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Abstract

Understanding Memory Configurations for In-Memory Analytics

by

Charles Albert Reiss

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Chair

A proliferation of frameworks have emerged to handle the challenges of making distributed
computations reliable and scalable. These enable users to easily perform analysis of large
datasets on commodity clusters. As users have demanded better response times for these
computations, newer versions of these frameworks have focused on efficiently keeping com-
putation in memory. A major challenge in deploying such frameworks is understanding
application memory requirements. Just as the layers of abstraction of frameworks assist in
writing efficient and robust applications, they hide the true memory requirements.

In this dissertation, I describe and evaluate SLAMR, a tool I have developed for pro-
viding users with memory recommendations for programs written for the Apache Spark
analytics stack. These recommendations practically address the lack of visibility users have
into memory requirements even as they are asked to assign resources to deploy their analytics
programs. My tool records activity from an example execution, both from the framework
and the garbage collector of its underlying language runtime. Given this instrumentation, it
estimates a memory configuration that effectively keeps the entire computation in memory,
such that allocating more memory would have minimal benefit on performance. Because in-
memory analytics frameworks are built to take advantage of the memory available to them,
simply observing actual memory usage is not an effective way to produce such estimates.
A challenge, then, is to produce these estimates without performing effort similar to trying
configurations around the ultimate recommendation.

SLAMR provides these recommendations without requiring many example executions or
detailed analysis of the semantics of the program. What I instrument allows it to predict the
effect of different memory configurations rather than simply reflecting the available memory.
It collects information corresponding to the abstractions provided by frameworks, so it can
distinguish which memory usage is useful and account for when alternate storage was used.
To understand the requirements of the underlying language runtime in this analytics stack,
it also collects statistics about the program execution that can replayed into a dramatically
simplified model of a garbage collector. Both of these models are built around the goal of
providing a conservative bound, allowing users to use the resulting memory recommendations
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in confidence rather than inflate them to avoid the risk of memory exhaustion from errors in
the estimates. I show through evaluation that SLAMR provides effective, consistently safe
recommendations for a variety of analytics programs and does so with minimal measurement
overhead.
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Chapter 1

Introduction

Large-scale data processing once required specialized hardware and months of dedicated en-
gineering effort. Now it is an everyday feature in business and research, made possible by
widely available software tools and affordable public computing resources. Built around the
design of colocating computation with data, a proliferation of ‘frameworks’ handle the chal-
lenges of making distributed computations reliable and scalable, letting users focus instead
on specifying the computations to perform.

Originally developed for the very large data processing problems encountered by large
Internet companies, these frameworks have expanded well beyond this niche. Users with all
sorts of data too large to process comfortably on their personal machines use distributed data
processing tools. Libraries built on top of such frameworks enable not only simple statis-
tics collection, searching, and index building, but complex calculations, such as constructing
models for recommendation systems. Thus, these frameworks have enabled activities previ-
ously only performed by the most sophisticated enterprises to be a commonplace occurrence.

Along with new capabilities comes new complexities. When analytics tools work imper-
fectly, users have trouble interpreting what is happening. After all, the purpose of data
processing frameworks and libraries is to shield users from the details of the distributed
computation. This separation, however, can be problematic for managing resource usage
and performance where the abstractions are often incomplete. To solve these problems, it
matters what all the purportedly hidden layers are doing. Ordinarily performance issues are
not correctness problems, but resource allocation problems frequently are.

In this dissertation, I address a particularly important resource allocation problem: choos-
ing memory allocations. This decision is often delegated to users by design. Users supply
the framework some computing resources and need to decide how much to give it. As more
users pay for computing resources piecemeal rather than having a purpose-built cluster to
themselves, this is a decision they must make frequently. To help these users, I developed
and evaluated a tool, SLAMR (Safe Lightweight Analytics Memory Recommender), that
integrates with an Apache Spark analytics stack to assist users with their decisions. My tool
peeks beneath the abstractions that make it difficult to infer resource requirements from
both the high-level interfaces of analytics frameworks and by observing which resources
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those frameworks use.
I examine this problem of memory allocations in a context where it is particularly im-

portant: data analysis frameworks that focus on keeping data in memory. The advantage
of keeping data in memory is better response times and throughput, especially for emerging
interactive and iterative machine learning workloads. If sufficient memory is not available,
users will not experience adequate performance benefits.

1.1 Analytic Framework Interfaces

Analytics frameworks focus on specifying transformations of data. In contrast to traditional
supercomputing systems based on interfaces like MPI [56], users largely specify what data to
produce rather than where to perform computations and how to move data between them.
Frameworks handle those details. They provide an array of useful transformations and, often,
the ability to create more by composing existing transformations. In implementing these
transformations, a certain kind of flexibility is the goal— supporting arbitrary computations
on arbitrary amounts of data — if one has enough machines with which to ‘scale out’ the
computation.

This kind of interface was popularized by Google’s MapReduce [25], the predecessor
to the modern wave of systems which enable distributed computations with fine-grained
fault-tolerance. MapReduce started by providing its namesake transformation — applying a
map function to produce key-value pairs, then calling a reduce function with the values for
each key. The MapReduce framework handled the details of scaling out the computation,
and allowing user-supplied functions ensured that this interface was flexible. Successors to
MapReduce provide a wider, more convenient suite of transformations and are less dependent
on storing intermediate data to disks, though many of the core implementation strategies
remain the same.

To automatically distribute computations, these MapReduce-derived frameworks track
how data is partitioned across a cluster. To execute transformations, the framework generally
runs the computation where the data already is. Whenever data needs to be moved, the
framework coordinates that movement. By taking this responsibility, the framework can
handle the load balancing and fine-grained fault tolerance necessary to work with reasonable
efficiency on clusters of non-specialized hardware.

This automation ought to mean that once a user writes a program using one of these
frameworks, it will just work. As is always the case in complex systems, this has often not
been true in practice, especially when the concern is not just completion but reasonably
efficient completion.



CHAPTER 1. INTRODUCTION 3

1.2 Deploying Analytics

There are a variety of ways for users to obtain computational resources. For example, they
could have a cluster built for their applications. But, considerably more common is sharing
that cluster with other users — other divisions of a company or members of the general
public.

Such environments are not new; supercomputing installations have long had such sharing.
But modern environments are more flexible in how resources are shared and what options
they give users, with the cluster shared at a finer granularity than individual ‘compute nodes’.
Using them efficiently is more important as users are often billed (actually billed or paying
‘funny money’ within a company) in a fine-grained manner for what they request. Even if
they are not, cluster operators want to ensure their cluster is used efficiently.

Along with more options for how users run programs, the increased ease of use of ana-
lytics frameworks has compressed the development cycle. In addition, analytics frameworks
themselves have focused on increasing interactivity by decreasing deployment, response, and
programming times, making them more suitable for exploratory analyses. Figuring out what
resources to request is no longer hidden as one of many tasks in performing distributed data
analysis. As less sophisticated users increasingly perform these large computations, deter-
mining how to run them efficiently has become more of a puzzle.

Analytics frameworks, despite their automation of distributing and load balancing com-
putations, generally have not assisted users in finding a good configuration of resources for
the computation. This is partly because this flexibility is rather new. Historically, most
large-scale deployments of analytics were tied to where data was persistently stored. In the
most important, highly-scaled use cases, they depended primarily on the speed of this I/O —
the performance of some distributed filesystem and whether they would be able to colocate
with that data.

For these applications, obtaining reasonable allocations of resources was mostly a matter
of accommodating the temporary data of disk-to-disk tasks and selecting a sensible de-
gree of parallelism. But newer frameworks have found benefits to keeping data in local,
non-persistent storage — usually DRAM. For applications that do many passes over data,
including many enabled by constantly improving support for complex and interactive anal-
yses, this happily decouples them from the speed of some distributed storage systems and
especially from the speed of spinning disks. To actually obtain these advantages, a user must
request enough memory to store their working set.

Practically, users need to decide their resource request before they commence their com-
putation. When data lives in a distributed filesystem, adjusting where computation takes
place based on the available computing resources may be easy. This occurs, for example,
with some cluster scheduling techniques for MapReduce-like workloads.But when a working
set needs to be distributed across the machines assigned to the user, adjustments require
moving that data.
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1.3 User Behavior and Resource Exhaustion

So, how do users make resource requests to deploy analytics? To answer this, I examined
a trace from a mixed workload on a Google cluster [73]. Comparing memory requests with
memory usage revealed that users are largely wasteful, seeming to reserve twice the space
required. This arises even when there should be incentive to make corrections given the high
demand for and likely cost of the underlying compute resources. If these users make such
errors, how could one expect users who are still developing their analysis and who have more
modest resources to do better?

The user experience of resource exhaustion — especially memory exhaustion — suggests
why. Because of the abstractions, users lack good intuition about how their program is
actually executed. Still, they see effects of resource exhaustion: programs crash or run very
slowly. In the event of a crash, a user at least understands the cause is resource exhaustion.
But, especially with fine-grained fault tolerance, it may take a while for the error to be
produced and to determine that its cause was allocating too few resources and not a bug in
the user’s code.

Further complicating users’ understanding is that there is no single “memory capacity”
to configure. The memory configuration is complex, involving many parameters. These
include setting aside space for many different purposes — such as for keeping persistent
data, storing values before they are stored persistently, performing aggregations, assigning
space for garbage collector operations, etc. In addition to the difficulty of understanding the
framework internals that drive the demands for these different allocations, users are charged
with understanding how these settings should change as they change the number of workers
(often another configuration parameter) offered to increase parallelism or decrease cost.

Frameworks will often diligently make best use of the resources they have configured.
With less memory than the true working set size (for some task), the framework may complete
computations by performing extra I/O, serialization, and deserialization. The result is that
users may suffer from the effects of memory exhaustion and not know it — their program will
run well enough, and they will not know it could be better. The framework will maintain
its abstraction, fulfilling its promise that the user does not need to worry about how the
computation is actually performed, but only so long as the user does not care sufficiently
about the performance or cost of the computation.

1.4 Insights from Instrumentation

The same framework abstractions that separate users from their memory exhaustion prob-
lems offer a solution. Users already rely on the framework to distribute their large amounts of
data and to be responsible for their memory usage. To provide this capability, the framework
does much of the work necessary to consolidate information about memory requirements in
tracking how data and computations are distributed.
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I take advantage of this to produce a practical model of framework memory requirements,
for a particular framework, Apache Spark. To this framework, I add the appropriate instru-
mentation to report the memory usage information that is readily available to it. Since the
framework already needs to track data and often data sizes as part of its normal operation,
this instrumentation only required minor changes to the framework. The complexity of these
changes was further limited by relying on abstractions within Apache Spark itself rather than
the more varied interfaces provided to end users. Based on the result of instrumentation, I
can compute a “good” configuration based on a program’s execution.

This configuration is not simply something greater than the high water mark of memory
usage. Integrating my recommendation tool with the framework gives it access to information
about data that is not kept in memory — about those decisions the framework makes to more
slowly compute a result instead of giving up and failing due to lack of memory. Integrating
with the framework also makes it possible to determine whether data stored in memory
is actually used. Integrating with the framework makes it easy to separate what memory
usage is part of fixed per-worker cost that will change if the number of workers allocated is
changed.

1.5 Managed Runtimes for System Software

A memory configuration for an analytics framework is not the full story, as the framework is
only a piece of the puzzle. Apache Spark — like a majority of open source systems software
written in the past decade — is written in a managed, garbage-collected language. This
is of great convenience to Spark’s developers, at least avoiding reasoning about memory
leaks and perhaps making memory management faster than if Spark had implemented it
itself. It is also of great convenience to Spark’s users — they can write their functions
in a managed language and have Spark run them efficiently, without awkward and often
performance-degrading ‘gates’ between languages.

But these language’s runtimes have their own memory configuration problem. If one
simply considers the amount of space required for the active objects of a garbage collected
program and sets that as the maximum memory size, the program will crash every time.
Garbage collection achieves reasonable performance by collecting garbage (unreachable ob-
jects) in large batches, meaning that there must be space for garbage to accumulate. And
modern garbage collectors do not simply just have one big region of memory they scan;
such simple techniques achieve very poor performance. Instead, modern garbage collectors
split up their memory to achieve reasonable performance. The choices about how to do
so are themselves more memory configuration parameters which impact a program’s overall
memory foot print.

The resources required for a garbage collector depends greatly on the application. Pro-
grams which are very ‘friendly’ to the garbage collector, for example, by managing a few
very large allocations, may require essentially nothing beyond what one would assume from
framework information. For other programs, the garbage collector may require substantial
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extra space to avoid continuously scanning memory for expired objects. Complicating this
assessment, most garbage collectors rely on some heuristics to achieve good performance,
whose effectiveness will vary between programs.

I address this variability by measuring program behavior to determine its garbage col-
lection needs. I do this specifically in the context of in-memory analytics, using framework
memory requirements to alleviate concerns about possible rare program behaviors. Using
observations of program activity, I estimate the program’s overall performance across a range
of garbage collector configurations. Rather than focus on maximizing performance, I esti-
mate an upper-bound on the garbage collector’s compute-time overhead. Using this, I can
choose a configuration where I can be confident the overhead will not be excessive.

1.6 Roadmap

The combination of framework and garbage collector configuration gives a complete recom-
mendation for memory allocation for in-memory analytics. In this dissertation, I describe and
evaluate SLAMR, a tool I have developed to provide these recommendations by observing
the behavior of a user program.

I start by reviewing the history of analytics systems in Chapter 2, including the evolution
from disk-based analytics systems to in-memory systems. I review, in particular, some of
the evolution of probably the most successful in-memory analytics system, Spark. Then, in
preparation for devising tools addressing analytics frameworks, I review the long history of
configuration recommendation tools targeting a wide variety of systems with a wide variety
of goals.

Given this review, I proceed to analyze the context for memory configuration recommen-
dation in Chapter 3 by means of an example of an environment from Google. In this I show
the loss of efficiency experienced in this large environment due to improper memory configu-
rations. I also find evidence that cluster-scheduler approaches based around overcommitting
are not very good solutions. The penalty when a user program fails because of insufficient
memory is large. To compensate, users are likely to make very conservative requests and
cluster schedulers are likely to avoid overcommitting.

I provide an overview of a solution to this challenge in Chapter 4. My solution is built
around modeling memory usage requirements for frameworks and underlying language run-
times. In contrast to most prior ‘autotuning’ systems, the design of SLAMR and the recom-
mendations it produces are focused on providing fast, consistent recommendations to users.
These ensure that recommendations are practically deployable by users. I also describe what
form memory requirements must take to be usable by users — configuring multiple compo-
nents and assisting in decisions about the degree of parallelism to use. In the next two
chapters, I describe these models.

In Chapter 5, I describe the part of SLAMR that models memory usage in an analytics
framework, in particular, Apache Spark. SLAMR uses observations of user requirements
from the examination of the cluster workload. This model is built on a simplifying heuristic
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— allocating enough memory for everything eligible in the framework to be kept in memory.
Based on adding a small amount of additional instrumentation, I record a trace of data
accesses from a representative execution. I transform this record into a concrete configuration
for Apache Spark for a given level of parallelism. I evaluate these recommendations on a
variety of example programs.

Recommending the amount of space for the analytics framework is insufficient without
also accounting for overheads from its runtime environment, such as from garbage collec-
tors it uses. In Chapter 6, I address these garbage collection overheads, a notorious source
of surprising failures. As with framework requirements, I focus on being conservative, in
this case by estimating an upper bound of the actual overhead. This bound is based on a
simplified model of a typical throughput-oriented garbage collector. I collect information
about program behavior from garbage collector counters, making small changes to the effec-
tive garbage collector configurations to collect sufficient information from a single execution.
Given this, I show that my approach produces useful estimates of maximum overheads for a
variety of analytics programs.

In Chapter 7, I describe how to combine these models to produce recommendations in an
appropriate form. The individual models by themselves, producing estimated overheads and
minimum memory for a given degree of parallelism, do not immediately result in a configura-
tion recommendation. To meet the requirements of users articulated in Chapter 4, I matched
viable configurations against models of user ‘utility’ that mirror typical charging for com-
puting resources. These utility estimates are biased towards smaller configurations, thereby
producing a ‘minimum’ configuration. I show that, despite needing to consider tradeoffs
between allocated memory and estimated computation time, suggested configurations are
not very sensitive to computation time estimates because of the steep increase in overhead
as allocated space decreases.

Finally, I discuss some future directions in Chapter 8. I describe how the instrumentation
available in analytics frameworks was lacking for evaluating memory requirements. These are
largely problems of visibility between layers that future framework authors should consider
as they design their systems. I also describe how both my framework and garbage collector
models could be extended to meet other memory recommendation goals. Rather than focus
on minimizing instrumentation overhead and purely conservative recommendations, one can
make more nuanced memory/time tradeoffs and choose from a wider range of configurations,
generally at the cost of increased measurement overheads.
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Chapter 2

Related and Prior Work

The increased availability of large datasets and the computing power to process them have
created increasing demand for large-scale data processing. In response, researchers have de-
veloped tools like MapReduce and its many derivatives to assist this growing user base. These
tools include abstractions that handle details of fault tolerance, distributing computation,
and sharing computing resources. Such abstractions have a long history, dating to scientific
computing workloads, where machines were purpose-built and rare, and the workloads were
more bound by computational power than data size.

Contemporary data processing problems and computing environments are different. Fast
development and data exploration are now more common goals, and the distinction be-
tween consumer and high-end computing hardware has narrowed. Beginning with the rise of
MapReduce [25], modern computing frameworks have thus focused on utilizing commodity-
like machines with increased automation to hide the additional complexity this requires.

Originally, MapReduce-based systems, in their pursuit of scale, focused on computing
with data that would only fit on spinning disks. But, as users have seen value in distributed
computation frameworks for less huge datasets and the decreased price of DRAM has created
demand for in-main-memory computation. Thus frameworks like Spark are built around
memory, providing better performance and interactivity.

MapReduce-like systems make many ‘invisible’ choices about how to distribute compu-
tations, how to perform communications and joins, and how to allocate resources between
multiple uses. These choices are generally reflected in a proliferation of configuration param-
eters, which sophisticated users often find affect performance dramatically. This proliferation
of settings is not new; even problems with less moving parts, like performing fast linear alge-
bra, have similarly complex parameter spaces. Thus, many solutions have been proposed for
automatically exploring these parameters, modeling the effects of changing these parameters,
or creating control loops for adjusting them.

In this dissertation, I particularly focus my analysis on one class of parameters: memory
allocation sizes. Prior work on adjusting the allocation of memory, which I will review
later in this chapter, has largely focused on long-running interactive services where there
is an easily observed, roughly continuous relationship between memory allocation. I will
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examine this problem in the context of in-memory analytics frameworks, where such changes
in performance are less gradual and measured by the execution of a relatively long pipeline,
not a short request. Consequently, my approach is more similar to non-control-loop based
performance modeling techniques than much prior memory tuning work.

2.1 Roadmap

In this chapter, I review both the evolution of analytics systems and efforts to better tune
their configurations for performance and resource usage. I also examine efforts to tune
configuration and resource usage in other types of systems, usually to improve performance.
I begin by reviewing the history of analytics systems, starting with MapReduce, the system
that started the modern emergence of data-intensive computing. I describe how these systems
lead to in-memory distributed computing frameworks, notably Apache Spark, which I use as
my platform in the rest of this dissertation. I then look specifically at memory management
in these frameworks. I start by reviewing how Apache Spark’s approach to this problem has
changed, evolving to increased instrumentation and explicit memory management.

My goal in understanding memory usage in this thesis is to help users set configurations
related to memory management. Accordingly, I review prior work on configuration tuning in
general. Most of this work focuses on optimizing performance (usually latency), but similar
techniques have been used to manage memory footprints. I start by reviewing the largely
offline, ‘black box’ autotuning approaches, followed by application-specific extensions of this
that integrate abstract models of how the system operates. I pay special attention to prior
work that has modeled caches, usually in the context of computer architecture, as I will
apply this to modeling Apache Spark’s caches.

After looking at offline configuration tuning techniques, I review online tuning techniques,
which generally use a control loop approach to find the optimal configuration. I do not
explore these techniques in depth, instead focusing on approaches which makes less changes
to the application environment and which depend less on applications being in a ‘steady
state’. However, these systems are particularly interesting because they have been used for
adjusting resource allocations similar to those I want to configure. Typically, these have
targeted for long-running services with variable workload, where an offline approach simply
would not make sense.

After reviewing more generic configuration management approaches, I look at work on
tuning garbage collectors or changing how they work. In a system like Apache Spark — and
many modern tools that would be part of an ‘analytics stack’ — these are ubiquitous, and
their performance and memory overhead matters. Most related to my work in Chapter 6,
I examine control-loop-based approaches that garbage collectors use to tune their configu-
ration parameters at runtime. These models together with prior work on modeling cache
performance will most inform the configuration models I develop in this dissertation.
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2.2 Analytics Frameworks

Developing tools to enable users to easily analyze has been a major area of research and com-
mercial development [99, 79, 51, 5, 6, 84, 63]. The increased prevalence of a large natural
datasets, such as from the Internet, aided by the increased ease of data collection, sharing,
and storage, has driven demand to scale-out data processing. Unlike the distributed compu-
tations of scientific simulations that have driven traditional supercomputers, the dominant
tasks in these new data processing workloads are focused around moving data rather than
raw computation. Simultaneously, a shift from custom-hardware supercomputers to more
cost effective mass-produced hardware has reduced barriers to scalable computing but cre-
ated increased complexity in software and more focus on scale over efficiency, to make use of
these less consistent systems with less performant networks. To handle these complexities,
data analytics frameworks arose, combinations libraries and runtimes to support writing
distributed data analysis programs.

