itself, to see what those

theories are for. Darwin’s theory of natural selection explains why

the organisms in the world are the way they are. And the Standard

Model explains why the fundamental bits of matter in this universe

behave the way they do.

But when it comes to computer science, the uninitiated find it much

harder to grasp what theoretical models such as the as the Church

Lambda Calculus are meant to tell us. And the fact that the

122

corresponding explanatory texts (written by the initiated!)

repeatedly stress that the model is ‘very simple and elegant’ does

not make it much easier.

Is there a connection between the confusion about the methodology of

computer science and the difficulties many novices experience in

grasping concepts of the field? Is it because this field is

relatively new? And if the methodology of computer science is not so

well understood as the classical ‘scientific method’, would it lead

to more reflective practices if this methodology would be explicitly

formulated in a set of ‘basic principles’?

Practical experience and the black-boxing of a physical model

The black-boxing of the computer, which I described in my thesis,

points to some interesting issues. I argued that practical

experiences with the first stored-program computers were crucial to

developing an initial understanding of algorithmic computation. When

people started to reason about computation in an abstract sense,

their understanding of computation was still very close to the inner

workings of the actual machine. The understanding of abstract

computation they developed was based on this practical

understanding.

But when modern programming languages were introduced, people no

longer needed to know every processor detail to operate a computer.

The tablet-swiping toddler and the fact that people nowadays can

develop apps without understanding what a compiler is, testify to

this. People’s ‘practical’ experience with the actual computer

became increasingly abstract itself. How did this influence the

development of understanding in computer science?

And how did this change our understanding of computer programming?

What does programming in a modern-day language teach us about

algorithmic computation? And how can understanding of algorithmic

computation help us to understand modern-day programming? Is there a

relationship between the black-boxing of the computer and specific

errors made by inexperienced and unreflective programmers?

123

A computational understanding of nature

Next to these questions about practice and methodology, the results

of my thesis also point to another interesting issue.

In my thesis, I have shown that computer science seeks to develop an

abstract understanding of structure. But there are many computer

scientists who are convinced that computer science is not confined

to the study of the abstract. For instance, Denning (2007); Eden

(2007); Newell and Simon (1976) strongly believe that computer

science is studying aspects of the natural world. With the findings

from my thesis, I can explain why many people feel that computer

science is a natural science. These views provide some interesting

avenues for further research, as I will show.

In my thesis, I explain how computer science was able to develop a

new way of understanding abstract structure. By creating the first

stored-program computers, people externalized their understanding of

algorithmic reasoning in a physical process. This new connection

enabled the field to develop a new understanding of structure.

But this connection works in the opposite direction also. If people

learn to understand computation as physical processes they also

learn to understand physical processes as computation. Therefore,

next to helping us to understand the abstract, computer science also

offers a new way to understand the physical.

This new way of understanding physical processes is not at all like

the ‘classical’ understanding of the physical, described in my

chapter about physics. In the classical way of understanding, you

understand physical processes as chains of cause and effect. You

would explain the flip of a bit inside the memory in a computer as

caused by an electrical charge crossing a certain threshold, after

which the hidden forces of electromagnetism cause the magnetic

charge of the bit to reverse. But when you understand the flipping

of a bit as computation, you view the flip of a bit in a computer as

the alteration of a specific value during the execution of an

algorithm.

This new kind of understanding proved to be fruitful in

understanding some aspects of the physical world. It helps to

124

explain processes that are hard to understand in terms of cause and

effect only. Think, for instance of a complex organism developing

from a DNA molecule in a fertilized egg.

In principle, it could be possible to understand this process in

terms of cause and effect. But the causal chain between the chemical

properties of the DNA molecule and the characteristics of the adult

organism is very intricate. Trying to understand this process in

terms of cause and effect would be like trying to understand the

chain of events between the proverbial butterfly flapping its wing

and the resulting hurricane. There are specialized biologists who

understand different parts of this causal chain. But for us humans,

it is probably too complex to understand in its entirety.

When we understand this process as a computation, we are much better

able to understand this process. We generally conceive of the DNA

molecule as an information carrier, instead of a causal trigger. We

understand that organisms can develop from the DNA in a fertilized

egg because the molecule acts like a computer program, providing the

fertilized egg with a set of coded instructions, necessary for the

further development of the organism.

Therefore, next to developing a new way to understand structure,

computer science also contributed to a new way of understanding

physical processes. This new way proved fruitful for understanding

complex phenomena in the natural world. This is why some computer

scientists view computer science as a natural science.