2.2.1 Disk-Based Analytics: MapReduce and Hadoop

The most high impact framework in this transition is MapReduce[25] and its (sometimes
more general) reimplementations Hadoop[7] and Dryad [43]. Combined with distributed
filesystems that colocated storage on compute nodes, MapReduce moved computation to
data. In contrast to traditional database designs, it emphasized in-query fault tolerance and
load balancing. Rather than relying on checkpoints or restarting transactions, MapReduce
automatically recovers from worker failures with little extra work.

MapReduce’s design enables out-of-core computation, forcing users to structure compu-
tations in a way that can effectively use large sequential I/Os. The original use cases for
MapReduce — ‘web scale’ datasets — had no hope of fitting on fast random access storage.
The MapReduce abstraction let the MapReduce framework focus on efficiently organizing
the I/O to this to storage.

While MapReduce proved a valuable execution engine, users generally did not find it suf-
ficiently pleasant to use as a programming model. This lead to a proliferation of abstractions
that provided a higher-level programming language for pipelines of MapReduce operations.
These included both abstractions that provided an imperative interface [63, 19, 22] with fairly
direct translation to MapReduce operations and implementations of SQL-like declarative lan-
guages [84, 14]. These abstractions provide libraries of common MapReduce operations, like
maximum-within-group and sorting, that are straightforward but tedious to express directly
against the MapReduce execution engine, and manage schemas and intermediate storage.

2.2.2 In-Memory Analytics

As MapReduce became more popular, it became less important to compute with data using
spinning disks or even with solid-state drives. Several changes drove this: first, large memory
systems became considerably cheaper. Second, with the wide availability of MapReduce
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implementations, users without a dedicated cluster computing engineering team could easily
do large-scale data processing. These users often had more modest datasets — too large to
comfortably use one machine, but not so clearly requiring the fine-grained fault tolerance or
disk-based nature of MapReduce.

Also with the increased availability of MapReduce, users were trying to perform calcu-
lations for which the MapReduce programming model was not designed. One example was
data exploration; MapReduce’s inability to analyze moderately sized datasets without the
full overhead of reading from and writing to disk made it a poor match for data exploration.
Nevertheless, users trudged through long response times with systems like Pig [63], since a
full dataset was too large or too expensive to put in a traditional database and some of their
exploration steps would require reading and transforming huger volumes of data than would
fit in memory. Another issue was that though the abstractions over MapReduce made it easy
to write complex joins, these joins required numerous MapReduce jobs, each rereading data
from disk. But probably the most pressing need came from machine learning workloads.
The core operation for many machine learning workloads required iterative refinement, such
as making successive gradient descent steps. This translated, in the MapReduce model, to
reloading the input many times from persistent storage.

These pressures lead to alternate designs that eschewed fine-grained fault-tolerance [70,
79] and/or persistent storage of intermediate results [99, 79, 49]. Probably the most successful
alternative was Apache Spark [99]. Spark still targeted very large scale, so it did not remove
fine-grained fault tolerance, but it allowed users to replace storage of intermediates results
on disk with storage of intermediate results in memory.

2.2.3 In-Memory Programming and Execution Model

The programming model of Apache Spark, typical of the modern wave of data processing
frameworks, is built around an abstract representation of distributed datasets. Spark calls
this abstraction ‘resilient distributed datasets’ or ‘RDDs’. Users of Spark write a driver
program, which manipulates RDDs as if they are local variables. These computations can
be mixed with the ordinary control-flow and operations on values stored locally in the driver
program. Spark provides several transformations on RDDs, including both operations which
produce new RDDs and operations which produce ordinary values. Notably, these transfor-
mations are often parameterized by user-specified functions, which allow systems like Spark
to efficiently support a wide variety of computations.

For operations that produce new RDDs, rather than performing the transformation im-
mediately, Spark generally stores the transformation — or for RDDs not produced from other
RDDs, the input source. When the value of an RDD is actually needed, Spark performs the
computation requested, mostly on worker machines. To perform this computation, Spark
starts with the requested RDD and examines its dependencies back to input sources or values
which are already stored. It then executes the computation of the dependencies, followed
by the actual dataset. Each RDD is computed in partitions, whose size, in Spark, is set at
creation time. Along the way, Spark stores computed partitions if requested by the user for
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that RDD by marking it as ‘persisted’ or ‘cached’; otherwise, if the RDD is not marked as
such, values are discarded after they are used by the next phase of the computation. Spark’s
fault tolerance strategy reuses this machinery. To compute a value that is lost due to a
worker failure, Spark walks it dependencies until it finds a data source or persisted value,
then computes starting after these existing values.

Spark supports RDD transformations that require many-to-many distributed communi-
cation, such as to implement a group by over a large dataset. To implement these, Spark
provides an ‘internal’ shuffle and aggregation operation. When an RDD is derived from
another RDD using a shuffle operation, Spark performs a map task for each partition of the
input RDD, grouping values by their partition in the output RDD. These tasks write out
data to be read later by corresponding reduce tasks, each of which produces one partition
of the output RDD. Depending on the transformation, Spark may perform aggregation of
values, such as sorting values within a partition by key or summing values with a particular
key. These operations are supported by doing an in-memory aggregation.

In many practical cases for users of frameworks like Spark, the user of the RDD ab-
straction is not the end user, but some higher-level library. This includes many libraries
distributed with Spark, which provide database-like interfaces or machine-learning primi-
tives. Regardless, the central abstraction in systems like Spark is the ability to manipulate
datasets at the driver in a similar manner to local operations and have these translated to
distributed operations, performed in a fault-tolerant manner.

2.3 Machine Environments For In-Memory Analytics

Running in-memory computations requires that users obtain resources, and especially mem-
ory, on which to run their computations. Just as analytics frameworks have evolved, so have
common environments for in-memory analytics. Where, originally, companies would build
special-purpose clusters to run an analytics framework, usually Hadoop, this is now less
common. Common cases for analytics — especially the lower response times of in-memory
analytics — involve getting computing resources on demand from a shared pool.

The need for computing resources are often satisfied using cloud computing providers,
who offer these resources for rent [9]. Users of such services benefit from the economies
of scale in provisioning and maintaining cluster hardware. In addition, the users benefit
from elasticity — they can pay for resources only when they need them, and obtaining, for
example, 100 machines for one hour costs approximately the same as obtaining one machine
for 100 hours. This flexibility is particularly relevant for analytics programs, where analytics
frameworks can effectively use these additional machines to give answers more quickly.

Simply being able to obtain computing resources quickly, without buying hardware for a
dedicated cluster, has been a major enabler of analytics and the move towards in-memory
analytics. Without the ability to deploy computing resources quickly, the promises of easier
application development and lower latencies from increased use of memory would ring hollow.
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The most frequently used cloud computing services for analytics include providers like
Amazon EC2[3] and its many competitors[35, 1, 57], which offer virtual machines in a va-
riety of configurations. This is known as ‘infrastructure as a service’ (IaaS). Users of these
environments are responsible for configuring each virtual machine, deciding how to assign
its resources, and paying even if those resources are left unused. These same cloud comput-
ing providers also provide higher-level services, including supporting analytics-like queries.
These include tools that automate deployment of an analytics stack on virtual machines of a
customer’s choice, like Amazon Elastic MapReduce [5]. It also includes tools which hide the
computing power used, like Google’s BigQuery [34], which provides an more limited SQL-like
interface, but charges users by the data queried instead of exposing decisions about what
machines to use.

When running an analytics program in an IaaS environment, users need to choose both
how many virtual machines and which types of VMs to provision. In EC2’s case, they have
a choice of 11 different memory to CPU ratios as of this writing, in addition to variation
in their I/O capabilities. For any of these types of virtual machines, users can meet any
aggregate memory or CPU power requirement by asking for enough machines, with different
levels of cost-efficiency. EC2’s competitors often provide a similar array of choices.

Even users who do not run on public infrastructure often face similar tradeoffs. When
users run analytics programs on an enterprise’s internal cluster, they are likely to share that
cluster with other users using a scheduler similar to Google’s Borg [91] or Apache Mesos [39]
or Apache Hadoop YARN [87]. Alternately, some institutions provide an environment that
imitates an commerical IaaS cloud provider using software like OpenStack [64]. For all of
these environments, even if the user is not somehow charged for resources like the public
IaaS providers, they still need to decide on a configuration request for each allocated worker.
Cluster schedulers generally will rely on this resource request to try to achieve high utilization
of the cluster, allowing its potentially many users to share it effectively.

2.4 A History of Memory Management Inside Spark

As Spark has moved from a research prototype to a commercial system, it has evolved.
Although the core abstractions provided by Spark have remained the same, the methods
by which Spark manages its memory to implement these abstractions have changed sub-
stantially. Generally, Spark has done more and more explicit tracking of its memory usage,
improving its performance and handling of rare situations. In this section, I review Spark’s
evolution towards more and more explicit management of memory and the likely motiva-
tions behind this. Separately, in Chapter 5, I will look at Spark’s memory model from the
perspective of modeling its memory requirements.
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2.4.1 The Early Days: Weak References

Early versions of Spark used Java’s ‘soft references ’ to do cache eviction and decide how
long to keep intermediate results in memory instead of recomputing them. Spark stored
data in memory as objects in the Java virtual machine on which it ran and relied on the
virtual machine’s garbage collector to decide when to evict cached data. Soft references
indicate to this garbage collector that the reference should cleared, allowing the referenced
data to be freed, when there is enough memory pressure. Unfortunately, the behavior of
garbage collectors of popular Java implementations with soft references in practice is quite
poor. The policy in OpenJDK, the most popular Java implementation for servers, generally
clears soft references after a substantial amount of time has already been spent doing garbage
collection, rather than doing so proactively. This is complicated by the garbage collector
generally lacking good information about how to choose between multiple soft references to
clear.

The performance of soft references is unacceptable due to this reluctance of the garbage
collector to clear them and the unpredictable choice of which references to clear. The drop
in performance from keeping data cached is non-obvious: the problem is that the frequency
of garbage collections is proportional to the inverse of the free space available (see Chapter
6). When a program is producing temporary objects, there can be significant free space
available after each garbage collection, therefore the logic which frees soft references may
never be triggered. (OpenJDK has multiple heuristics to detect that it needs to free memory,
including a threshold based on an excessive portion of program runtime being spent in GC,
so there are limits to the scale of this effect.) However, the extra space taken up by the
data referenced only through the soft reference can easily reduce the free space after each
collection from, say, 4 GB to 1 GB, easily quadrupling the GC overhead.

2.4.2 Maturity: Explicit Accounting

Spark quickly abandoned this reliance on garbage collectors to free ‘cache’ memory. This
required Spark to peek under the covers of its language runtime and understand how objects
are stored. Consequently, Spark began estimating the size of cached objects. To use this
sizes, Spark implemented an explicit replacement policy rather than relying on a garbage
collector’s choice. A pure least recently used (LRU) policy would produce the worst pos-
sible performance for application of particular interest to Spark. For example, a typical
implementation of gradient descent, a common primitive for machine learning algorithms,
in Spark would make passes in partition number order over the input data each iteration.
With an LRU policy, Spark would never get any advantage to storing the values in memory.
Instead Spark avoids evicting a partition from a dataset to make room for another partition
from the same dataset.

Beyond explicitly managing its cache, Spark confronted other sources of potentially ex-
cessive memory usage. There were cases where memory outside of cached data would have
non-trivial sizes and thus Spark users would surprisingly run out of memory. One source was
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Spark’s implementations of aggregation operations like group-bys and sorts. Originally, after
dividing data into partitions, Spark would perform group-by-like operations for a partition
entirely in memory. If partitions in the form necessary to perform these operations were large,
this could cause memory exhaustion, even though Spark kept its storage for ‘cached’ data in
check. To compensate, Spark switched to a strategy that supported disk-based merge similar
to that of Hadoop MapReduce. To implement this, it started accounting for the memory
used during these aggregation operations to decide when to fall back to disk. Another source
of memory exhaustion was during the computation of a partition to be cached. Previously,
Spark would only made eviction decisions after the replacement was already in memory, but
this meant that extra space needed to be allocated ‘outside’ the cache for items that would
be stored in the cache. In response, Spark started estimating the sizes of partitions as they
were computed instead.

2.4.3 Move to C-like Memory Management

Spark has been evolving to rely less on language runtime memory management. The most
notable artifact of this is Databrick’s Project Tungsten[75], which is bringing Spark closer to
the ‘bare metal’ — to explicitly choosing its memory representations and manipulating them
with native machine code. This approach relies on higher-level abstractions over the Spark
core. Rather than manipulating data as native objects in a high-level language runtime,
users write code against something more like a database. This higher level of abstraction
allows for specialized code generation and the management of data in forms unlike those
supported naturally by the language runtime. In addition to the increased complexity of
the implementation, a downside is lower generality — by focusing on operations which can
be specialized to act on these optimized storage formats, it does not extend to integrating
general user defined functions and non-Spark libraries that is, for many users, a key feature
of Spark.

2.5 Performance Optimization Approaches

There are variety of approaches system designers have taken to optimize the performance
of a system with a complex configuration space. One approach, particularly useful in cases
where the performance of small, easily benchmarked piece of code, is to essentially try all
possibilities. Other approaches are more systematic: combinations of experts and statistical
techniques might build a performance model of the system. Using such performance model
would also require trying several configurations, but only to observe some parameters of
the model. Some work replaces this training phase with continuous refinement, turning the
model into a control loop, particularly suitable for long-lived programs with slowly changing
workloads.
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2.5.1 Autotuning

In the high-performance computing space, autotuning is a common program optimizations
technique where many variations of an important function are generated, and each is tested.
Typically, an expert will write a program that will take a set of parameters are produce
a candidate version of the function with optimizations chosen based on the parameters.
Autotuning techniques have produced some of the fastest linear algebra [93, 15] and FFT [27]
libraries across a wide range of platforms. Since there are usually many parameters to choose
when optimizing mathematical routines, the autotuning search is very expensive, even with
some heuristics to to limit for the search. Because of this, more recent proposals [29, 13] use
a predictive model in order to explore the parameter space more efficiently than exhaustive
search. Even with this improvement, autotuning searches are very resource intensive (often
testing thousands or more configurations), since effect of the optimizations is too complex
to model accurately with a small number of samples.

2.5.2 Performance Modeling

Many systems have built performance models of applications to configure them. A variety
of application types have been targeted: scientific computing workloads (e.g. [71, 44, 11, 21,
60, 23, 26]), OLTP workloads (e.g. [58, 85, 97]), MapReduce-like workloads (e.g. [90, 48, 78,
38, 28, 98, 89]), web workloads ([47, 86]). Additionally, some work [78, 71, 96, 40] attempts
to be mostly application-agnostic, observing and controlling application behavior at the VM
level, though sometimes supplemented by some application-level progress information.

A performance model matches an incoming job and its configuration to some estimated
performance. For a model to be useful, one must find attributes of incoming jobs that both
predict performance and can be easily observed. When the performance model needs to work
for new jobs and unused datasets, developing the model is therefore non-trivial. In addition,
the model is likely to be limited to the particular type of model queries and perhaps to the
particular type of workload. For applications with nice parallel structure, like MapReduce,
running a sample of the parallel tasks in the job can be a good way to gather representative
statistics [48, 98]that can predict performance. Some systems rely on some static analysis
of the unknown programs, for example, they might use query plans [30] or general program
analysis techniques [60] to produce an input to the performance model.

A majority of performance modeling approaches rely on fitting observed performance and
workload parameters to a statistical model. The statistical model can either be a generally
applicable regression model (i.e., trained from a set of “representative” workloads), an expert-
chosen model (i.e., based on the expert’s understanding of bottlenecks in the application),
or a combination of the two. Even for the general regression models, some expert choices
need to be made about what features are important enough to extract from the programs.
The accuracy of a performance model depends on whether these expert’s choices and any
training workloads really capture the performance regime during the overall system’s use.
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Another category of performance models can be seen in PACE [60], which, for scientific
computing applications, proposes to statically analyze applications to synthesize a trace of
important hardware events before the program can be run on real input. These hardware
events are fed into expert-built models of hardware performance. The accuracy of statically
based approaches is limited because such static models cannot account for variations in
program behavior based on input. There are also practical concerns about the static analysis:
static analysis tools are imprecise and may have trouble reproducing even the non-input-
dependent behavior of some programs, and many programs are not available in format
suitable for static analysis tools. For example, programs written in multiple languages or
include libraries for which source code is not available may be very challenging for static
analysis tools.

Although performance modeling approaches have been successful in predicting the run-
time of MapReduce-like programs across a range of configurations, these approaches do not
readily generalize to in-memory analytics. Even for systems like FMEM [98], which has
a primary goal of predicting memory usage, the prediction is for temporary usage that is
largely independent of large-scale properties of the dataset being processed. Furthermore,
these predictions focus on determining actual memory usage given a particular heap size
constraint rather than determining whether a particular heap size is acceptable.

Performance modeling systems for MapReduce that are concerned with memory configu-
ration have generally focused on modeling the behavior of short-lived individual tasks whose
output begins and ends on disk. Consequently, side-effects for a misconfiguration are gener-
ally increased disk I/O for an already disk-based sort, which tends to degrade performance
relatively smoothly. Where there are out-of-memory failures in these systems, they are easier
to predict from executions over sampled data since the memory exhaustion tends to comes
from temporary data and never from data persisting in memory between tasks. In contrast
to these disk-based systems for which performance costs of using disk are normal, systems
like Spark usually have a performance ‘cliff’ when the working data size exceeds the available
memory and disk is used for the first time.

Where performance modeling systems that deal explicitly with in-memory analytics,
like Ernest [89], a statistical performance modeling system for Spark, they have generally
sidestepped this memory exhaustion issue. Ernest uses a regression model to learn the per-
formance envelope of a particular application as the configuration changes. But the primary
goal is to characterize how performance changes when the (typically machine-learning) ap-
plication is within the good performance space to meet a particular time or cost target. The
generalized linear regression model Ernest uses for an application is unlikely to have any
examples of memory exhaustion in its training set.

2.5.2.1 Cache Modeling

Outside of large-scale data processing, one domain where performance models have been
very necessary is hardware design. An area of particular interest for large-scale data pro-
cessing are how hardware designers evaluated different cache designs. To do so, they needed
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to evaluate many cache designs given the access pattern of a representative benchmark of
programs. Traditional techniques for cache simulation are already very expensive, as a simu-
lated cache access is likely to be thousands of times slower than a real cache access. Adding
the complexity of trying many cache designs to this would seem to make such analysis
impractical.

This lead to ‘stack algorithms’ approaches [55, 12, 62, 83, 45], which can track the behav-
ior of caches across a wide range of cache configurations with a single analysis pass. These
approaches rely on the replacement policy having the property that the items in a cache of
size N are also in a cache of size N+1. This allows the occupancy of many possible caches to
be tracked in their namesake stack — with the least frequently evicted item inserted on top
of the stack. Naive algorithms for stack analysis are quadratic — still better than a straight-
forward simulation at each of millions of possible cache parameters, but unacceptable. As
detailed in [45], approaches based on splay trees can accelerate this analysis to amortized
log-linear time. Even without the use of splay trees, [45] observes that temporal locality
makes simpler techniques, such as organizing the stack into bins whose sizes are tracked,
achieve similar performance.

2.5.3 Resource Management Control Loops

Most work focused on choosing configurations from performance models has assumed that
a single configuration needed to be chosen. For resource allocation, this has traditionally
been true since users needed to provision for peak. The rise of cloud computing, which
has sometimes made reducing allocated resources practical and money-saving, has lead to
several proposals to resize applications based on varying demands. These include commercial
solutions [77, 4] and research prototypes [85, 78, 47, 17, 40, 37]. Typically, these systems
target interactive workloads whose demand varies due to external factors. Their goal is to
fit resource usage to this varying demand. Usually, the demand is matched by adjusting the
number of (virtual) machines assigned, but occasionally more fine-grained mechanisms such
as adjusting a virtual machines’ CPU share are assumed (as in [78, 40, 37]).

One particular challenge for autoscaling systems is dealing with sudden spikes in demand.
One approach, used by the SCADS Director [85], is to always have machines running and
ready to deploy in case of a sudden demand spike and to use an open-loop predictor so that
the needed capacity can be determined. Systems that are closed-loop (such as [102, 78])
cannot determine how much capacity is needed to satisfy a spike after existing resources are
saturated, so they are careful to scale up resources quickly (at the cost of allocating resources
that will not be used) and to converge to allocating enough resources to account for typical
variance in application demands.

2.5.3.1 Memory control loops

Most control loop schemes that relied on resource usage monitoring adjust allocations based
on the CPU usage since the workloads they controlled were usually CPU-bound. If they
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adjusted other resources, it was usually only incidentally, such as by adjusting a number of
allocated virtual machines. A small number of systems (such as [40, 37]) have focused on
controlling the memory usage to make better use of memory on a single node. Typically,
they focus on inferring the memory-performance tradeoffs of long-running interactive services
(like web serving or OLTP databases).

Memory usage tends to be more stable than CPU usage, but adjusting it is more difficult
because memory may contain data that cannot be safely discarded. A classic mechanism
for adjusting memory usage is swapping, but its performance impact is usually unacceptable
with modern memory and disk speeds. Thus, more than determining the correct memory
allocations, the major challenge for schemes that adjust memory usage is avoiding these per-
formance problems by adjusting estimates to ensure headroom and choosing better mech-
anisms to adjust memory usage. Recent attempts to adjust memory usage usually apply
pressure to existing memory management systems, such as page cache managers or garbage
collectors. Memory is actually freed by the normal action of these systems in response to
increased demand for memory; for example by evicting cold pages that are already written
on disk or by increasing the frequency of garbage collector sweeps.

Since memory management is generally focused on sharing memory on a single machine,
an alternative to directing coexisting memory managers is to use a shared cache, whose
behavior can easily take into account all the users on the machine. The Transcendent Memory
proposal for Linux [53] proposes using such a shared cache (implemented in a hypervisor)
for as “second-chance” cache for the guest operating system caches or for application caches
aware of the service.

2.6 Garbage Collector Tuning

Garbage collectors’ performance is a source of much frustration to programmers. Usually,
the frustration is focused around garbage collector pauses. The earliest garbage collectors
were based on a ‘stop-the-world’ mark and sweep approach. These garbage collector designs
were particularly unfortunate for interactive applications, so many later garbage collector
designs focus on concurrency. They trade some efficiency for doing more of the work of the
garbage collector outside of noticeable pauses. The culmination of this trend are very low
pause garbage collector targeting large heaps like Azul’s ‘C4’ garbage collector [10] or the
Shenandoah garbage collector [20] planned for OpenJDK.

But while these collectors are asynchronous, they still require tuning for good perfor-
mance. Concurrent collectors will fail to be concurrent when their concurrent collection
work cannot keep up with allocations given the available space. Moreover, pause times are
not the only concern. For applications like batch analytics, how much the garbage collector
competes with the application’s computations for the CPU is significant. Using the older,
non-concurrent collector designs reduces these overheads.
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2.6.1 Manual Tuning Advice

Regardless of whether it is latency or throughput that matters most, tuning the garbage
collector is very important to the performance of applications that run on managed runtimes.
This has had lead to many attempts at providing heuristic tuning advice such as in [31, 42].
Typically, this tuning advice has been focused on long-running server applications. It is for
these applications that time investment in tuning is most valuable and the latency cost of
garbage collector pauses is worst. In addition, the default settings for garbage collectors
has often been a throughput-focused one, so merely switching to a more latency-focused
concurrent collector obtains a very large benefit.

Being focused on long-running services, tuning advice typically was based on assuming
a steady-state workload. It generally mixed rules of thumb — such as allocating a par-
ticular portion of the available space to different garbage collector regions — and making
adjustments based on garbage collector logs. The advice in [42] is to systematically make
adjustments to each of several garbage collector parameters based on observing performance
and sizes once the application is in a steady state. These adjustments are informed by
knowledge of what should achieve best performance — such as making survivor spaces large
enough to avoid having ‘short-lived’ objects enter tenured space. But, generally, these ap-
proaches are based on making small adjustments to individual garbage collector parameters
and checking whether they improve performance.

2.6.2 Improving Application/GC integration

Much effort has been spent on trying to make garbage collectors themselves better suited
toward common applications. In addition to making garbage collectors that happen to
behave better given the allocation patterns experienced by typical programs, some research
has focused on allowing programs to integrate with the garbage collector more directly.

One approach, shown in Broom [32], would allow applications to divide memory into
regions based on how the application uses memory. This allows sets of objects, such as
those making up a stored dataset in a system like Spark, to be effectively managed as a
unit by the garbage collector. In existing systems, the garbage collector does not receive any
hint that the lifetimes of these objects are related and must separate them from temporary
data, or longer-lived data, by scanning it. Instead, the frameworks that know when these
sets of related objects should become unreachable can tell the garbage collector about this
explicitly, substantially improving its performance.

Other proposals have focused on coordinating not the arrangement of memory so much
as when garbage collection activity happens. [52] tackles the difficulties of garbage collection
latency across distributed system by controlling when garbage collections occur based on
application needs. This avoids exaggerating the effect of pauses by letting them occur when
the worker node experiencing the pause has a large number of pending requests from other
nodes. In the case of throughput-oriented systems, this can be done by coordinating garbage
collection pauses so workers do them simultaneously; in response-time oriented system, work
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can be routed away from workers as they perform garbage collection activities. Similarly,
[82] proposes an API to make applications aware of where garbage collection events are
happening so they can make these types of adjustments.

2.6.3 Runtime Adjustments

Beyond new garbage collector designs, another common approach for tuning garbage collec-
tors is to adjust the space allocated to the garbage collector at runtime. This is particularly
relevant when managing multiple garbage collected applications on a shared system or bal-
ancing garbage collected memory with operating system caches. [18, 16] examined control
loop approaches for adjusting the amount of memory assigned to garbage collection to max-
imize total system throughput. These focus on systems where it is practical to adjust the
amount of space allocated to the garbage collector at runtime, for example because the space
can be taken from OS caches or other managed programs. Consequently, they act by observ-
ing the total extent of garbage collection activity relative to other memory pressures (page
faults and other applications’ garbage collection activity). From these observations, they
make heap size adjustments up or down until the system stabilizes.

Another concern of garbage collectors is tuning internal parameters. [88] describes how
the sizes of the various regions of the Hotspot generational collector can be adjusted to
maximize performance. It uses a control loop-based approach that obtains a local estimate of
the likely throughput changes that would result from changes to the sizes of various memory
regions. Unlike systems that try to balance language runtime and external memory usage,
it relies extensively on counters within the language runtime to estimate the approximate
sizes and collection rates.

This explicit estimation of sizes and collection rates is based around assuming application
behavior exists in a steady state and modeling the corresponding internal garbage collector
behavior, the starting assumption I also use in Chapter 6. Unlike my work in Chapter 6,
the approach in [88] is distinctly online. After adjustments are made to garbage collector
parameters, it observes how the garbage collector behavior changed. Based on these changes
and a performance model, it determines in which direction to make future adjustments in
order to maximize total throughput. Being an online system, [88] is concerned with adjusting
how memory is split between different managed regions rather than the total amount of
memory available, which is relatively inflexible at runtime in most practical applications.

2.7 Summary

Numerous efforts have confronted the increasing complexity of large-scale computing plat-
forms. As new abstractions have made large-scale data processing easier for users, they have
many knobs that must be configured for best performance. Although experts may always ad-
just these parameters to squeeze the last bits of performance, researchers have tried to tame
this complexity by automating this tuning. Typically, they construct performance models of
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the system to guide their choices. These models range from completely generic approaches
based on exploring all possible configurations to manually constructed approaches based on
a simulation of the underlying resource demands. Given these performance models, they
either devise a control loop or a system to make static recommendations based on a training
phase.

Of particular difficultly for these systems are the configuration knobs related to memory
usage. In addition to being difficult to adjust at runtime because of the data movement costs,
memory allocations cross layers. Applications use memory through a language runtime, pro-
viding the runtime incomplete information about its memory and performance requirements.
Some efforts have focused on improving this barrier, especially in the distributed case, by
providing interfaces for applications to indicate their preferences to garbage collectors and
vice-versa. Similarly, other proposals have focused on improving communication between
garbage collectors, since otherwise operating systems cannot profitably reclaim memory from
a garbage collected heap.

In this dissertation, I configure memory allocations across many layers with a modeling-
based approach. I use an analysis of the operation of in-memory analytics frameworks
and their underlying language runtimes to guide data collection and recommendations. A
difficulty of modeling memory usage this way is that allocating too little memory has very
negative effects on performance — thrashing. Prior work that deals with memory usage
handles this by having an online mechanism to adjust memory usage in response to these
problems or by operating well away from the ‘minimum’ memory allocation. In contrast, I
rely on the construction of my model to confidentiality avoid these problems.
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Chapter 3

User Use of Shared Computing
Environments

Effectively dividing the resources of shared computing facilities has been a major concern of
system operators since the dawn of time-sharing systems. In modern commodity clusters, to
obtain the advantages of consolidation, operators of shared infrastructure need to partition
resources dynamically. Despite many proposals for new resource managers [46, 94, 100, 91] for
these environments, there has been little visibility into the workloads these cluster managers
face. To help better understand these workloads, Google released to the research community
a substantial cluster usage dataset from one of their production clusters [95]. I analyzed this
“trace” to understand the environment in which modern resource managers operate.

I was particularly interested in what information is available for cluster management
systems to run batch programs, such as data analytics programs, alongside interactive work-
loads. Until recently, computing environments where this was possible were rare: the shar-
ing mechanisms usually required coarse-grained division of resources, for example assigning
whole compute nodes to tasks, and running different kinds of workloads together was rare.
A common wisdom has been that there should be a great increase in efficiency because inter-
active workloads have a lot of spare capacity and therefore flexibility to fit batch workloads
which can survive occasional failures due to overcommitment of resources. Important to such
schedulers is the information available to predict resource usage. With good information, a
scheduler should achieve high utilization even after taking account of lost cycles from failed
attempts at overcommitting resources.

The viability of this approach may depend on the accuracy of resource requests supplied
by applications. To avoid placing tasks only to have their work wasted because they do not
fit, schedulers want to predict resource usage in advance. This is especially true for memory
usage; programs with insufficient memory are not likely to simply run somewhat slower.
Schedulers might predict resource usage more accurately by monitoring applications. But
the scheduler’s information, through generally application-agnostic monitoring, is limited,
especially at the most important application-launch time. Furthermore, if the scheduler acts
too aggressively on this information, it may surprise users who expect consistency in the
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resources their applications receive.
In analyzing this trace, I examined whether Google’s scheduler had the information they

needed — either directly from their users or through making predictions from application-
agnostic monitoring. I particularly wanted to understand this about memory usage, since in-
memory analytics places increased pressure on memory and it is more difficult to overcommit
memory without relocating data. As far as the scheduler was lacking sufficient information,
I wanted to understand what the causes of that gap were: When the scheduler was getting
poor resource requests, what was likely motivating users to make these bad requests? If the
scheduler tried to predict resource usage beyond resource requests, what problems did or
would overcommitting memory resources be likely to cause?

My examination showed that the scheduler seemed to lack what it needed to predict
resource usage to overcommit memory well. Resource requests was a fairly poor predictor.
The best simple predictor of actual resource usage I found, instead, was recent resource usage.
While promising, this mechanism gives no good answer for what a scheduler is supposed to
do when placing a program initially. Even later, relying on it would make it hard to provide
good guarantees to users who wish to avoid spurious task evictions and is problematic for
programs whose resource usage might change over time.

Perhaps in response to these concerns, the Google scheduler was fairly deferential to
resource requests. Still, its modest attempts at overcommitment resulted in high cost in
terms of evictions to achieve only around 50% utilization as shown in Figure 3.1. The gap
between resource requests and average usage accounted for most of this difference. The
workload was very diverse in many ways: urgency, resource requirements, the gaps between
resource requests and usage, how much resource usage varied within a job, etc. While this
is precisely the diversity that should create opportunities to colocate programs with non-
interfering resource demands, this diversity means that a simple examination of patterns
or averages would not correct the poor resource requests. Instead, the Google scheduler
rationally relied upon user resource requests largely as they were, leaving most resources
unused.

In examining this trace, I first review the information collected in the Google trace,
providing an overview of its size and terminology I will use to describe it. Then, I examine
the mix of types of jobs, revealing the great variety of requests which is a challenge and
opportunity for the scheduler: a challenge because the constant high load requiring very
fast scheduler decisions and their lack of uniformity making simpler slot-based approaches
untenable; an opportunity because there should be a wealth of small tasks to fill unused
space on the cluster. I then examine how well the scheduler does and could do at taking
advantage of this opportunity. I show that there is a large gap between what users request
and require and investigate the sources of this discrepancy.
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Figure 3.1: Moving hourly average of CPU (top) and memory (bottom) utilization (left)
and resource requests (right). Stacked plot by priority range, highest priorities (produc-
tion) on bottom (in red/lightest color), followed by the middle priorities (green), and gratis
(blue/darkest color). The dashed line near the top of each plot shows the total capacity of
the cluster.

3.1 The Environment of a Google Trace

The Google trace provides a month of detailed request and usage information for a collection
of approximately 12K physical machines that are managed by a common cluster scheduler.
Users submitted around 650 thousand jobs, each consisting of one or more tasks, which are
programs to be assigned to and executed on machines. Tasks are not gang-scheduled, though
they are typically meant to be run simultaneously and usually execute the software. Each
task is specified with various attributes, which can include priority, resource request (an
estimated maximum amount of RAM and CPU needed), and constraints (e.g., don’t run on
same machine as another task of this job or on a machine without an external IP address).
The trace includes sufficient information about the machines to match these requests and
constraints to machines, including changes in machine availability over time.

The cluster machines are not homogeneous; they consist of three different platforms
(the trace providers distinguish them by indicating “the microarchitecture and chipset ver-
sion” [74]) and a variety of memory to compute ratios. The configurations are shown in
Table 3.1. Exact numbers of CPU cores and bytes of memory are unavailable; instead, CPU
and memory size measurements are normalized to the configuration of the largest machines.
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Number of machines Platform CPUs Memory
6732 B 0.50 0.50
3863 B 0.50 0.25
1001 B 0.50 0.75
795 C 1.00 1.00
126 A 0.25 0.25
52 B 0.50 0.12
5 B 0.50 0.03
5 B 0.50 0.97
3 C 1.00 0.50
1 B 0.50 0.06

Table 3.1: Configurations of machines in the cluster. CPU and memory units are linearly
scaled so that the maximum machine is 1. Machines may change configuration during the
trace; we show their first configuration.

We will use these units throughout this paper. Most of the machines have half of the memory
and half the CPU of the largest machines.

In addition to the CPU and memory capacity and microarchitecture of the machines, a
substantial fraction of machine heterogeneity, from the scheduler’s perspective, comes from
“machine attributes”. They are obfuscated 〈key,value〉 pairs, with a total of 67 unique
machine attribute keys in the cell.

Unlike classic ‘cloud computing’ environments, users are not isolated from each other
through the use of full virtual machines. Instead, users run directly on on the physical
machine’s operating system. Users are isolated from each other using the Linux kernel’s
cgroups [68] mechanisms. Unlike full virtualization, this means that users share filesystems
and kernel services. This means that there is less overhead to run a user program than a
traditional commodity computing environment permitting more fine-grained sharing. The
cost is that there is less isolation between users’ CPU, memory, and I/O demands.

3.2 Mix of Job Sizes, Frequencies

Unlike environments built for a single type of applications like web serving or scientific
computing, the Google cluster ran a very diverse workload. There is a mix of long-running
services and short-lived, intermittent batch programs. The promise of operating a shared
cluster as Google does is precisely this sort of mix of workloads — the long-running services
ought to have substantial flexibility because of the gap between their peak and normal
demands. Less time-critical programs might fit in the ‘spare’ capacity, effectively eliminating
capital costs for batch computations.

In addition to the multiple qualitative types of jobs, the trace also illustrates a very wide
range of sizes of jobs. In terms of pretty much any dimension — the amount of resources
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devoted to each task, the number tasks in a job, the total resources devoted to a job, the
durations of tasks and jobs — the trace has many orders of magnitude of variety. This
variety poses a challenge to cluster schedulers, which need to be efficient to deal with a flood
of small requests and still must handle bin-packing issues that arise from large, long-lived
allocations.

3.2.1 Mix of Priorities

One signal of differing job types is the priority associated with the tasks. The trace uses
twelve task priorities (numbered 0 to 11), which I will group into three sets: production (9–
11), middle (2–8), and gratis (0–1). The trace providers indicate that latency-sensitive tasks
(as marked by another task attribute) in the production priorities should not be “evicted
due to over-allocation of machine resources” [74] and that users of tasks of gratis priorities
are charged substantially less for their resources.

3.2.2 Large, Long-Running Jobs

The aggregate usage shows that the production priorities represent a different kind of work-
load than the others. As shown in Figure 3.2, production priorities account for more resource
usage than all the other priorities and have the clearest daily patterns in CPU usage (with
a peak-to-mean ratio of 1.3). Usage at the lowest priority shows little such pattern, and this
remains true even if short-running jobs are excluded.

The presence of this daily pattern, combined with the guarantees given to production
priorities suggests that it is dominated by user-facing interactive services. This is corrob-
orated by looking at the mix of job lengths; as shown in Figure 3.3, production priorities
include a majority of jobs that ran longer than a day even though only 7% of all jobs ran
at production priority. In contrast, the middle priorities account for a majority of all jobs
but only 7% of jobs that run longer than a day. Combined with less of a guarantee against
eviction, this suggests that these priorities would be suitable for batch programs to drive
the interactive services. The aggregate workload is more like that seen in MapReduce-like
systems, with many short-running tasks, not triggered with any obvious periodicity.

These are clearly not perfect divisions of job purpose — each priority set appears to
contain jobs that behave like user-facing services would and large numbers of short-lived
batch-like jobs (based on durations and utilization patterns). The trace contains no obvious
job or task attribute that distinguishes between types of jobs besides their actual resource
usage and duration: even ‘scheduling class’, which the trace providers say represents how
latency-sensitive a job is, does not separate short-duration jobs from long-duration jobs.
Nevertheless, the qualitative difference in the aggregate workloads at the higher and lower
priorities shows that the trace is both unlike batch workload traces (which lack the combi-
nation of diurnal patterns and very long-running jobs) and unlike interactive service (which
lack large sets of short jobs with little pattern in demand).
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Figure 3.2: Normal production (top) and lower (bottom) priority CPU usage by hour of day.
The dark line is the median and the grey band represents the quartiles.

3.2.3 Variety of Task Shapes

Each task has a resource request, which should indicate the amount of CPU and memory
space the task will require. (The requests are intended to represent the submitter’s pre-
dicted “maximum” usage for the task.) Both the amount of the resources requested and
the amount actually used by tasks varies by several orders of magnitude; see Figures 3.4
and 3.5, respectively. These are not just outliers. Over 2000 jobs requested less than 0.0001
normalized units of memory per task, and over 8000 jobs requested more than 0.1 units of
memory per task. Similarly, over 70000 jobs request less than 0.0001 units of CPU per task,
and over 8000 request more than 0.1 units of CPU. Both tiny and large resource requesting
jobs include hundreds of distinct users, so it is not likely that the particularly large or small
requests were caused by the quirky demands of a single individual or service.

I believe that this variety in task “shapes” has not been seen in prior workloads, if only
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Figure 3.3: Log-log scale inverted CDF of job durations. Only the duration for which the job
runs during the trace time period is known; thus, for example, we do not observe durations
longer than around 700 hours. The thin, black line shows all jobs; the thick line shows
production-priority jobs; and the dashed line shows non-production priority jobs.
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Figure 3.4: CDF of instantaneous task requested resources. (1 unit = max machine size.)
These are the raw resource requests in the trace; they do not account for task duration.
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Figure 3.5: Log-log scale inverted CDF of instantaneous median job usage, accounting for
both varying per-task usage and varying job task counts.

because most schedulers simply do not support this range of sizes. The smallest resource
requests are likely so small that it would be difficult for any VM-based scheduler to run a
VM using that little memory. (0.0001 units would be around 50MB if the largest machines
in the cluster had 512GB of memory.) Also, any slot-based scheduler, which includes all
HPC and Grid installations I am aware of, would be unlikely to have thousands of slots per
commodity machine.

The ratio between CPU and memory requests also spans a large range. The memory
and CPU request sizes are correlated, but weakly (linear regression R2 ≈ 0.14). A large
number jobs request 0 units of CPU — presumably they require so little CPU they can
depend on running in the ‘left-over’ CPU of a machine; it makes little sense to talk about
the CPU:memory ratio without adjusting these. Rounding these requests to the next largest
request size, the CPU:memory ratio spans about two orders of magnitude.

3.2.4 High Scheduler Load from Small Tasks

Since many tasks behave like long-running services, one might expect the scheduler not to
have much work from new tasks. This is especially true since the trace providers indicate that
MapReduce programs execute separate tasks for the worker and the masters, which server
as execution containers for many MapReduce ‘tasks’. So, at least some common sources
of what would be fine-grained tasks are, in this trace, coarse-grained. However, Figure 3.6
shows that the scheduler must decide where (or whether) to place runnable tasks frequently.
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In peak hours, the scheduler needs to make hundreds of task placement decisions per second.
Even during quieter times, the average scheduling throughput is several tasks per second.