For instance, Eden (2007) argues that computer science is the study

of ‘computational program-processes’. He views these program-

processes as naturally ocurring phenomena in our phyiscal world, on

a par with DNA sequences. Denning (2007) points out that insights

from computer science have been used to study the informational

properties of complex molecules (such as DNA) and that quantum

physicists vieuw the behaviour of quantum particles as an

information process.

But although computer science helps us to develop an understanding

of the physical world, this does not mean that computer science is a

natural science. This field seeks an understanding of algortitmic

125

computation as an abstract concept. Of course, this understanding

can be used to understand actual, physical processes too. But this

understanding is only the indirect product of computer science. And

even if you are willing to stretch the idea of a natural science to

include computer science, I have shown that the understanding it

develops is not at all like the ‘classical’ understanding developed

in the other natural sciences.

Still, the articles of Denning and Eden do point to an interesting

avenue for further research. These authors have realized that the

notion of computation offers a new way to understand the physical

world. How can we characterize this computational understanding of

the world? And to what extent, did developments in computer science

contribute to this new form of understanding?

How algorithmic reasoning became a part of the structure we see in

the world

Perhaps, further research shows that the development of computer

science was somehow crucial to the development of this new

understanding. Then, algorithmic computation has made a journey that

is interesting for philosophical study. From something that once

coincided with our mathematical reasoning, it was placed outside us

and became part of the structure we perceive in the physical world.

When mathematicians realized that algorithmic reasoning could be

understood in terms of structure, the first distance between us and

algorithmic reasoning was created. Algorithmic reasoning no longer

coincided with our mathematical reasoning. It became a subject of

this reasoning, something we could reflect on and study.

The next step was to externalize our understanding of this subject.

First, we externalized it in a classical, mathematical description.

Then we modeled this subject in a physical, working machine. Now,

the distance between us and algorithmic computation was even bigger.

It had become a physical phenomenon, a part of the outside world,

something we could observe.

And perhaps, because we had placed algorithmic computation in the

outside world, we were able to recognize its structure in other

things in this outside world. We started to interpret DNA processes

126

as instances of this structure. A concept of something that once

coincided with us is now used to understand the outside world. From

a philosophical viewpoint, it would be interesting to chart the

travels of algorithmic computation, as part of our concept of

structure.

From mathematical reasoning to physical process

There is one final avenue for future research that I would like to

discuss here. In my thesis, I showed that people externalized

algorithmic computation in a physical model, the computer. It would

be interesting to find out to what extent, this altered people’s

understanding of the nature of computation.

As I already explained, computer scientists seek to understand

algorithmic computation as an abstract concept. They are not

interested in studying how a particular program can run on a

particular computer.

But the abstract concept they seek to understand is an abstract

concept of a physical process, limited in space and time. In

computer science, the complexity of algorithms is expressed in the

memory space and processor time needed to execute them. An algorithm

can be claimed to be impossible to run, because executing it would

require more bits than there are particles in the entire universe.

Apparently, the mental, mathematical activity of algorithmic

reasoning has become to be viewed as a physical process, with

physical limitations. Could it be that our idea of algorithmic

computation changed because we externalized it in a physical

computer?

The physical, stored-program computer used energy and produced heat.

It had a limited amount of space in its memory banks. Also, the time

needed by the processor to carry out an operation put a limit on the

speed at which programs could be run. Perhaps, the physical

limitations of the computer made it apparent that algorithmic

computation, as a physical process, was constrained by finite

resources in space and time.

127

Future research could focus on finding out to what extent the

externalization of algorithmic computation changed our ideas about

the nature of computation. Also, it would be interesting to see how

such a change could have influenced our theoretical understanding of

algorithmic computation.

References
Boon, M. (2009). Understanding in the Engineering Sciences:

Interpretative Structures. In H. W. de Regt, S. Leonelli, & K.

Eigner (Eds.), Scientific Understanding: Philosophical

Perspectives. Pittsburgh: The University of Pittsburg Press.

Church, A. (1936). An Unsolvable Problem of Elementary Number

Theory. American Journal of Mathematics, 58(2), 345-363.

Denning, P. J. (2007). Computing is a natural science Communications

of the ACM (Vol. 50, pp. 13-18).

Eden, A. H. (2007). Three paradigms of computer science. Minds and

Machines, 17(2), 135-167. doi:10.1007/s11023-007-9060-8

Newell, A., & Simon, H. A. (1976). Computer science as empirical

inquiry: Symbols and search. Communications of the ACM, 19(3),

113-126. doi:10.1145/360018.360022

Turing, A. M. (1936). On computable numbers, with an application to

the Entscheidungsproblem. Journal of Math, 58, 345-363.