There are two reasons for the frequency of scheduling events. One is that there are
many short-duration tasks being scheduled. Another is that tasks terminate and need to be
rescheduled; I will call this resubmission. The task terminations preceding these resubmis-
sions are labeled by the trace providers: they are either failures (software crashes of a task),
evictions (task ceased to fit on the machine, due to competing workload, over-commitment
of the machine, or hardware failures) or kills (underlying reason for a task’s death is not
available).

Resubmissions account for nearly half of task submissions to the scheduler. However,
a principal source of resubmissions (14M of the 22M resubmission events) is tasks which
repeatedly fail and are retried. Another major cause (4.5M events) of resubmissions is
evictions; as discussed later, most of these evictions are attributable to machine configuration
changes or other (higher priority) workload being started on the machine. For the remaining
resubmissions (4.1M events), the task is marked as killed ; these may logically represent
software failures or evictions, or other reasons, such as tasks being restarted to change their
configuration.

3.2.4.1 Crash-loops

Large spikes in the rate of task resubmissions seen in Figure 3.6 can be attributed to ‘crash-
loops’. These are cases where the tasks of a job fail deterministically shortly after starting,
but they are restarted after these failures. Of the 14M task failures recorded in the trace,
10M are in three crash looping jobs, each of which has tens of thousands of distinct and
repeatedly failing tasks. The durations of these three large jobs ranged from around 30
minutes to around 5 days.

Jobs with large numbers of tasks are not the only ones that appear to experience crash-
loops. Approximately 2% of the memory-time requested comes from jobs that experience
more than 10 failures per task over the course of the trace. Most of these failures occur in
lower priority jobs (which are probably used for development), but there are some noticeable
(but smaller in terms of task failure count) crash loops even at the production priorities.

3.2.5 Small jobs

Even though the scheduler runs large, long-lived parallel jobs, most of the jobs in the trace
only request a small amount of a single machine’s resources and only run for several minutes.
75% of jobs consist of only one task, half of the jobs run for less than 3 minutes, and most
jobs request less than 5% of the average machine’s resources. These small job submissions are
frequent, ensuring that the cluster scheduler has new work to schedule nearly every minute
of every day.

Job submissions are clustered together (Figure 3.7 shows job interarrival times), with
around 40% of submissions recorded less than 10 milliseconds after the previous submission
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Figure 3.6: Moving average (over a day-long window) of task submission (a task becomes
runnable) rates.

even though the median interarrival period is 900 ms. The tail of the distribution of in-
terarrival times is power-law-like, though the maximum job interarrival period is only 11
minutes.

The prevalence of many very small interarrival periods suggest that some sets of jobs
are part of the same logical program and intended to run together. For example, the trace
providers indicate that MapReduce programs run with a separate ‘master’ and ‘worker’ jobs,
which will presumably each have a different shape. Another likely cause is embarrassingly
parallel programs being split into many distinct single-task jobs. (Users might specify many
small jobs rather than one job with many tasks to avoid implying any co-scheduling require-
ment between the parallel tasks.) A combination of the two of these might explain the very
large number of single-task jobs.

3.2.6 Evictions

Evictions are also a common cause of task rescheduling. There are 4.5M evictions recorded
in the trace, more than the number of recorded software failures after excluding the largest
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Figure 3.7: Linear-log plot of inverted CDF of interarrival periods between jobs.

crash-looping jobs. As would be expected, eviction rates are related to task priorities. The
rate of evictions for production priority tasks is comparable to the rate of machine churn:
between one per one hundred task days and one per fifteen task days, depending on how
many unknown task terminations are due to evictions. Most of these evictions are near in
time to a machine configuration record for the machine the task was evicted from, so we
suspect most of these evictions are due to machine availability changes.

The rate of evictions at lower priorities varies by orders of magnitude, with some weekly
pattern in the eviction rate. Gratis priority tasks average about at least 4 evictions per task-
day, though almost none of these evictions occur on what appear to be weekends. Given this
eviction rate, an average 100-task job running at a gratis priority would expect about one
task to be lost every 15 minutes. These programs must tolerate a very high “failure” rate
by the standards of a typical cloud computing provider or Hadoop cluster.

Almost all of these evictions occur within half a second of another task of the same or
higher priority starting on the same machine. This indicates that most of these evictions
are probably intended to free resources for those tasks. Since the evictions occur so soon
after the higher priority task is scheduled, it is unlikely that many of these evictions are
driven by resource usage monitoring. If the scheduler were measuring resource usage to
determine when lower-priority tasks should be evicted, then one would expect many higher-
priority tasks to have a ‘warm-up’ period of at least some seconds. During this period, the
resources used by the lower-priority task would not yet be required, so the task would not
be immediately evicted.
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Figure 3.8: Moving average (over day-long window) of task eviction rates, broken by priority.

Given that the scheduler is evicting before the resources actually come into conflict,
some evicted tasks could probably run substantially longer — potentially till completion,
without any resource conflicts. This does not mean that Google’s schedulers reliance on
resource requests is necessarily irrational: it maybe necessary to ensure that resources are
reliably available to high priority programs or may avoid delaying eviction until a time
where it is even more expensive. Nevertheless, to estimate how often delaying eviction might
help, I examined maximum machine usage after evictions events and compared these to the
requested resources of evicted tasks. After around 30% of evictions, resources requested by
the evicted tasks appear to remain free for an hour after the eviction, suggesting that these
evictions were either unnecessary or were to make way for brief usage spikes we cannot detect
in this monitoring data.

3.3 Allocations versus Usage

Given my interest in the accuracy of resource requests and Google’s apparent reliance on
them for scheduling and eviction decisions, I endeavoured to take advantage of having in-
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formation about the resource requests themselves and the resource usage they ultimately
resulted in. Ultimately, I wanted to understand how well these requests reflected usage and
whether it would be easy to make them reflect usage.

3.3.1 Allocation And Resource Usage Data

Resource requests are relatively straightforward to quantify. Each task, at any given point
in time, has a particular CPU and memory request. Measuring the total amount logically
allocated amounts to counting, at any given instant, the sum of these requests. Resource
usage information, in contrast, does not have a definite instantaneous number — and, indeed,
cannot since CPU usage is about the time spent occupying a core. And, even for memory
usage — which should have a definite instantaneous value — operating system and shared
memory on the machines means that there are multiple options and potential distortions in
measurements.

The trace providers include usage information for tasks in five-minute segments. At
each five-minute boundary, when data is not missing, there is at least (and usually exactly)
one usage record for each task which is running during that time period. Each record
is marked with a start and end time. This usage record includes a number of types of
utilization measurements gathered from Linux containers. Since they are obtained from the
Linux kernel, memory usage measurements include some of the memory usage the kernel
makes on behalf of the task (such as page cache); tasks are expected to request enough
memory to include such kernel-managed memory they require. I will usually use utilization
measurements that represent the average CPU and average memory utilization over the
measurement period.

To compute the actual utilization, I divided the trace into the five-minute sampling
periods; within period, for each task usage record available, we took the sum of the average
CPU and memory usage weighted by the length of the measurement. I did not attempt to
compensate for missing usage records (which the trace producers estimate accounts for no
more than 1% of the records). The trace providers state that missing records may result
from “the monitoring system or cluster [getting] overloaded” and from filtering out records
“mislabeled due to a bug in the monitoring system” [74].

3.3.2 Lost Capacity

Figure 3.1 shows the utilization on the cluster over the 29 day trace period both in terms of
the measured resource consumption (left side of figure) and ‘allocations’ (requested resources
of running tasks; right side of figure). Based on allocations, the cluster is very heavily booked.
Total resource allocation at almost any time account for more than 80% of the cluster’s
memory capacity and more than 100% of the cluster’s CPU capacity. Overall usage is much
lower: averaging over one-hour windows, memory usage does not exceed about 50% of the
capacity of the cluster and CPU usage does not exceed about 60%.
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Figure 3.9: Histograms of job counts by task count (top), memory request size (middle) and
CPU request size (bottom). Note the log-scale on each y-axis and the log-scale on the top
plot’s x-axis. We speculate that many of the periodic peaks in task counts and resource
request sizes represent humans choosing round numbers. Memory and CPU units are the
same as Table 3.1. Due to the choice of x-axis limits, not all jobs appear on these plots.

A natural conclusion is that something is wrong with resource requests. One could
speculate that this problem was merely one of a lack of user incentives or resource monitoring
tools. Perhaps the application-agnostic information available to the cluster scheduler could
fix these requests. If so, it would seem that this gap between allocations and usage would
be irrelevant.
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3.3.3 Non-automation

Resource requests appear to be specified manually, which may explain why they do not cor-
respond to actual usage. One sign of manual request specification is the uneven distribution
of resource request sizes, shown in Figure 3.9. When users specify parameters, they tend to
choose round numbers like 16, 100, 500, 1000, and 1024. This pattern can clearly be seen
in the number of tasks selected for jobs in this trace; it is not plausible that the multiples
of powers of ten are the result of a technical choice. We cannot directly identify any similar
round numbers in the CPU and memory requests because the raw values have been rescaled,
but the distribution shows similar periodic peaks, which might represent, e.g., multiples of
100 megabytes of memory or some fraction of a core. For memory requests, it is unlikely that
these round numbers accurately reflect requirements. For CPU requests, whole numbers of
CPUs would accurately reflect the CPU a disproportionate number of tasks would use [72],
but it seems unlikely that the smallest ‘bands’ (at around 1/80th of a machine) represent a
whole number of cores on a 2011 commodity machine.

Requests in this trace are supposed to indicate the “maximum amount . . . a task is per-
mitted to use” [74]. Large gaps between aggregate usage and aggregate allocation, therefore,
do not necessarily indicate that the requests are inaccurate. If a task ever required those
CPU and memory resources for even a second of its execution, then the request would be
accurate, regardless of its average consumption. Thus, resource requests could be thought
of as reflecting the maximum anticipated utilization of CPU and memory for the requesting
task.

Without the ability to rerun programs and understand their performance requirements,
we cannot find the “correct” resource request for applications, i.e., a request that reflects the
maximum resources that the tasks may need. I extrapolate from the actual usage observed:
the maximum or some high (e.g. 99th) percentile of the actual usage samples should be
a good estimate of an appropriate resource request. Since the tasks in a job are usually
identical, I assumed that each resource request must be suitable for each task within a job.
To avoid being sensitive to any outlier tasks, I took the 99th percentile of these estimates
for each task as the extrapolated resource request for all tasks of the jobs.

The differences between the resource request we extrapolated and the actual request is
not what one would infer from the aggregate usage and requests shown in Figure 3.1. One
might infer that jobs generally requested twice as much as they used from the aggregate
figures. But considering the high percentile usage as an estimate of the actual resource
request, the typical request ‘accuracy’ is very different.

As shown in Figure 3.10b, jobs accounting for about 60% of the memory allocated fall
within 10% of my estimate of their appropriate request. The remaining jobs over-estimate
their memory usage. Memory requests rarely under-estimate their jobs’ memory utilization
by a large factor, probably because tasks are terminated if their memory request is exceeded
by too much. Memory overestimates amount to about 20% of the total memory allocation
while the total difference between the memory usage and allocation is about 50% of the
memory allocation. The remaining 30% can be accounted for by the difference between
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Figure 3.10: 3.10a shows the CDF of the maximum five-minute usage sample relative to the
resource request for the corresponding job. The thin line represents the largest five-minute
sample within each job. The thick line discards outlier tasks within a job; for each job, it
shows the 99th percentile of the largest five-minute usage measurements for each task. The
top graphs shows memory usage; the bottom graphs show CPU usage. 3.10b shows the
same CDFs as 3.10a, but with each job weighted by its per-task request times the number
of task-days its tasks run.
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high-percentile memory usage and average memory usage within each job, discussed in the
next section.

CPU usage is not as constrained by the request as memory usage. Tasks used both
much less and much more than CPU than they requested. To determine whether the CPU
requests are usually too high or too low, it is useful to weight each job by the size of its
per-task resource request multiplied by the number of task-days for which its tasks run. The
difference between the request with this weighting is shown in Figure 3.10b; the resulting
CDF reflects how much each unit of allocation is an over- or under-estimate of its usage. As
shown in Figure 3.10b, with this weighting, the ‘middle’ job accurately estimates its CPU
usage: about half the weight is in jobs for which 99% of the tasks have no CPU usage sample
greater than the CPU request, and half in jobs with samples strictly greater.

3.3.4 Consistency of Usage

Resource usage is not the same between tasks in a job or over time within a job. As long as
requests or predictions need to represent maximum actual usage, this variation will hamper
the efficiency of any scheduler no matter how accurate the requests or predictions are. In
this trace, this variation seems responsible for more of the inability of resource requests
to predict usage than the requests being obviously poorly set by users. This is perhaps
unsurprising for CPU utilization, where, perhaps, a program with a high maximum CPU
usage would perform acceptably if capped at some smaller size, but unexpectedly it is also
true for memory usage.

Conceivably, if users understood their resource usage well enough and the scheduler inter-
face were rich enough, one might imagine that users would identify these outliers explicitly.
The system from which the trace was extracted allows users to change their resource requests
over time and across tasks in a job, but this feature is rarely used: jobs accounting for around
4% of memory allocated adjusted their CPU request in this fashion, and jobs accounting for
another 3% updated their memory request.

Based on the usage measurements in the trace, the maximum of the usage samples are
much larger than average usage — both between tasks in a job and within single long-
running tasks over time. Even though memory usage is very stable over time, these outliers
exists even for memory utilization: differences between the maximum usage of tasks within
jobs account for about 20% of the total memory-hours requested (roughly the same as the
apparent inaccuracies of each job’s requests). Differences between the maximum usage for a
task and its typical usage account for another 18%. (Because maximum memory usage can
slightly exceed the memory allocation, the sum of these percentages can exceed the aggregate
difference between requested and used memory-hours.)

These large gaps are rare; for example, most of the difference is the difference between
the maximum and 99th percentile measurements (even for memory usage). We suspect that
some of these outliers may be measurement error (e.g., page cache memory for common
system files being accounted to only one program) or spurious (extra data being cached by
the kernel that would be released at no performance cost under memory pressure). However,
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Figure 3.11: CDF of changes in average task utilization between two consecutive hours,
weighted by task duration. Tasks which do not run in consecutive hours are excluded.

similar gaps exist for CPU usage where variability is less surprising. The effect does not
appear to arise solely from startup effects, as even very long-running jobs experience these
outliers.

Even though these gaps are rare, they have substantial implications for schedulers. For
many applications, if any one task in a job can experience a usage spike then schedulers
or users might (perhaps correctly) assume that all tasks will eventually. Schedulers that
actually set aside resources for this spike will necessarily limit their system utilization they
can achieve. Instead, to achieve high utilization in the face of usage spikes, schedulers should
not set aside resources, but have resources that can, in the rare cases where necessary, be
made available by, for example, stopping or migrating fine-grained or low-priority workload.

3.3.5 Stability of Actual Usage

When tasks run for several hours, their resource usage is generally stable, as can be seen in
Figure 3.11. Task memory usage changes very little once most tasks are running. Memory
usage data is based on physical memory usage, so this stability is not simply a consequence
of measuring the available address space and not actual memory pressure.

Because there are many small tasks, a large relative change in CPU or memory usage
of an individual task may not translate to large changes in the overall ability to fit new
tasks on a machine. Taking advantage of this, a simple strategy for determining if tasks fit
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Figure 3.12: CDF of changes in average machine utilization between two consecutive five
minute sampling periods. Solid lines exclude tasks which start or stop during one of the five
minute sampling periods.

on a machine is to examine what resources are currently free on each machine and predict
that those resources will remain free. I examined how well this would perform by examining
how much machine usage changes. On timescales of minutes, this usually predicts machine
utilization well as can be seen in Figure 3.12. Since most tasks only run for minutes, this
amount of prediction is all that is likely required to place most tasks effectively. Longer
running tasks are more problematic, but the relatively stable memory usage of long tasks as
a whole suggests that the long-term memory usage of long-running tasks is stable. Given this,
a scheduler should be able to colocate these tasks to efficiently use memory by monitoring
resource usage over time and relocating tasks.

3.3.5.1 Repeated Jobs

A major problem with relying on the stability of usage is that it does not give much infor-
mation about jobs that are not yet running. One hope is that most of the jobs could easily
be identified as repeated jobs and historical information could be used. The trace providers
provided some information about this in the form of a “logical job name” which the trace
providers indicated would usually remain the same across multiple executions of a program.

The number of jobs per logical job name followed a Zipf-like distribution; most names
appeared exactly once while the most common job name appeared more than 22k times.
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Figure 3.13: CDF of utilization by task duration. Note that tasks running for less than two
hours account for less than 10% of utilization by any measure.

There were signs of jobs that were repeated on daily or weekly schedules, which deviated
substantially form the Zipf-like distribution. Overall, however, the frequently repeated jobs
naturally tended to be smaller ones and the long-tail of infrequently repeated jobs suggests
that examining this “logical job name” marker will not predict much of the resource usage.

3.3.5.2 Short jobs

One apparent obstacle to forecasting resource availability from previous resource usage is
the frequency with which tasks start and stop. Fortunately, though there are a large number
of tasks starting and stopping, these short tasks do not contribute significantly to usage.
This is why, as seen in Figure 3.12, ignoring the many tasks which start or stop within
five minutes does not have a very large effect. Figure 3.13 indicates that jobs shorter than
two hours account for less than 10% of the overall utilization (even though they represent
more than 95% of the jobs). Hence, the scheduler may safely ignore short-running jobs
when forecasting cluster utilization. Although these short-running jobs likely often represent
repeatedly running jobs whose usage could be predicted from history, but the utility of such
prediction would be small to simply looking at the history of currently-running jobs.

Even though most jobs are very short, it is not rare for users to run long jobs. 615 of the
925 users of the cluster submit at least one job which runs for more than a day, and 310 do
so outside the gratis priorities.
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3.4 Summary of Observations

My examination of Google cluster trace revealed many surprises. The workload is very
challenging for schedulers; it has a very high number of scheduling events. There is a great
variety of task sizes, and thus most tasks amount to little of the usage. However, the existence
of large, long-lived tasks mean that the scheduler is likely to face bin-packing challenges that
would require more careful scheduling mechanisms, particularly to efficiently use less flexible
resources like memory.

From this variety of workload, and in particular, the mix of long-running services which
traditionally have huge gaps between peak and mean usage and batch programs which can
handle occasional eviction, I assumed that Google would achieve very high utilization. This
was not the case. Based on the total allocation of the cluster averaging a bit below 100%,
Google’s scheduler largely respected the resource requests of their users. In spite of this,
the scheduler’s small attempts at overcommitting resources came at a great cost in terms
of evictions of lower-priority tasks, perhaps the scheduler’s best option for resources like
memory where it cannot let a low priority task run temporarily slower like it can for compute
resources. Still, the result was ‘wasting’ about 50% of the cluster’s actual resources.

Looking at the information available to the scheduler to predict resource usage this was
not a surprise. In general, even the notion that a single number indicates resource usage
— certainly the most natural thing to ask for when one allocates the resources — did not
match reality. Maximum empirical resource usage varied over time and among presumably
interchangeable tasks within a job, at least when one was looking for high percentiles of the
resource usage. Presumably, some of this effect might be opportunistic usage — such as
caches that might go away at little performance cost if less memory was available, but we
cannot determine this from the trace.

Ultimately, the best predictor of resource usage was past usage. Aggregate resource
usage on each machine was largely stable, so it seemed the simplest way of obtaining a
useful estimate for scheduling would be to assume free resources would be similar in the next
few minutes.

Resource requests, in contrast, were remarkably uninformative. In some senses, they were
the best information the scheduler in the trace had, since they represented a ‘contract’ with
the user concerning their maximum resource usage. Thus, the Google scheduler apparently
extensively relied on these requests. Not surprising given anecdotal stories about how clusters
are used, resource requests appear to be largely manual and largely guessed. For memory,
where tasks would not get substantially more than they requested, these guesses seemed to
consistently overstate the task’s requirements, though not by consistent amounts, perhaps
because underestimates would fail. The apparent stability of memory usage suggested that
these misestimates might be fixed if users had more information; though there was variability,
these programs do not have inherently chaotic resource utilization.
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3.5 Motivating a Memory Usage Tool

The Google cluster trace shows the promise of cluster consolidation — the ability to achieve
high utilization and therefore efficiency by colocating diverse workloads. It also reveals some
special challenges posed to schedulers in managing memory:

• Memory requests are typically overestimates. Relatively few tasks substantially un-
derestimated their required memory — probably because tasks would often fail if they
sufficiently exceeded their memory request.

• Overcommitting resources, especially memory, comes at a real cost in terms of wasted
work. The cluster scheduler in this trace made only modest attempts to overcommit
cluster resources and still disrupted lower priority workload significantly. A more
aggressive scheduler would amplify these effects, giving lower priority workloads an
environment equivalent to a very flaky machine. This difficulty suggests that although
memory usage may be accurately predicted by past usage, taking advantage of these
observations is difficult. Predictions based on history will inevitably sometimes be
wrong, and strategies based on preemption for dealing with them are likely to make a
cluster appear unreliable to lower-priority users.

• Users do not spend time tuning resource requests. Resource requests, including memory
requests, appear to be dominated by round numbers rather than following a distribu-
tion that would suggest actual measurement of requirements. This suggests that efforts
to improve memory requests without increasing user workloads need to start by assum-
ing zero workload. One likely reason is that the increased costs — surely significant
given the number of machines in this trace — of inaccurate requests are outweighed
by the inconvenience of failure. To address this issue, as I develop performance models
in the following chapters, I will focus on not penalizing users for tuning their memory
requests and on minimizing the extra time and effort required to obtain good memory
recommendations.

• Schedulers that support a diverse workload like Google’s are limited in how they can
make sense of application resource usage. For both compute and memory resources,
there is uncertainty about whether resource utilization was required for correct perfor-
mance, and there was often a potential that applications would take up excess resources
or make do with more limited resources. Although these observations likely had a lim-
ited effect overall on my analysis of typical usage stability in Section 3.3.5, they are
troubling when making predictions for individual tasks. Are there outliers in memory
and compute usage because the usage is necessary for adequate performance or simply
because space was available for some operating system cache or compute-power was
available for some batch computation? This uncertainty motivates my collection of
application-level knowledge about resource usage in future chapters over using operat-
ing system-level measurements.
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Based on these observations, I developed a tool, presented in the next chapters, for recom-
mending memory configurations for in-memory batch programs. These are programs where
the memory usage is particularly important.
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Chapter 4

Memory Modeling Overview

Memory configuration is a frequent source of frustration. This comes from gross errors —
problems that trigger failures, or effective failures, due to insufficient resources. While these
are large failures in terms of their effects, they are often caused by small errors. The failing
configurations may be similar to working configurations, just crossing some working set size
boundary. Traditional tuning approaches often are poor at combatting this — while they
can certainly observe this boundary, their best approach to pinpointing it is to experience
failures repeatedly. While the cases where a user will run the program so many times that
this is a minor cost benefit most from tuning, they are also the easiest. Being able to try
many, many configurations makes finding a good configuration among them simple. Instead,
I serve users who do not wish to disrupt their workflow to find good configurations.

I avoid disrupting the user workflow in two ways. First, I prioritize making sure the
recommendations do not cause the users to experience failures, by suggesting a clear upper-
bound on the memory required to perform the computation effectively. Second, I try to
make the instrumentation as non-invasive as possible, occurring as a user refines their data
analysis task, rather than requiring them to dedicate training time to it. To serve these needs,
I developed a tool, SLAMR (Safe Lightweight Analytics Memory Recommender), that takes
measurements from runs the users perform normally, and gives them recommendations as
they launch slightly revised versions of their analyses.

To enable this, I construct an explicit model of how memory is used in these systems.
For the Apache Spark analytics stack I targeted, I divide this model into two submodels —
one for the framework and one for the underlying language runtime. To design each of these
models, I first examined what makes a configuration recommendation useful. It is not simply
providing the maximum average performance. Users often face a harsh choice where a poor
recommendation will result in memory exhaustion. Users are willing to waste memory to
avoid this problem and would be unlikely to use a tool that would make these problems more
frequent.

In addition to the complexity of providing configurations with low risks, there is com-
plexity in the configurations themselves. The configuration is not as one number, but set-
tings for many interacting components. In the case of Spark, these components include the
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Spark framework itself, its underlying language runtime, and its underlying operating sys-
tem. These interactions between these components make observing memory configurations
more difficult: for example, excess memory in one component can substitute for insufficient
memory in another.

Based on these challenges, I will outline the key heuristic that guides SLAMR: keeping
the computation in memory. Relying on this heuristic makes it easy to meet the goal of
consistently producing non-failing configurations without detailed profiling. It also simplifies
modeling of cross-component interactions.

I can combine a Spark framework model — oriented around this heuristic — with a
garbage collector model to enable ‘continuous training’ approach. I start from any work-
ing run and provide users better and better configurations. By assuming data must stay
in memory, I can practically provide good recommendations with much less training infor-
mation. And, naturally, these recommendations convincingly keep the user out of danger.
Because my model makes rules about where data is kept instead of simply making statisti-
cal inferences from observed performance, users do not need to fear that is simply missing
observations where the performance breaks down.

4.1 Roadmap

In this chapter, I review the motivations behind and overall structure of my configuration
tool. First, I examine the configuration experience for users. Users face a sharp mem-
ory/performance tradeoff, combined with difficulty in understanding and configuring mem-
ory usage because of the layered nature of modern distributed systems.

Given these problems, I describe the design of SLAMR and how it tries to address them
for the Apache Spark analytics stack. Figure 4.1 provides an overview of the components
of SLAMR, along with where each component is covered in detail. In this chapter, I will
describe the motivations that are common to the two models described in future chapters
— one for the Spark framework itself and one for its underlying language runtime. Both of
these are designed based on the sharp memory/performance tradeoff users face and around
avoiding issues from the interaction between configuration at different layers, but in different
ways.

In the case of the framework model, I focus on keeping the computation entirely in
memory to avoid falling behind the curve. This focus also ensures that my observations
are not dependent on the behavior of other layers of the system. For the language runtime
model, I am not as easily able to avoid interference with my measurements from the behavior
of other layers of the system or to identify a concrete point where everything is in memory. I
will outline how I imagine users combining these two models, and how I match the submodel’s
overhead estimates to find a configuration just beyond a sharp memory/performance tradeoff.
This will serve to provide context for my description of these models in the next two chapters.
Later, in Chapter 7, I will return in more depth to the problem of combining the two
submodels and evaluate the combined results.
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Figure 4.1: Block diagram of SLAMR’s pipeline of instrumentation to configurations, along
with the chapters in which each part is described.

4.2 Targeted Configurations

Generally, there is a tradeoff curve for memory allocations as shown in Figure 4.2: Small
allocations fail entirely — or the program is so sluggish it may as well have failed. Then,
there is often a region of steep decline in runtime where the program is thrashing and
relieving a little memory pressure can drastically relieve this thrashing. After exiting this
thrashing region, the program’s working set size is satisfied, so adding memory provides little
improvement to program’s runtime. How close this qualitative view of memory allocation
tradeoffs is to actual performance will vary, as shown in my evaluations in later chapters,
but generally, it will guide my configuration design.

My goal is to help users avoid the surprises. Rather than optimizing the expected per-
formance, the user should have reasonable confidence that their configurations are beyond
the thrashing region and in the region of diminishing returns. Preferably, the configuration
will not be very far from the transition point; it will be just beyond the ‘knee’. Based on
my observations from the Google trace, I believe that users often stay well beyond the knee
— by allocating much more memory than they need to. Since these configurations provide
roughly equivalent performance, my goal is to provide the same experience at lower cost.

To do this without disrupting the user workflow to collect a large amount of data, I
will make conservative recommendations. How conservative will depend on the program in
question — there will be some programs for which we will allocate extra memory to avoid
extra I/O and computation that is, not, in fact expensive. But the alternative would to
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Figure 4.3: The various layers through which a Spark program uses memory. A compo-
nent sits on top of the other components it uses memory resources through. Notations at
boundaries represent the kind of memory consumption that occurs.

collect more data to demonstrate that the alternative was feasible.

4.3 Multiple Components

Figure 4.2 suggests that a user who configures a program for an analytics framework simply
chooses a number — how much memory to allocate. This is often how configuration options
are presented, but high quality configuration is not so simple. In-memory analytics systems
like Spark are composed of multiple, interacting components.
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Each of these many components generally manages its memory separately. In many
cases, the size allocated to a particular use is fixed at configuration time, and models must
configure each size separately. In the cases where users easily configured Spark by setting a
single number, they were simply using a default portion of the total for each component; this
default may not be optimal, and any memory usage modeling must understand this division
of memory. Some memory regions are configured implicitly — they will use all the space
available that is not used by other regions. These must still be configured, but implicitly, by
imposing constraints on all the configurations.

Broadly, in Spark, there are three components SLAMR is concerned with: the Spark
framework itself, the language runtime, and the underlying operating system. The layering
and relevant points of interaction for these components are shown in Figure 4.3. There
are three parts whose memory usage I model: the Spark framework based on application-
specified datasets, the language runtime based on the framework and application’s memory
allocations, and the operating system based on cached temporary files produced by Spark.

4.3.1 Framework

Analytics frameworks like Spark are primarily responsible for managing data and data move-
ment. As depicted in Figure 4.3, a user specifies RDDs (datasets), including the transforma-
tions that derive new RDDs from others, and, sometimes, data to broadcast to all tasks. The
framework implements policies that translate these requests into memory usage requested
from the language runtime in the form of objects or the operating system local in the form
of temporary files. To decide when to use memory, frameworks like Spark often track the
total amount of space used and available. Some tracking is required even in data analysis
systems which do not attempt to keep data in memory persistently; for example, Hadoop
MapReduce manages sorting buffers in this way.

In Spark, this tracking primarily involves the management of two regions: ‘storage’, rep-
resenting the memory managed by a component called the block manager, and ‘execution’,
primarily representing memory used during aggregation and many-to-many shuffles. The
block manager is responsible for most sources of persistent memory usage — cached and
broadcasted data requested by users. The block manager is also responsible for any data
temporary stored in the local filesystem. This occurs both when Spark believes its memory
is exhausted and to support many-to-many data transfers. Execution memory consists pri-
marily of memory used by Spark’s out-of-core sorting support. I describe how I instrument
and model both these kinds of memory usage in Chapter 5.

4.3.2 Language Runtime

Like much modern systems software, Spark and Spark applications are written using auto-
matic memory management. Most of Spark’s in-memory storage consists of ordinary objects
allocated in this managed language. These allocations correspond both to the datasets that
users requested Spark store and to temporary data Spark produces during the transforma-
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tion a user specifies to produce an RDD. From the perspective of the language runtime, the
large memory regions managed by Spark are no different from temporary objects allocated
to support computations except in their lifetimes and sizes. Spark’s efforts to improve the
performance of this automatic memory management have largely taken the form of using
object layouts that are more friendly for automatic memory management, perhaps by not
using managed memory at all.

Although managed memory makes programming applications easier, it makes under-
standing memory requirements more challenging. Frameworks do not have precise visibility
into its memory usage — even of the regions it purportedly manages — and the underlying
language runtime has overheads. Most notably, it will not behave correctly without space
allocated for unreachable objects to accumulate before they are actually freed by a garbage
collection pass. Since the garbage collector lacks ways of dealing with insufficient memory
like dropping cached data or placing data on the local filesystem, its response to memory
exhaustion is the least user-friendly — it triggers out-of-memory errors or loops of expensive
garbage collection passes. Because of this, it is a major source of frustration for users.

4.3.3 OS Caches

Frameworks like Spark makes some use of the local filesystem. This may occur when data
eligible to be stored in the language runtime memory does not fit, but frameworks often
use the local filesystem even when memory is plentiful. The most notable case for Spark is
data to be sent to other workers on the local filesystem, as described in Section 5.1.4. As
a result, Spark performance might implicitly depend on how effective the operating system
is at caching those local filesystem accesses. In the best case — and presumably the case
for the best-looking Spark benchmarks — the accesses either will be served from cache in
DRAM or will involve large sequential read and writes that are fast enough compared to the
corresponding computation to hide I/O costs.

4.4 Interdependencies

Multiple layers introduce complexity not only in configuring memory requirements but also
in measuring memory requirements. How much memory is ‘free’ and might be deallocated
has different answers depending on the layer of abstraction one uses. Memory used for a stale
application-level cache may be logically free, but as far as the operating system and language
runtime is concerned, it is used and cannot be reclaimed except at great cost. Similarly, files
cached by the operating system may be occupied and necessary for performance, but as far
as the application is concerned that memory is available.

These effects make simple approaches to memory modeling — based on observing the
‘high water mark’ — ineffective. Although there are efforts to unify memory management
between the various layers, overall, there is no one place which gives a complete picture.
Counting what memory was used at some layer and the corresponding performance will tell



CHAPTER 4. MEMORY MODELING OVERVIEW 52

an incomplete story, missing memory that could be made useful if more was available or
overcounting extra allocations that were not helpful. Regardless of whether memory usage
at some layer is helpful, it is likely to affect the behavior and requirements on layers.

One way these effects manifest is that free space in the operating system’s filesystem
caches may dampen the effect of an analytics framework having insufficient. In Spark’s case,
unable to cache data, it will either recompute the data — paying the cost of reading it from
some filesystem again — or store the data on the local filesystem and read it again. With suf-
ficient filesystem caches, this impact of this may be negligible, but using that observation to
decrease the total memory allocation would expose the actual cost of I/O. This phenomenon
can make it difficult to empirically observe memory requirements — to have confidence that
some memory/time tradeoff is acceptable, one would need to take extra effort to ensure that
one observed its maximum extent.

Spark’s self-management of memory also imposes difficult to predict demands on the
language runtime. The pressure that a framework like Spark places on the language runtime
will depend greatly on how much space it thinks it has available to cache data. Spark
will tend to fill the available space with cached data, which the language runtime must
retain and scan as it manages memory. But the overhead may not disappear as Spark
caches less data. The alternative to reading data from cache may be recomputing it or
deserializing it from (possibly cached) persistent storage. This process may require the
creation of temporary objects creating a different kind of pressure on the language runtime’s
garbage collector. Thus, lowering the memory kept by Spark could easily increase the garbage
collection overhead.

Generally, between all of these layers, each type of memory can partially substitute for
the others. Either there is a direct substitution — like reading from filesystem caches instead
of from process memory — or an indirect exchange of performance — like slightly increased
performance from additional page cache space available after decreasing language runtime
memory.

4.5 Criteria for Choosing Configurations

When making configuration recommendations, my primary goal is to provide a upper-bound
on the required memory. Accuracy is not the first priority; I assume that users prefer
confidence that the result is never going to result in memory exhaustion or thrashing over
obtaining the time-optimal configuration. To do this, the central heuristic I will rely is
keeping the computation essentially in memory — preserving the user’s intent in specifying
what to compute in memory and ensuring that memory exhaustion will not occur.

In the next two chapters, I will construct models of how a data analysis framework,
namely Spark, uses memory and how an underlying language runtime uses memory. If in
constructing these models, I relied on simple black-box measurements of performance and
resource usage, I would risk being mislead by memory in one layer substituting for another.
By aiming for keeping computations in memory, I sidestep these issues. For example, I do
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not worry about implicitly counting on reading from filesystem caches instead of spinning
disks; instead, I assume that caches are required.

By addressing memory/time tradeoffs in that way, I avoid sensitivity to those cross-layer
effects where one type of memory substitutes for another. For example, by avoiding the
tradeoff entirely, I cannot accidentally mismeasure a performance tradeoff by measuring the
performance of reading from filesystem caches instead of from a spinning disk.

I want predictions to account for possible but perhaps unlikely circumstances. It is these
circumstances that will make a user ignore configuration recommendations and add some
extra space ‘just in case’. For example, in Spark, the order of computation might change
based on timing differences or because of machine failures. Rather than only observing or
estimating the typical order, I produce a recommendation which should be acceptable in
spite of reordering. Similarly, for language runtime constraints, I want to somehow reflect
any predicted framework demands on memory, even if I never observe them in the garbage
collector traces. By taking this approach, I can give users confidence in the safety of my
recommendations, so they do not feel the need to add an additional ‘safety margin’ to them.

4.5.1 Computing in Memory

To choose good configurations quickly, I make a heuristic assumption: that users want to
keep their computation in memory. This is the original purpose of Spark, and through
Spark’s API, users and their libraries state their assumptions about what should stay in
memory in their programs. This is clearly a compromise: Spark has real support for doing
computations out-of-memory.

Spark can make CPU time/memory usage tradeoffs. When insufficient memory is avail-
able, Spark and similar frameworks fall back to other mechanisms — using persistent storage
or extra computation. These mechanisms come from Spark’s roots: one of the main advan-
tages of MapReduce [25] at the time was efficiently performing disk-based computations.
Spark’s internals mirror its design, and Spark’s performance in this mode has improved as,
for example, it has been tuned for the sort benchmark [76]. Nevertheless, the nature of the
tradeoff is application-dependent as our evaluation illustrate. Some programs which take
many times longer when Spark performs its recomputation-based workaround for even a
small amount of space, and some which experience barely measurable differences in perfor-
mance.

While it possible to model these tradeoffs, this would likely require obtaining many
measurements, especially to control for variation in the costs of I/O, serialization, filesystem
caching, etc. I do not want to interfere with the user workflow by requiring the user to run
programs many times. I especially do not want to require users to run their programs in
configurations that may run the program very slowly, which is likely if disk I/O is forced.
Instead, I aim for predictability: I do not second-guess when users have requested that Spark
do computations in memory.
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4.5.2 Time/space tradeoffs

Although generally, I choose the memory side of time/memory tradeoffs, I do need to consider
some time/space tradeoffs. Keeping ‘everything in memory’ is not directly applicable to
garbage collectors. Unless there is enough memory to store all allocations made during the
entire long-lived program, some CPU overhead is necessary. So, instead, I obtain a lower
bound on that overhead from a performance model. Using this lower bound, my goal is
to avoid thrashing behavior where garbage collectors are triggered an excessive number of
times. The performance tradeoff experienced by garbage collectors tends to exhibit the ‘cliff’
followed by marginal improvements shown in Figure 4.2, so the region of high overheads has
a similar intuitive effect to keeping ‘everything in memory’.

Based on the charging model of cloud computing platforms like Amazon EC2, I estimate
that user costs are proportional to the amount of memory allocated times the time it is
used. In cloud computing environments, users pay for virtual machines by the time unit.
For memory-constrained users, these prices are determined largely by their memory capacity.
My recommended configuration will aims to minimize the cost. Since I use upper-bounds on
runtime, this will make sure that configurations where thrashing, and its high time overhead,
will be considered too costly and be avoided. In addition to considering an estimate of the
total cost, I will avoid suggesting very large configurations to avoid garbage collector overhead
too aggressively by assuming there is some overhead to increasing the number of workers
rather than perfect parallel scaling.

4.6 Training Procedure

The models in the next chapters rely on observing a program’s behavior from example runs.
Not just any execution of the program will do. Most importantly, the program must actually
complete successfully. An execution that does not complete due to memory exhaustion will
only indicate that not enough memory was available. Thus, a user of my system needs some
way to get the program to work in the first place.

The typical mechanism users use — and that I use for my evaluations — is to start by
looking at the size of input data. Since doing in-memory analytics requires keeping the data
in memory and having extra additional space for derived temporary data, a small multiple of
the input data size is a likely choice. Once there is a complete execution, there is still some
question about whether the behavior I observe for one execution is consistent, or whether it
will be relevant to small range of possible configurations. I construct my models of framework
and garbage collector behavior to limit the bias created by observing executions with ‘too
little’ or ‘too much’ memory.

This is not entirely effective for my garbage collector model. There is a limited range of
configurations that it can predict from a given observed run. As I will show in Chapter 6, I
can infer the behavior across a wide range from a single observations. But there are notable
cases where my observations will be substantially wrong: when the ‘correct’ configuration is
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far away (by around an order of magnitude) from the observed configuration or the observed
configuration lacks information due to having much more memory than required. In both
cases, I construct my model to suggest a substantially better configuration, but not one
particularly close to the likely final result. After observing the garbage collection statistics
from the refined configuration, my model can more accurately predict the results in the
interesting region. So, after some more iterations (depending on the degree of the initial
error), the configuration will converge, correcting for the initial lack of data.

4.6.1 Framework Model Sensitivity

Because of the strong relationship between framework observations and the semantics of the
data processing, the framework model I develop will generally reflect relevant configurations.
I can separate the memory accesses necessary to compute the results from any extra memory
accesses my model ignores, like recomputation. In this way, my framework predictions are
largely independent of the observed executions.

One remaining source of variation is that Spark’s partitioning and exact order of execution
may be dependent on the available memory. I will avoid dependencies on the order of
execution by trying to accommodate the worst-case execution order. This is likely necessary
to reason about what might happen when failure recovery causes some computations to
be performed again in a different order anyways. For partition sizes, Spark chooses them
mostly based on the input and not the available partition size. For cases where they can
vary because of the partitioning, I can estimate the effects of repartitioning as described in
Section 5.6.5. Generally, changes in partitioning only have a significant effect if the partitions
are very large, which is usually not the best choice — users would be better off increasing
the partition count regardless of the number of cores in use.

4.6.2 Garbage Collector Model Sensitivity

My model of garbage collector behavior is more sensitive; it relies more on the workload actu-
ally placed on the language runtime. This workload may change based on how the framework
computations are distributed and, of course, how much framework stores in memory. I do
make adjustments based on framework information — such as knowing the maximum amount
of data Spark tracks that may be in memory. But, overall, my tool lacks the information to
separate workload placed on the garbage collector by recomputation, storage of extra data
in the cache, etc. that will not exist in the targeted configuration.

Conceptually, it might be possible to identify recomputation-related demands on the
garbage collector, but since Spark, like essentially all data analysis frameworks is multi-
threaded, recomputation will overlap with ‘normal’ computation. In addition, Spark streams
computed values to the next phase of computation — rather than store all of the values in
a partition first — so recomputation may be tightly interleaved with other computation in
the same thread. This design aids in support of out-of-core computations, so it is likely to
be common among analytics frameworks.
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4.6.3 Combined Training

Ultimately, I want to enable iterative configuration refinement. From the first working
run, the user obtains configuration guess, but then future runs are still made with my
low-overhead instrumentation enabled. Once framework-level configuration is chosen, sub-
sequent runs should represent the true garbage collector workload. However, in addition
to being dependent on load on the garbage collector, my observations of garbage collector
activity are only valid for a range of sizes around the observed configuration. Fortunately,
empirically, this range is large, and, again, I can rely on the best estimate from within the
range observed to allow the next run to observe the relevant region. My instrumentation is
lightweight enough that performing more instrumented runs is not a major issue — the loss
of performance should be small compared to the reduced cost of the configuration.

4.7 Conclusion

Motivated by the challenges faced by users in configuring memory leads to a different type
of configuration optimization system. The goal is not the optimum configuration above all
else. But, instead, I recognize that for the sort iterative computations typical of in-memory
analytics, users are often outside the region where ‘swapping’ is a reasonable performance
option. Thus, my tool SLAMR is designed to stay out of this bad performance space, quickly,
and confidently, rather than spend more data collection effort to navigating time/space
tradeoffs. This avoids the problem of needing to observe risky time/space tradeoffs —
tradeoffs often ‘hidden’ by caches at other layers of the system.

SLAMR is composed of two pieces. First, one that observes activity at the framework
layer, avoiding dependencies on the amount available memory, as described in Chapter 5.
This model identifies a configuration that is definitely beyond the ‘knee’ of the user’s tradeoff
curve and usually just beyond it — where all cacheable data is cached. Separately, it
measures the load placed on the language runtime’s garbage collector by the framework
as described in Chapter 6. Rather than being completely independent, garbage collector
predictions are constrained using framework memory requirements.

The result is a unified ‘memory advisor’. The user runs their Spark program with low-
overhead instrumentation always on. As they refine their program, they get suggested con-
figurations, allowing them to refine their configuration — saving space or rescuing them
from mysteriously low performance. While these configurations will be more conservative,
the user will have dramatically improved on their guesses without facing the fear of going
too low and waiting forever.
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Chapter 5

Measuring Memory Usage in Spark

Analytics frameworks provide numerous abstractions to help developers and library writers
organize their computations. Since the framework manages the distribution of computations
and their fault tolerance, effectively all computation must be mediated by these abstractions
if an application uses the framework. They provide the mechanisms to move the computa-
tion between machines, to store data persistently during the computation, etc. The tools
analytics frameworks provide to do this are much of what motivates their use — using their
implementations enables distribution and fault tolerance.

Having visibility into the entire computations, these same abstractions can also provide
diagnostics about resource requirements. In this chapter, I will describe how I produce such
diagnostics using the example of Apache Spark [99]. Combined with a model of language
runtime of the analytics stack upon which Spark depends, described in the following chapter,
this will be how my tool SLAMR produces a configuration recommendation for the user.

To estimate framework memory requirements, SLAMR records how the framework’s data
processing abstractions are used in a representative execution of an analytics program. This
effectively produces a summary of the program. Using the framework’s abstractions makes
this summary simpler, naturally grouping related data and computations. It also preserves
semantic information in sufficient detail that one can infer behavior with different resource
availability.

Analytics frameworks commonly make decisions about whether to keep data in memory
or fallback to using disk or recomputation. These decisions are based on available resources
themselves. Thus, simply examining aggregate memory resources that are used will often
reflect the framework’s decisions about what to keep in memory more than actual memory
requirements. To make predictions, I focus on collecting information that predicts framework
decisions rather than reflecting them.

A framework’s decisions about whether to keep data in memory also create their own
configuration complexities. When frameworks need to decide how much space to use for
temporary data over persistent storage, they usually rely on configurations or defaults. Re-
gardless of whether one is changing these configuration parameters, a configuration recom-
mendation must not just ensure that there is enough space, but that the framework decisions
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Memory type Framework config. OS config. Persistent? Distributed?
RDD storage ‘storage’ JVM heap Y Y
RDDs being computed ‘unroll’, ‘storage’ JVM heap N N
broadcasts ‘storage’ JVM heap Y N
Aggregation buffers ‘execution’/‘shuffle’ JVM heap N N
Map outputs (none) page cache Y N

Table 5.1: Types of memory usage in Spark program, the corresponding configuration pa-
rameters that must include enough space for this memory region, whether this memory is
persistent between tasks or temporary for a single task, and whether this type of memory is
split across nodes or must be stored on each node.

will use that space.
Especially in the academic literature, frameworks typically advertise an overarching ab-

straction — like Apache Spark’s ‘resilient distributed datasets’. It would be reasonable, then,
to guess that one would only need to account for how this abstraction would correspond to
memory usage. But, though this abstraction may dominate the resource usage of typical
programs, there are other, less common ways for programs to use memory. Programs where
these sources of memory usage are important are precisely the sort of non-intuitive behavior,
memory usage not coming from obvious sources, that configuration recommendations should
deal with.

With these concerns in mind, in this chapter, I construct a model of memory requirements
for a Spark program. I begin by examining the various ways in which Spark’s abstractions
translate into memory usage. For each of these kinds of memory usage, I identify what
configuration parameters control the framework’s decisions that I will need to configure. I
then describe how I modify the framework’s abstractions to record the information I need to
identify the load a program puts on each of these types of storage. I then review strategies,
depending on the kind of memory usage, for translating records of usage into configuration
requirements, handling cache-like memory regions and the distribution of data. Finally, I
perform a sensitivity analysis to show how effective these configurations are at satisfying a
variety of program’s memory requirements.

These recommendations about framework memory requirements will be combined by
SLAMR with a model of garbage collector requirements and the user’s available machine
configurations, as described in later chapters of this dissertation. The predictions of the
model permit SLAMR to confidently satisfy framework memory requirements for configura-
tions very different from the ones on which measurements are taken.

5.1 Spark Memory Taxonomy

I briefly describe Spark’s programming and execution model in Section 2.2.3. As Spark
executes a program in this way, it has a variety of ways in which it translates an application’s
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use of its abstractions into memory usage, as shown in Table 5.1. These various types of
memory vary between persistent data distributed across a cluster and temporary memory
demands. This includes memory demands that Spark manages and does fallback for, like its
important caching, and ones that fallen by the wayside such as map outputs that are stored
in the workers’ local filesystems. To make effective one must account for all significant
regions of memory usage. Fortunately, for applications that make effective or natural use
of analytics framework these are limited by the interfaces an that framework provides to
process data.

Spark is built on having a single logical representation of persistent data — what it calls
resilient distributed datasets (RDDs). These are the abstraction over which Spark’s users
manipulate datasets that are distributed across many worker nodes and through whose
lineage Spark achieves its fault tolerance properties. Thus, understanding the memory usage
of a Spark program is substantially about understanding how large and how active the RDDs
are. But, there are other sources of memory requirements managed by Spark. Since they
are sometimes (but not usually) significant, making conservative estimates requires taking
them into account.

For the purpose of counting memory requirements, one can divide Spark’s memory usage
into two broad categories: memory that persists between tasks, most notably RDDs, and
memory used while computing a task, most notably related to partition sizes. Each of these
categories of memory usage will be divided and shared across multiple, separately configured
regions. To produce configurations, my tool SLAMR aggregates several measurements of
each kind based on how they map to these memory regions.

Memory that persists between tasks in Spark is largely managed like a cache. When
space is available, Spark or the underlying OS keeps data around just in case a computation
requires it. As space is exhausted, some less recently used item will be discarded. If that
item is required again, it is reconstructed — either by computing it again or reading it
from slower storage. SLAMR’s recommendation for this memory is focused on avoiding that
‘cache miss’ cost.

Memory used to compute a task is more straightforward to measure, but a more common
source of surprise. This memory is generally proportional to the amount of data processed by
each task. In most programs I evaluate, these execution requirements are relatively modest.
The most likely reasons for these requirements to become large is choosing an atypically small
number of partitions or having very unbalanced partitions. As part of my goal of making
conservative recommendations, I use measurements of the distribution of partition sizes to
account for the worst possible case of unbalanced requirements. Thus, recommendations will
generally be constructed by assuming the ‘bad luck’ of a single worker will get all the largest
partitions at once.

For most programs I examined, the effects of this temporary storage was minor, less than
10% of the memory of the program. Where it is most likely to become a problem is when the
program should be configured to use a different number of partitions. In this case, one can
estimate the savings from changing the partitioning without sacrificing the conservativeness
of the estimate as I will discuss in Section 5.5. There are programs where large partitions
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remain even after increasing the number of partitions arbitrarily — likely because there is
some large group which cannot be split. Naturally, I did not find these among example
programs I examined because such programs will inherently scale poorly.

5.1.1 Cached RDDs

RDDs are Spark’s explicit representation of large datasets. Like most MapReduce-derived
tools, these datasets are distributed largely invisibly to users. Users manipulate the data by
applying operations to produce new distributed datasets rather than modifying data in place.
Along with specifying these transformations, Spark allows users to mark which datasets that
they believe are important enough to allow to persist in memory. Other datasets are only
computed when needed, then discarded. It is these datasets that account for the bulk of
Spark’s memory requirements.

When a user marks an RDD to be persisted, Spark computes its partitions differently.
By default, Spark only computes on demand, with each element passed to the next step of
the pipeline as soon it is computed (except where group-by-like operation are required). For
persisted RDDs, Spark checks for a cached version — including on disk or remote workers.
If it does not find one, it starts computing the partition into a local array. If there is enough
space available, potentially after evicting old partitions, this array will remain cached after
the computation completes.

5.1.1.1 Accounting for Cache Space During Computation

In early versions of Spark, cacheable partitions were stored in an in-memory array uncon-
ditionally, and only then were evictions decisions made. At this point, memory would be
required for both any dependencies of the computation (if cached) and the newly cached
partition. Then, even if the newly computed partition would not be persisted, it would
remain in memory until it was consumed by its downstream computation. Only after that,
would memory usage consistently return to the amount allocated for caching.

In later versions of Spark, support for ‘unrolling’ cacheable RDD computations was added.
In this scheme, Spark accounts for the space used by an RDD as it is computed. It computes
a cacheable RDD into an array, like before, but it samples the sizes of the elements as it is
being computed to maintain a running estimate of its total size. As it updates this estimate,
Spark starts evicting RDDs from its local cache. If this eviction would not free up enough
space, then Spark aborts the computation. In this case, the already-computed values are
consumed from the local array, but the remainder of the partition is computed on demand.

Although this policy ensures that memory used for cached RDDs stays within the allo-
cated space, it still has negative effects with large partitions. Without restrictions, a large
partition would evict all other partitions on a worker as it was computed. But this partition
ultimately fail to be persisted because it was too big. To avoid this effect, Spark limits the
amount of space it will evict for a in-process partition. This results in different non-intuitive
behavior: A user would likely assume that they can have one partition per worker core,
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with the total size of these partitions and their dependencies being somewhat less than the
amount of dedicated storage. Instead, the maximum size of partitions that can be computed
simultaneously is effectively limited by the amount of space dedicated to unrolling, divided
by each of the cores computing these partitions. With the default setting as of Spark 1.4,
if the partition and its dependency have equal sizes, this behavior is likely, depending on
timing.

5.1.1.2 Eviction Policy

Spark’s eviction policy for cached RDDs is approximately least recently used (LRU). There
are, however, several notable ways in which Spark diverts from a pure least recently used
replacement policy. One is that caching decisions are local even though the RDD cache is
global. Partitions are only cached on workers where they are used, and Spark never makes
explicit attempts to move data between nodes to correct for load misbalance

Another divergence from the least recently used policy is to accommodate the common
practice of scanning a whole RDDs over and over again. This can result in worst-case
behavior for LRU: each newly scanned partition would have been the least recently accessed
and so already evicted. To avoid this problem, Spark does not evict an RDD for another
RDD from the same partition, which results in a smoother decline in performance when
there is insufficient memory and the working set is contained in a single RDD.

Spark also permits users to take greater control of the eviction policy by manually evicting
RDDs. Spark calls this ‘unpersisting’. While usually this is just an optimization, it is notably
necessary to prevent disk space exhaustion if an RDD is marked to be persisted to disk if
there is insufficient memory.

5.1.2 Broadcast Data

Spark includes a feature to distribute some piece of data to potentially every task. These are
called ‘broadcasts’. Normally, items broadcast are typically quite small. The most common
use of broadcasts in Spark programs is internally to distribute small amounts of data to all
tasks within a stage, such as user-defined functions common to many tasks, the locations of
input data, etc. These are typically of small size. But the broadcast interface is also exposed
externally to Spark’s application developers.

The most externally prominent use case for broadcasts is for some iterative machine-
learning tasks. There, a common task is distributed a current parameter set to be applied
to all the cached data. In this case, the parameter set is likely to be of negligible size, but
it could be quite large for some machine learning algorithms. Nevertheless, this use of large
broadcasts does not fundamentally prevent scaling, since the parameter set — generally the
size of the output model — is likely to have a fixed maximum size. As long as that fixed
maximum size does not exceed the physical memory of each worker, the computation can
use as many workers as wanted.
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Some Spark programs use broadcasts in ways that do not scale so well. For example,
Spark includes as a tutorial program, such an example, a naive implementation of Alternating
Least Squares (ALS) [101]. ALS is a matrix completion algorithm; it takes a matrix M and
finds a fit to those entries XY T ≈ M where X and Y are ‘skinny’ matrices. Spark’s naive
implementation uses the framework’s abstractions to distribute the computation but not
the storage. It creates a broadcast for the each iteration’s estimates for X and Y and for
the actual values of M , requiring the framework to replicate those matrices on each worker.
Such a program is not what one would recommend using, but nevertheless, we have a goal
of making correct memory recommendations for programs that have made this decision.

Spark broadcasts are stored persistently by the driver program. For correctness, it is
necessary for a broadcast to remain available unless it can be proved that an RDD that
references the broadcast will not be recomputed. A reference to a broadcast can be obtained
as a JVM reference and passed in a closure for any task. With this design, Spark would
need to do introspection on the code supplied to tasks to identify which broadcasts are still
available or to identify which broadcasts will be required before running a task. Given this,
for Spark to reliably remove broadcasts, it requires something like the unpersist mechanism
for RDDs, where users identify what broadcasts are still required.

When broadcasts are required by a worker, they are distributed to the worker programs
via one of several possible mechanisms. The default is a BitTorrent-like mechanism, where
workers will exchange chunks of data with themselves. After the broadcast is received by
a node, it is stored in locally in the cache — the same cache used for RDD partitions, and
subject to replacement under the same least-recently used policy. They, however, are not
subject to ‘unrolling’ behavior of RDD partitions since they are usually not lists that can
be partially computed. Thus, like the older behavior for RDD partitions, a large broadcast
will consistently cause out-of-memory errors.

5.1.3 Aggregation Data Structures

Spark supports group-by and sort operations using a strategy similar that of to Hadoop
MapReduce. Like MapReduce, it implements a many-to-many ‘shuffle’ communication pat-
tern from a set of ‘map’ tasks to a set of ‘reduce’ tasks. Values are assigned to a particular
reduce task based on keys supplied by map tasks. To do this, at each mapper, values are
partitioned by the destination shuffle task, which can be computed by each value’s key. The
mapper tasks group values and their keys by their destination reducer, consolidating multiple
values with the same key and sometimes sorting each group by key. The user (of the mostly
internal Spark shuffle API) supplies an optional combiner function, which specifies how to
consolidates multiple values for a particular key as the values are grouped by key at each
of the mappers. Finally, these values are written to the local filesystem in contiguous runs
for each shuffle task to request remotely. The shuffle task performs remote reads of each of
these runs. If requested, it groups these values by key, applying the ‘combiner’ function as
it does. Generally, the per-task grouping operations will use storage local to the shuffle task
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rather than relying on the remote reads to be synchronized enough to directly do an N-way
merge.

Spark operations that use this support for aggregation can be an important source of
memory pressure and memory/time tradeoffs. As Spark does these aggregation tasks for
task, it can create in-memory data structures containing all the data in a partition, even if
the partition will not be persistently cached. Like for cached datasets, Spark maintains a
running estimate of the sizes of this data structure. When the estimated size would exceed
available memory, by default, Spark writes the current state of this data structure to disk
and clears the in-memory version. Then, when all input has been consumed, Spark does an
N-way merge of the last in-memory data structure and each of the versions written to disk.

The costs of doing the out-of-memory operation are quite variable. A major source of
overhead in this operation is not the disk I/O, but serialization and deserialization costs,
which are clearly application dependent. Measuring these costs in isolation would be fairly
straightforward, but, as they occur naturally, they are overlapped with the disk I/O and
heavily interleaved with useful computations. Thus, it is difficult to identify their computa-
tions to overall overheads. Besides serialization, the major potential cost is that of the disk
I/O itself, which is tricky to measure because it will be overlapped with useful computation
and because it may benefit from OS and hardware caching.

5.1.4 Shuffle Storage

When Spark uses a many-to-many communication pattern, there is separation in time be-
tween then the inputs to the communication (the ‘map outputs’) are generated and when
they are consumed. Consequently, Spark must store these map outputs. The default policy
that Spark has chosen is to write the map outputs to the local filesystem of the worker where
they were produced. The primary benefit of this choice over keeping the outputs in local
memory is ensuring that in the absence of node failures that recomputing a partition will
never require rerunning an entire stage. But this could be achieved by writing the data to
disk on eviction instead.

Whatever the merits of writing shuffle data to the filesystem, the practical result is that
whether shuffled data stays in memory depends on whether the filesystem keeps it in memory.
For some Spark programs that use shuffles to achieve maximum performance, the filesystem
caches must be large enough to hold the shuffled data. To achieve this, one needs to explicitly
avoid allocating memory to the Spark application. Otherwise, the memory the OS would
use for filesystem caches will likely be used for objects waiting to be garbage collected or for
cached data that will not be accessed again.

5.1.5 Partition Sizing

An important factor in Spark’s memory usage is the sizes of partitions it uses. This affects
the size of temporary data while something is being computed and during aggregation.
When partition are large, this temporary data can dominate memory requirements. Using
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very small partition sizes, in contrast, would cause task overheads to dominate runtime. In
Section 5.5, I will evaluate the ability to estimate the effects of changing partitioning on
memory requirements, though Spark lacks a generic configuration parameter to determine
how many partitions to use to simply recommend setting.

Spark has several methods for choosing partition counts. In some cases, the user chooses.
For example, the PageRank example program (used in our evaluation) has a ‘number of
edge partitions’ command-line parameter, which is eventually supplied to various lower level
Spark operators. Without such guidance, Spark tries to match the partitioning of its input;
for example, when reading from HDFS (the Hadoop Distributed File System [80]), it will
typically have at most one partition per HDFS block. Spark also has a default parallelism
setting it uses as a minimum and when it cannot infer partitioning from the data source.
For execution environments where the number of available cores is easily inferred, Spark
configures this setting based on the total number of cores available.

5.1.6 Summary

Most of the memory managed by typical Apache Spark program represents cached partitions
for its marquee abstraction, the resilient distributed dataset (RDD). But Spark has other
ways to store values in memory, both to store temporary data to support computation
and support alternative abstractions that are useful for some computations. This is not a
failing of the RDD abstraction, but a result of efforts to efficiently support a wide range of
distributed computations that one would expect from any similar framework.

These alternate forms of memory usage are important to analysis of memory usage. They
can have large effects on memory requirements, and in particular, how memory requirements
scale as the degree of parallelism changes. This split between types of memory usage is also
exposed in Spark’s configuration settings — a split between storage and execution memory.
Some of the possibly memory usage is not explicitly configured, the framework performance
may depend on ‘unused’ free space being available for file system caching.

Similarly, how memory usage is split within Spark changes data collection. As a practical
matter, instrumenting each type of memory usage will often involves touching or using logs
from different parts of the framework’s codebase. After data collection, analysis must take
into which configuration parameters are relevant to each kind of memory and whether that
data has the lifetime of a computation or persists indefinitely.

5.2 Instrumenting Sizes

For each of the ways that Apache Spark’s abstractions can use significant amounts of memory,
SLAMR needs to record related program activity. It does not only need to record the sizes
used, but it also needs to have enough information to put that in context. For persistent
data, this includes when each part is accessed again, to reconcile with the policy for when it
might be dropped from memory. For data which is divided into many partitions, this includes
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Memory type Reads Writes Partition sizes Size if not stored Relative timing
RDD Added Existing Existing Added Added
broadcasts Added Added Added Existing Added
aggregation buffers Existing Existing Added Added —
map outputs Existing Existing Existing (partial) Existing Added

Table 5.2: Table of types of data storage abstractions in Apache Spark and the instrumenta-
tion that was available and which I added to extract my recommendations. The ‘reads’ and
’writes’ column represent whether records of task execution indicated which and how much of
that type of memory was available or that needed to be added. The ‘partition sizes’ column
indicates whether one could infer the size of individual partitions from the access log, if this
was relevant. The ‘size if not stored’ column indicates whether that partition size was also
available if Apache Spark’s policy was not to ever store the corresponding value in memory.
The ‘relative timing’ column indicates whether information about the order of the access
relative to other accesses was available, which is necessary to account for recomputation or
for cache-like accesses.

not only the aggregate size, but the size of each part to understand how it is distributed and
what extra resources are needed while it is being processed.

Much of this information was already collected by Apache Spark as shown in Table 5.2.
These records are created largely to assist with performance analysis and to provide feedback
to users through a browser-based monitoring interface. Most notably missing from existing
logs is information about the relative order of accesses. With this, my tool can identify
recomputation of values that would be otherwise kept in memory. Such recomputation
should not contribute to memory recommendations that already allocate enough memory
to avoid it. Spark did not already record access order partly because different abstractions
recorded logged their separately, so there was no relative ordering between different types of
data.

Also commonly missing were indications of when data was read and the sizes of data
when data is not stored in memory. Prior versions of Apache Spark also failed to record the
sizes of some types of data, such as hashtables created for aggregation, when it was stored
in memory. This lack of instrumentation reflects the purposes of Spark’s size measurements:
the recording that does exist lets Spark staying within configured memory thresholds rather
than to provide information for monitoring.

5.2.1 Spark’s Own Instrumentation

Spark’s memory management requires the sizes of the objects it stores. Typically, these
objects are stored as native Java (or Scala, which compiles to Java bytecode) objects. Java
intentionally does not expose how objects are laid out in memory. The objects managed by
Spark often contain references to other objects that are logically part of the same unit. For
example, a Scala object that ‘contains’ a string does so by reference, and that string in turn
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likely contains a reference to an array of actual character data. To effectively restrict the
memory used by such objects, Spark needs to devote some effort to size estimation.

Spark’s size estimation has two components. First, given a particular object, based on
the language runtime in use, it needs to estimate the size of that object’s header, fields,
and any additional padding required to keep fields aligned according to the runtime’s policy.
Then it needs to account for the space used by objects referenced by this object. For both of
these tasks, Spark relies on Java’s reflection support, which it allows it enumerate the fields
of objects at runtime and access private values. Since object references may contain cycles,
Spark maintains a list of previously visited subobjects as it performs the size estimation task
for one logical object.

If Spark examined all the objects referred to by those stored in cache, it would often
be unreasonably slow. For example, if a Spark user creates an RDD partition with ten
million short strings, Spark’s size estimation would require examining each of these strings
and storing them in the ‘visited’ data structure — in addition to the actual work to compute
those strings. To avoid this overhead, Spark takes a random sample of those objects and
scales up the resulting estimate. Typically, this produces good results, but one can construct
cases where it would not. For example, in the case of the ten million strings, if one string
was much larger than the others, Spark would have a low probability of sampling it and thus
its estimate would be biased low.

Spark’s size estimation strategy operates on an object at a time. However, objects that
Spark counts separately can share storage. For example, one might have an array of objects
with a string field and produce from this array containing only those strings. When reserving
space for both of these arrays in, for example, its cache of RDD partitions, Spark will count
these strings twice.

This overestimation is a rational design for Spark. It ensures that when Spark evicts
a partition that the total measured sizes of the remaining partitions is an upper-bound on
the space still required. Also, the sharing is fragile. For example, if Spark serializes and
deserializes a partition, such as to send it over a network, shared strings and the like are
likely to disappear.

Whatever the biases of Spark’s size estimation, it is important to know the sizes Spark
estimates. If one more accurately estimates the sizes of data than Spark and supplies this
size to Spark as a configuration parameter, one would experience poor behavior. Spark
would evict and recompute partitions based on its inflated estimates, The benefits being
more accurate than Spark would be in configuring how much memory the language runtime
under it is allocated.

5.2.2 Measuring Unrealized Sizes

While Spark accounts for what it stores in memory, once it decides not to store something,
it generally does not measure its in-memory size. Though Spark’s runtime only needs to
know that the object exceeds its threshold for storage, SLAMR’s recommendations require
a good estimate of the total size. Thus, I modified Spark to estimate sizes in cases where it
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declines to keep some data in memory. Since these objects will never be present in memory
in the instrumented run, this requires a slightly different size estimation strategy.

Generally, Spark uses a pattern where operations internally are simply given an iterator —
an interface to retrieve the next value from a partition rather than directly accessing stored
values. When a partition is not stored locally, Spark returns an iterator that computes
values on demand rather than from an in-memory data structure. I modified Spark to
wrap these iterators to collect information about the data being computed. The wrapped
iterator samples the size of items as they are generated, measuring the size of elements at
exponentially increasing intervals. SLAMR uses these samples, combined with the true count
of the number of items generated, to maintain a running estimate of the total size generated.

There are a couple places in Spark where I found it necessary to insert this size-estimation
shim: when unrolling fails and in shuffle aggregation at the reduce tasks. In both these
cases, the size estimate obtained is an estimate of the elements of a hypothetical array or
hashtable, which must be adjusted slightly to account for the additional overhead of the
array or hashtable.

5.3 Counting Cache-Like Data Structures

Usually, most of the data in a Spark program is stored in various persistent caches. This
includes all the types of memory marked as ‘persistent’ in Table 5.1. There are two caches
SLAMR models. First, the ‘BlockManager’ on each worker node, where RDD partitions and
broadcasts are stored and whose size is configured by the ‘storage’ configuration parameter.
Second, the worker operating system’s page cache, where temporary files used in the shuffle
may be cached by the underlying operating system and whose size is configured by whatever
memory is left ‘unused’ on the worker machine. In both cases, the caches are managed with
a policy which is LRU-like.

In the case of the BlockManager, SLAMR first simplifies the analysis by treating it as
two caches: one for the RDD partitions and one for the broadcast data. I believe little is lost
from analyzing these separately since programs that use large broadcasts are likely to use
it alongside any RDDs. SLAMR model each of these caches as a single LRU cache rather
than separate caches for each worker. For the broadcast data, that broadcasts are likely to
be actively used by all tasks in a stage and so treat the broadcasts as if duplicated across
all workers. For cached RDDs, SLAMR make adjustments for the distribution of the cache
across nodes separately, along with analysis of the size of each partition, as described in
Section 5.3.3.

I consider whether assuming LRU instead of modeling Spark’s strategy of not evicting
items for others from the same RDD causes serious inaccuracies in recommendations. Since
SLAMR makes recommendations that are intended to avoid cache misses entirely, it does
not recommend points where part of an active RDD fits in memory. Even if I were to extend
it to make more naunced recommendations, the interesting points are likely to be either
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to include all or none of each RDD in the cache, choosing which RDDs to based on the
least-recently-used policy, so Spark’s deviation from LRU will also be of no consequence.

This simplification permits much simpler analysis techniques. In particular, I will rely
on ‘stack analysis’ techniques that permit analyses of cache behavior for multiple cache sizes
provided that items evicted with cache size N +X are also evicted with cache size N . This
is not generally true of Spark’s modified LRU policy.

5.3.1 Log Replay and LRU stack

SLAMR’s cache analysis mechanism is based logs of accesses — both reads and writes. I
modify Spark’s event to provide this information for each task where it is not logged already
as described in Section 5.3.2. For its analysis, SLAMR constructs a single access trace from
lists of what is accessed by each task. A concern with constructing this single access trace
is changes in the execution order resulting from differences in the degree of parallelism. The
additional overlap between many tasks executing simultaneously is likely to increase memory
requirements: more of a next stage of the computation will be computed before all of the
last stage can be discarded.

SLAMR compensates for this overlap fairly directly: it requires extra space according
to size of partitions being computed (which, incidentally, will be the space required for
‘unrolling’, which it separately needs to ensure is large enough). An alternate strategy would
be to synthesize a unified access log with each task’s accesses, repeated multiple times. The
resulting estimation would effectively require that the accessed data be able to remain in
the cache between the times the task’s accesses is repeated, achieving a similar effect. To
simplify, I merely replay the task accesses in some order. Rather than try to estimate the
actual interleaving of accesses, I replay the accesses in the order that the tasks are started.

SLAMR replays this log and keep track of cached items in order by the minimum size of
cache that would be allowed to hold them as in [45]. On each read, we count the number of
bytes above the item in cache. This tells us the total size of a cache that would be required
to keep the item cached. On each read and write, we move an item to the top the stack,
representing that with the LRU policy, it will be in a cache of the smallest possible size. As
my tool performs this analysis, it constructs a list of the cache sizes required for each item
to be cache hit (ignoring compulsory misses). Its recommendation is the maximum of these
points.

This analysis can also yield a rough estimate of the amount of extra work that would be
required with less memory. By recording the size of each missed read and the corresponding
required cache size, one obtains an estimate of the amount of extra work for each possible
cache size. This could be easily presented to the user to suggest other possible sizes. However,
the size of the missed reads is a very crude predictor of the actual miss cost as will be shown
in Section 5.6.4.1, so additional work would be needed to turn these measurements into
consistent recommendations for users.
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5.3.1.1 Replay Performance and Optimizations

Done naively, though this stack analysis is more efficient than a full cache simulation at
every possible cache size, replaying an access trace would be quite CPU-intensive. The
fundamental problem is that the algorithm as described above is quadratic in the maximum
depth of the stack: it requires scanning the stack repeatedly to count the size of items above
it. Since the maximum depth is the number of partitions used in a program, which is easily
many tens of thousands, this is unacceptable.

To avoid this, [45] observes that a splay-tree based approach can track these sizes with
amortized log-linear time instead. Interestingly, results reported in [45] note that simpler
approaches, which do have quadratic worst cases, achieve similar or better performance over
traces exhibiting good temporal locality. SLAMR uses a simple optimization to the naive
approach that takes advantage of locality in the typical access patterns of a Spark program.
To speed up computations of the depth of an item, it maintains a small cache of items and
their known depths. Whenever an item is moved within the stack, we updated this cache
using that items old and new depth. To find an item’s depth, it scans the linked list until
it encounters an item in the small cache. Spark typically accesses items in groups and in
consistent orders, such as when iteration through the partitions of RDDs, so when an item
is accessed, knowing the depth of the item above it in the stack is likely to be useful for a
near-future access, perhaps the next access.

Another potential cause of CPU-intensive log analysis is that logs can contain many
entries for tiny items that are accessed frequently. The most notable example of this is small
broadcasts, including the code for tasks. SLAMR filters out very small broadcasts (e.g., less
than 32 kilobytes), since their effects should be negligible. Performance of stack analysis
is a major problem in the architecture literature primarily because the resulting stacks are
very large — typically consisting of some ordering of many millions of cache lines. I avoid
this problem in Spark because each entry will be large, since it corresponds to partitions
that are large enough to make the overhead of launching a task for each of these partitions
manageable.

There is one notable item in Spark that does not have a small number of pieces per
task — shuffle outputs and inputs. In a thousand partition shuffle, each ‘map’ task has 1000
different outputs which are accessed ‘separately’ by reduce tasks. As the number of partitions
increases, the number of different shards of the shuffle data we would need to consider to
precisely match reads and writes increases quadratically, quickly becoming unacceptable.
This is common since Spark’s default partitioning strategy often mirrors the partitioning
of the source data rather than lowering partition counts closer to the available degree of
parallelism. Thus, there is often one partition for every several hundred megabytes of data,
easily resulting in hundreds of partitions with only tens of cores.

To avoid tracking many pieces of shuffles, my tool consolidates items that are part of the
same logical shuffle. Thus, each shuffle is treated as one data item that is read or written
many times, and whose size is the total size of the shuffle. Generally shuffles are accessed
together in one ‘wave’. Thus, the sizes of parts of the shuffle should have negligible effect
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on our size estimate. This simplification may miss effects where two shuffles overlap, so part
of the first shuffle can be discarded while the second shuffle runs. But this type of behavior
would change as the number of parallel tasks can change, so is not useful to rely upon for
making configuration recommendations.

I could also make similar simplifications for consolidating RDD partitions into one ‘RDD’
entity. This generally will have no effect on our recommendation for similar reasons and
drastically decreases the amount of items we need to track. However, for the analyses of the
programs in this dissertation, this was not necessary.

After implementing these optimizations, I found that main constraint on the speed of
the log analysis is the relatively slow parsing of Spark’s log files. For most programs, this
was the case even before the optimizations — they did not have enough tracked items for
the quadratic effects to dominate. The slow speed of parsing is not a fundamental problem,
but merely because Spark’s event log is written in a text-based JSON format and the log
parsing code it provides is not optimized for speed.

5.3.2 Additional Access Log Instrumentation

Our replay strategy requires an access log for each task. The information that Spark records
by default is, unfortunately, not quite sufficient. Spark records what changes each task
makes to the block manager overall. Unfortunately, this includes both too little and too
much information. It includes changes that result from eviction of partitions, which my tool
needs to simulate under a different hypothetical cache size. It does not include a record
of reads and does not include any record when Spark’s unrolling logic declines to store a
partition in cache.

Also, unlike more traditional caching systems, when an item is not present in cache in
Spark, it is often recomputed from other items in the cache. This means that some of the
accesses that occur in a task would not occur if the cache were more effective. If the analysis
fails to account for this, then it would falsely assume the dependencies needed to remain
cached for longer than necessary.

I modified Spark to record an ordered access pattern to RDD blocks within a task. This
includes all attempted reads and writes, regardless of whether they are successful. Because
it includes information about unsuccessful reads and writes, the resulting access log allows
recomputation to be consistently eliminated: every access starting after an unsuccessful read
until a following write (successful or not) of the same partition is part of the recomputation.
In my analysis, I preprocess the log to omit this recomputation.

To make this access log complete, it was necessary to not only record accesses to RDDs,
but also to include accesses to shuffle data and broadcasts. Recording these in an access log
was necessary to correctly eliminate such accesses if they are triggered by recomputation.
Since shuffles and broadcasts were effectively managed by different subsystems of Spark, the
existing instrumentation did not consolidate them well with RDD accesses.

In the case of broadcasts, Spark had little recording of creation or accesses to broadcasts.
In particular, Spark’s logs did not indicate whether a task required a broadcasted item. I
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added instrumentation of both creation of broadcasts, which generally occurs outside a task,
and of reads of broadcasts, ensuring they were recorded in the access log for the current task.

For shuffles, Spark records the amount of activity in aggregation, but it did not provide a
convenient way of correlating the map and reduce tasks involved in the same shuffle operation.
To compensate for this, I record accesses to shuffle inputs and outputs in the per-task access
log along with the internal identifier for the shuffle operation they belong to. To keep the
size of the access log from exploding, I make only one entry for each shuffle operation per
task along with total on-disk size of task’s input or output.

5.3.3 Naively Dividing Caches Among Nodes

Spark distributes data across multiple workers, but lacks any explicit policy for load balancing
the data between the nodes. Like MapReduce, it relies on locality constraints, starting with
any information from the (possibly distributed) filesystem of its input. Then, data by default
resides where it is computed on, and data is preferentially computed where its dependencies
reside. To an extent, Spark is likely to correct for load misbalance: workers with cached data
will be used first by Spark. Consequently, if parts of RDDs are not cached, the first workers
available to compute them will tend to be workers with less data cached. Since computing a
cacheable partition causes it to be cached locally, these workers with less cache will tend to
accumulate more cached data. Nevertheless, Spark lacks any firm guarantees or goals about
how data is load balanced.

For my tool’s recommendations, I assume that Spark’s load balancing works well. So, if
there are X bytes to cache, each of N nodes ends up caching around X/N bytes. I allow for
some node to be off from this size by the largest partition size P , so I require each worker
to not more than X/N + P bytes. A distribution of partitions that satisfies this constraint
is achievable with a simple greedy assignment. If one assigns partitions to to each node
greedily until at most X/N + P bytes is used on each node, then either there are no more
partitions to place or each node must have at least X/N +P −P = X/N bytes used since no
partition of size at most P fits on any. But each node having X/N bytes used would imply
all partitions are placed.

Spark does not explicitly achieve this greedy allocation. Its policy of running backup
tasks will, however, converge to this allocation, at some additional cost. If Spark evicts or
does not store data on some node, it will recompute the portion of the data which did not fit
where it was originally computed — eventually, on one of the nodes where there is enough
room. Since nodes with less data stored are more likely to be free for computation after
tasks with location preferences are placed, Spark’s schedule is biased towards nodes which
will have room without explicitly considering node capacities. Thus, the additional cost
should be proportional to the difference balancing the computation for equal compute times
and balancing the computation for equal storage size. This tradeoff is unlike the phenomenon
that motivates the general cache sizing policy, where future evictions will prevent persistent
storage of all the data that is accessed repeatedly.
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Among my example programs running with multiple workers, assuming the minimum
X/N + P variation empirically resulted in essentially no recomputations in my sensitivity
analyses. This is likely because my example programs, like most analytics programs, did not
have a significant variation in their computation cost per byte, and the maximum partition
sizes P were not very small relative to the node size so as to give little slack to the achieved
schedule. When this is not true, I would expect some cost from recomputation instead
that could be avoided by allocating extra space to accommodate the difference between load
balancing the computation and load balancing the storage.

It is worth exploring what an appropriate correction would be when there was significant
variation in compute time per byte and users prefer to load balance the computation instead
of the storage. To do this, I did a simple simulation to estimate a more typical amount of
variability. I modeled task durations log-normally distributed with a mean of 1 unit of time
and a standard deviation of .5 or .25 or .1 units of time. Given this, I simulated 100 machines,
each running one task at a time and varied the number of queued tasks. I performed 1000
runs of the simulation for number of queued tasks and recorded 99th percentile the maximum
number of tasks run by any simulated machine in these runs. The results are shown in table
5.3.

In addition to showing the necessary adjustment, this analyses reveals that adjustments
would have negligible effect if one assumes that the task computation times per byte have a
standard deviation as high as 10%, even accounting for the 99th percentile worst allocation
over 100 nodes.

This analysis is intended to estimate the worst effects of this load misbalancing. I used
a large number of simulated machines and report the worst misbalance, not accounting for
how backup tasks would correct for this or how these effects would be hidden by other
sources of inter-machine performance variability. I assume that partition sizes are constant
and computation times per partition still vary by this factor. In contrast, most reports of
large skew in partition computation times are accompanied by skew in their sizes, which
will correct for the misbalance in storage. Probably most importantly, I model machines as
running one task at a time, creating worse ‘head-of-line’ blocking than would occur when
multiple tasks run on a single shared-memory machine.

Even the pessimistic analysis shows that if one assumes there is relatively little skew in
task durations per byte of data, then there is little benefit from additional correction after
the maximum partition size factor. This is likely to be the case in most analytics programs,
including the ones in my evaluation. Otherwise, if there is going to be significant skew in
task runtimes per byte of data, one can compensate for this by adding a factor proportional
to the amount of skew to reflect the typical variability in task runtime.

5.4 Measurements to Recommendations

The various measurements of memory requirements do not map directly to configuration
parameters. The ultimate goal is to produce minimum values for several configuration pa-
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duration ∼ lnN(1, .5) duration ∼ lnN(1, .25) duration ∼ lnN(1, .1)
mean # max # % of (µ+1) max # % of (µ+1) max # % of (µ+1)
2 4 133% 3 100% 2 100%
4 7 140% 6 120% 5 100%
6 10 142% 8 114% 7 100%
8 13 144% 10 111% 9 100%
10 16 145% 13 118% 11 100%
12 18 138% 15 115% 13 100%
50 64 125% 57 111% 53 100%
100 118 116% 109 107% 104 103%
1000 1059 106% 1030 103% 1012 101%

Table 5.3: This table shows simulation results of the load misbalance resulting from running
simulated tasks across 100 simulated machines with varying distributions of task durations.
In each experiment, all tasks are initially queued, tasks start immediately after a task finishes,
and there is no use of backup tasks or similar mechanisms. For each set of parameters, the
99th percentile of the maximum number of tasks run on any simulated machine is shown
as well as what portion of one plus the mean number of tasks this is. The latter number
indicates the additional correction factor that would be required after adjusting for the
largest partition size.

rameters for each worker, which correspond to memory usage as described in Table 5.1:

• ‘storage’ size — the size of the region used by the BlockManager to store cached RDD
partitions and broadcasts;

• ‘unroll’ size — the size permitted to be used for RDD partitions being computed but
not yet stored persistently as described in Section 5.1.1.1;

• ‘execution’ (shuffle and aggregation) size — the size permitted to be used to perform
group-by and aggregation operations;

• total JVM size — the size allocated to each worker JVM, which must include all Spark
usage that manifests as Java/Scala objects;

• total space for OS page cache — space that the worker nodes’ operating systems can
use to cache temporary space

The first three parameters are configured directly with Spark. In Spark 1.6 and later, these
unroll and shuffle sizes are combined into the execution size. The minimum total JVM size
is a restriction that we will apply through our garbage collector overhead analysis discussed
in chapter 6.

My analysis of Spark’s memory usage produces these per-worker minimums given the
number of workers W , the number of tasks per worker P . As discussed in chapter 7, these
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parameters are likely chosen by repeating the analysis for a variety of possible worker and
task counts based on some utility metric. Most simply, a fixed number of tasks P can be
selected and the number of workers increased until the minimum total JVM size plus the
total page cache space suggested is less than the size of the underlying worker machines.

To compute the storage size, my tool adds up the sizes required to avoid cache misses
under the stack algorithm model for the total broadcast space and the total storage space,
modified as described in section 5.3.3 to account for it being split across W workers. To
this, it add the P largest partitions observed in any access log for any task, which is also the
minimum value for the unroll size. This size will often be much larger than the actual size ob-
served in the program since the P largest RDD partitions will be corresponding partitions of
related datasets which will not normally be computed simultaneously. Nevertheless, SLAMR
uses the top P sizes so that in the event of a failure and recomputation data should still end
up cached and if each partition is composed of a very small number of large records, there
will be enough memory to store them. Given typically small partition sizes, there would
be little benefit to doing more sophisticated analysis to take the top P sizes of unrelated
partitions.

To compute the shuffle size, my tool adds up the sizes of the P largest aggregation input
and outputs I add up both inputs and outputs because the worst case is a task both reads
from a shuffle and writes to a shuffle (e.g. a multi-step group-by). Like for RDD partitions,
I do not try to compensate for related partitions being responsible for the top P aggregation
hashtables.

To compute the space for page cache, I add space required to avoid cache misses for
the shuffle storage data from the access logs for the tasks. When doing this analysis, as a
simplification, I only consider the total size of the entire shuffle, since my instrumentation
discards the sizes passed from input ‘map’ task i to output ‘reduce’ task j for space and
overhead reasons anyways.

5.5 Repartitioning

A likely cause of unexpectedly large memory requirements for Spark is the use of large parti-
tions. As described in Section 5.1.5, Spark has several ways of choosing partition sizes, which
can result in a variety of actual partition sizes and counts depending on the environment.
When these heuristics or explicit user choices lead to Spark program using a very small
number of partitions, this can result in much larger memory requirements than a somewhat
larger number of partitions.

In the extreme case, where the number of partitions is equal to the degree of parallelism, a
program can require roughly twice as much space as small partitions: when each partition is
being computed, both it and its same-sized dependent partition would need to be in memory
simultaneously. This side-effect of Spark’s immutability-based computation likely belies the
intuition of many programmers who would set the number of partitions equal to the number
of cores to minimize overhead.
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Because of the relationship of partition counts to performance — less partitions may be
faster and more partitions slower — and the non-trivial costs of repartitioning, I cannot easily
compute the ‘ideal’ partition count based on memory utilization information. Nevertheless,
I try to roughly predict the effect of changing the partitioning in the program’s memory
requirements, so that users can understand the likely effect on memory consumption and
weigh that against their guesses about the performance impacts. Whenever the recommended
space for unroll and shuffle memory is large, one can suggest to the user that increasing the
partition count is likely to be useful. A rough prediction can close the loop by giving a
concrete estimate of how much to change the partitioning by.

To make simple predictions of the effects of repartition, I adjust the observed sizes that
are proportional to a partition size — the actual size of RDD partitions in memory and the
sizes of a partition in aggregation. I naively multiply these sizes by this factor and perform
the rest of our configuration production procedure.

These quick repartitioning estimates have some risk — when scaling up to more partitions,
this will always assume the largest partition gets smaller even though this is untrue for some
datasets. Some more detailed instrumentation could help with this, though as noted earlier,
one is also likely to experience issues with Spark’s measurement of partition sizes if there is
a lot of skew of the record sizes.

5.6 Evaluation

I evaluated our tool’s recommendations on our suite of example programs described below.
For programs that could fit comfortably on one virtual machine, I choose an input size that
would do so for the purpose of avoiding effects from multiple machines impacting sensitivity
analyses.

I choose a single configuration of Amazon EC2 Virtual Machine for each program. Usu-
ally, I would use one of the M4 (1 core:4GB memory ratio) virtual machine configurations,
but for a handful of programs that would not execute fast enough or seemed to require
more memory per core, I instead used the C4 (1 core:2 GB ratio) or R3 (1 core:8GB ratio)
virtual machines. For programs would not fit comfortably on one virtual machine, I chose a
type of virtual machine size that would require 2–4 workers for the base configuration. The
number of workers used was the minimum that would fit the minimum recommended sizes.
As is typical of public cloud virtual machines on the market as of this writing, these virtual
machines had storage backed by SSDs, which was used for Spark’s temporary files and for
non-generated input files.

To produce initial size estimates, I used a single execution based on the size of the input
data provided or a simple estimate of the size of generated data. When possible, this initial
run is at one times the size of the input, but in some cases a larger size is required for a run
to complete successfully. In these cases, I tried twice the input size, then four times, then
six, and so on, until one completed in less than ninety minutes. For each program, I set a
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Program Worker Type Base Size

ADAM Sort multiple r3.xlarge (4 cores, 30.5 GB) 2x input
ALS multiple r3.xlarge (4 cores, 30.5 GB) 8x input
Carat pipeline multiple r3.2xlarge (8 cores, 61 GB) 10x input
ADAM Transform d2.xlarge (4 cores, 30.5 GB) 1x input
GLM (500k points) m4.2xlarge (8 core, 32 GB) 1x input
PageRank c4.4xlarge (16 core, 30 GB) 12x input
KMeans (100k points) m4.4xlarge (16 core, 64GB) 1x input
Naive Bayes (100k points) m4.2xlarge (8 cores, 32 GB) 1x input

Table 5.4: Example programs, their input sizes, and the configuration used to run them.

time limit for all runs, which was at least twice the amount of time it took for the initial
sample execution.

To evaluate recommendations, I performed sensitivity analysis on each of the parameters.
I only performed this analysis for programs which had a non-trivial minimum for that con-
figuration parameter. For the other programs, I checked that varying each parameter from
around 0.1 GB up to 0.5 GB did not result in any significant change in performance. When
possible, I also obtain a more direct measurement of whether Spark is recomputing data or
using the local filesystem. This show some cases when recommendations comply with the
heuristic of keeping the computation in memory even when that does not substantially help
performance.

5.6.1 Example Programs

The example programs we used for evaluation primarily represent machine-learning work-
loads, typical of those for which Spark was originally designed. I use a mix of synthetic
benchmarks and those using real datasets, and, for comparison, the notion that memory re-
quirements can be predicted from input sizes. Table 5.4 summarizes the example programs,
the configuration used for their initial instrumented run, and the size of virtual machines
used to run them. These programs represent a range of Spark workloads, including itera-
tive machine-learning tasks and single-pass data transformations, working with data easily
represented as dense matrices and data represented as social-network-like graphs.

I use several examples from Databricks’s spark-perf benchmark suite [24], which has
good coverage of the machine learning algorithms included with Spark, but uses synthetic
input data. I ran these programs with the parameters the benchmark would use for some
scale factor, but vary that scale factor because the amount of actual input and computation
required for each varies significantly within the benchmark. I also collected a small number
of more realistic examples. I have an old version of the Carat[61] analysis pipeline along
with around 5GB of compressed observations. I also ran Spark’s included GraphX [33]
PageRank [67] example against the LiveJournal graph [81] and Spark’s included (MLLib-
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Program Input Size Shuffle Storage Unroll Non-JVM
ADAM Sort 12.5 GiB 6.9 GiB 0.0 GiB 0.0 GiB 0.0 GiB
ADAM transform 17.0 GiB 0.1 GiB 0.0 GiB 0.0 GiB 0.0 GiB
Carat (small) 0.6 GiB 0.5 GiB 3.3 GiB 0.5 GiB 1.3 GiB
Carat (larger) 3.6 GiB 1.9 GiB 26.9 GiB 0.6 GiB 34.1 GiB
EMLDA (250k) 0.9 GiB* 0.1 GiB 1.2 GiB 0.0 GiB 1.2 GiB
GLM (500k) 3.7 GiB* 0.1 GiB 15.4 GiB 0.3 GiB 0.0 GiB
PageRank (128 parts) 1.1 GiB 0.1 GiB 9.6 GiB 0.2 GiB 3.2 GiB
PageRank (64 parts) 1.1 GiB 0.1 GiB 8.3 GiB 0.9 GiB 2.0 GiB
KMeans (128 parts) 3.7 GiB* 0.1 GiB 7.9 GiB 0.3 GiB 0.0 GiB
ALS on Netflix (one node; 25 dims) 2.8 GiB 3.6 GiB 11.4 GiB 0.3 GiB 129.4 GiB
Naive Bayes (100k) 3.7 GiB* 0.1 GiB 8.3 GiB 0.3 GiB 0.0 GiB

Table 5.5: Values of recommendations for the configuration of a single 4-core worker for
various example programs. Input sizes marked with an asterisk represent programs which
generate their input rather than reading it from a file; the size given is the storage required
based on the number of 4-byte integers or floating point numbers involved.

based) alternating least squares (ALS) example against the Netflix prize [59] dataset, which
I reformatted to match the Movielens dump import format Spark expects.

In addition to machine-learning focused benchmarks, I ran the ADAM [54] genomics
suite on an file from the 1000 genomes program [92]. I used two tasks from it, a file format
transformation and sorting the genome reads.

To demonstrate some pathological cases which do not occur in my more natural example
programs, I constructed some synthetic examples. In particular, my other example programs
tended not to demonstrate large requirements or effects from variation in shuffle storage. I
constructed some synthetic examples that had very high recomputation costs and very high
serialization costs to exploit these.

5.6.2 Overall recommendations

Table 5.5 shows my tool’s recommendations for our example programs for a single 4-task
worker. These recommendations are obtained from analyzing a successful run which had
more memory available than all in-JVM recommendations. This illustrates that our recom-
mendations are not easily substituted by a simple inference from the input size. This is not
very surprising as the format in which data is stored is generally not the one used on disk
or a flat array of values.

In addition to differing in their relationship between the logical data size and memory
requirements, these programs differ in what types of memory they demand. This is an
expected result of the variety of types of applications I evaluate. Many of these programs
seem to be make essentially no user of Spark’s shuffle support, and so require essentially no
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Program Base + Event Log + Spark sizes
EM-LDA 168 s ± 2 s 169 s ± 2 s 171 s ± 2 s
ALS 801 s ± 11 s 799 s ± 7 s 799 s ± 8 s
ADAM sort 4563 s ± 87 s 4537 s ± 84 s 4563 s ± 0 s
Carat 2419 s ± 13 s 2382 s ± 4 s 2400 s ± 31 s
GLM 83 s ± 2 s 85 s ± 0 s 85 s ± 4 s

Table 5.6: Execution times with and without additional instrumentation at a configuration
close to the recommended configuration.

memory be allocated for that. Other programs, like ADAM genome sort, make little use of
Spark’s traditional RDD storage, but have very large requirements from memory related to
shuffle.

5.6.3 Overhead

A natural concern is the cost of the instrumentation SLAMR requires. To measure this, I
compared several example programs with all instrumentation disabled, with Spark’s existing
event logging enabled, and with my additional instrumentation enabled. To avoid startup
effects, before each measurement a warmup run not included in the results was done prime
caches.

Table 5.6 shows the results. The times show the average and standard deviation from
three runs on the same set of virtual machines for this set of programs. For most programs,
the additional overhead appears to be insignificant compared to other sources of small vari-
ations in program runtime.

5.6.4 Sensitivity Analysis

To evaluate my tool’s recommendations, I recorded program performance as each configura-
tion parameter varied around the recommend minimum. If the minimum was correct, then
I expect to see negligible changes in performance from increasing the parameter. But below
the recommended minimum, I expect to see a dramatic increase in runtime. The location of
this increase indicates how much my recommendations lose due to being overly conservative.

To do these analyses, I ran the program with each configuration changed in increments
of at most 20% of its suggested minimum, all other Spark parameters at their recommended
minimums, sufficient JVM space to ensure good garbage collector performance, and enough
non-JVM space to satisfy the minimum. Adjustments to configuration parameters that
should increase managed memory usage are accompanied by a corresponding change to the
JVM parameters. For each run, I report the runtime and, where available, a more direct
measurement of how often Spark falls back to slower storage. In some cases, misconfigura-
tions cause the program exceeded a timeout, which was at least twice the runtime of the run
at the successful configuration.
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(a) Carat pipeline
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(b) LDA with EM (250k docs, synthetic)
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(c) GLM (500k points, synthetic)
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(d) PageRank on LiveJournal graph

Figure 5.1: Spark storage size versus recomputed bytes (squared) and runtime (circles). X’s
represent failed or timed out runs. The vertical line represents the recommended minimum
configuration.

5.6.4.1 Storage Size

Figure 5.1 shows the variation in both runtime (circles) and number of bytes recomputed
(squares) as the storage size configuration parameter is changed for several of our exam-
ple programs. The horizontal line indicates my tool’s minimum recommendation, and Xs
indicate runs which exceeded our timeouts or crashed. To compute the number of bytes
recomputed, I rely on the analyzing the access logs from each task. The number of bytes
recomputed is the total size of writes to every RDD partition excluding the first write for
each partition.

For all of these programs, the minimum memory is clearly large enough to avoid both
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(e) KMeans (100k points, 128 partitions)
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(f) ALS
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(g) Naive Bayes (100k points)

Figure 5.1 (con’t): Spark storage size versus recomputed bytes (squared) and runtime (cir-
cles). X’s represent failed or timed out runs. The vertical line represents the recommended
minimum configuration.
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(a) Carat pipeline
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(b) PageRank on LiveJournal graph
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(c) GLM (500k points, synthetic)
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(d) LDA (250k documents, sythetic data)

Figure 5.2: Storage size versus actual recomputed bytes and predicted cache miss bytes for
RDD partitions. X’s represent runs which failed or exceeded a timeout. The vertical line
represents the recommended minmum storage size configuration.
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(e) Naive-Bayes
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(f) ALS on Netflix prize dataset
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(g) KMeans (100k points, 128 partitions)

Figure 5.2 (con’t): Storage size versus actual recomputed bytes and predicted cache miss
bytes for RDD partitions. X’s represent runs which failed or exceeded a timeout. The
vertical line represents the recommended minmum storage size configuration.
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recomputation and the possibility that more would substantially decrease runtime. For most
programs, 80% of the recommended shows easily measurable degradation in performance.
There are two exceptions: for the ALS example, the performance degradation is negligible
until around 70% of the recommendation, and for the Carat pipeline, there appears to be
no performance degradation whatsoever.

The stack algorithm based model makes some predictions about the amount of recompu-
tation required, which are shown alongside the measured amount of recomputation in Figure
5.2. These estimates can give insights into the causes of the anamolous lack of loss in perfor-
mance. In the ALS example, the stack-based model predicts relatively little recomputation
for the sizes where relatively little performance impact or recomputation is observed. But
this is not a universal predictor of performance; for example, for the PageRank example, any
recomputation apparently has enough dependent computations to make runtime increase
drastically.

5.6.4.2 Aggregation Space

Figure 5.3 shows the impacts of varying space allocated for aggregations (within the tasks
on either side of many-to-many shuffles) for the small number of programs which required
non-trivial space for this and a synthetic example. For all the non-synthetic examples, the
performance impact of the shuffle requiring spilling was modest. For example, supplying less
than half the required space to the ADAM sort example increased the runtime by less than
50%. One likely cause for this is that the storage I spilled to was fast — backed by SSDs
and probably cached by the local OS — so this result may not hold in all environments.

Spark records the amount of data that is ‘spilled’ to the local filesystem because there
was insufficient space for the aggregation to its event log. These measures show that my
tool’s minimums do predict a size that avoids almost all spilling, though there are some cases
where a small amount of spilling occurs. I suspect the cause of this is that Spark reserves
space based on the anticipated size of its internal hashtable as continues to collect input
rather than the total size that I estimate. Thus, full accuracy may require correcting slightly
for Spark requiring more space.

I also created a synthetic example to illustrate one negative effect of spilling that occurs
regardless of the costs of I/O: serialization. I wrote a Spark program that did an group-
by using deliberately expensive to serialize key and value types. These keys and values
represented small objects that simply contained a integer value, so most of the effort in
serializing and deserializing them was overhead. The results are shown in 5.3a, where one
can see the marked increased runtime from the high serialization costs even though it is
certain that all the data is remains in the local OS’s page cache.

5.6.4.3 Non-JVM Space

Figure 5.4 shows the effects of varying the available non-JVM space for the shuffle-intensive
ALS example, to allow the OS cache map outputs from many-to-many ‘shuffles’. Unlike
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(a) Serialization-intensive group-by
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(b) ADAM Sort (multiple nodes)
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(c) ALS
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(d) PageRank (16 partitions)

Figure 5.3: Spark shuffle size versus bytes spilled to disk (squares) and runtime (circles) on
selected examples. The vertical lines shows our inferred recommendation.
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Figure 5.4: Effect of filling excess space on performance. Xs indicate runs which exceeded a
timeout. Vertical line represents our tools’ recommendation based on page cache we estimate
is required to keep shuffles in memory.

other configuration parameters, this value is set implicitly by not allocating space to a Spark
worker. To manipulate the amount of free space without changing the amount of garbage
collector overhead, I filled excess memory on the VM so it would not be available to the OS
page cache or the Spark. The x-axis on the graphs show the amount of extra space reserved.

The graph shows a gradual degradation in performance presumably due to fallback to
reading from the virtual machine’s SSD. At sufficiently large sizes, the memory pressure
appears to cut into the memory available to the JVM or other essentially system services,
causing the Spark program to perform unacceptably. For other programs (with more modest
use of map outputs), I did not observe significant changes in runtime from depriving them
of space to cache map outputs.

5.6.5 Repartitioning effects

To evaluate the rough predictions of the effects of repartitioning, I examined the behavior
of tow programs which gave convenient direct control over their primary partition count —
the PageRank and KMeans example. Figure 5.5 requirements my tool predicted by naively
scaling sizes from as described in section 5.3.3 from the measurements from a 64 partition and
the recommendations produced from runs with different partition counts. For the KMeans
benchmark, predictions are very close and generally consistently high.

For the PageRank example, with natural graph data, the apparent memory requirements
appear to surprisingly decrease as the partition count is decreased. I believe this is an artifact
of how Spark measures the size of partitions. As discussed in section 5.2.1, Spark overcounts
data, like strings, which is shared between multiple RDD partitions. The PageRank example
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(a) KMeans (100k points)
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(b) LJPR on GraphX

Figure 5.5: Recommended size estimate for varying partition count configuration based
on runs with 64 partitions (circles), and actual recommendations based on runs at given
partition counts (stars).
.

Program Input Size Shuffle Storage Unroll Non-JVM
Carat 3.6 GiB 1.7–1.9 GiB 26.9–32.0 GiB 0.6–0.8 GiB 33.9–34.2 GiB
EMLDA 0.9 GiB* 0.1–0.1 GiB 0.8–1.2 GiB 0.0–0.0 GiB 1.2–1.2 GiB
GLM 3.7 GiB* 0.1–0.1 GiB 14.9–16.1 GiB 0.3–0.3 GiB 0.0–0.0 GiB
PageRank 1.1 GiB 0.1–0.1 GiB 9.6–9.6 GiB 0.2–0.2 GiB 3.2–3.2 GiB
KMeans 3.7 GiB* 0.1–0.1 GiB 7.9–8.6 GiB 0.3–0.3 GiB 0.0–0.0 GiB
ALS 2.8 GiB 3.5–3.5 GiB 10.6–10.6 GiB 0.3–0.3 GiB 37.2–37.2 GiB
Naive Bayes 3.7 GiB* 0.1–0.1 GiB 7.6–7.9 GiB 0.3–0.3 GiB 0.0–0.0 GiB

Table 5.7: Range of recommendations from varying storage size from the experiments used
to construct Figure 5.1. Results of incomplete executions are ignored. * indicates input size
is synthetic data.

shows strong indications that this overcounting is occuring: although the peak size Spark
assigns (on workers) to RDD partitions is around 9 GB, the program can be successfully
run with only around 5 GB of memory available. Given this, decreasing the partition count
probably increases the accuracy of size estimates because, for example, shared strings are
only counted once within each partition.

5.6.6 Consistency of Recommendations

I examined the recommendations that would be produced based on runs where insufficient
memory was allocated. In particular, I am interested in whether my predictions are con-
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sistent even when additional computation is required. To evaluate predictions of storage
requirements, I examined the recommendations that would be made from each of the runs
used for my storage sensitivity evaluation in Section 5.6.4.1.

As Table 5.7 shows, most of the recommendations are consistent, but there is some varia-
tion in the storage size recommendations. The largest variation occurs for the LDA example,
which experiences around 60% differences. However, results from our sensitivity analysis for
this example reveal that there is not much difference in performance from whatever recom-
putation is occurring. A possible explanation for this variation is that there is choice in the
order in which stages are executed which changes when recomputation occurs. With the
exception of the LDA example, where there was variation, the variation is all clearly in the
range where there is no gain in performance. A likely cause of this variation is that there is
some variation in the order tasks are executed, triggered by the change in timing from recom-
putation. But my tool deals with this separately by adding extra space for being-computed
partitions.

5.7 Conclusion

By taking advantage the information easily available through analytics framework abstrac-
tions, I can obtain quick estimates of memory requirements for analytics program. I demon-
strated this by constructing a model of memory usage based on a record of Apache Spark
application’s accesses to framework-managed data. As the evaluation showed, the result-
ing tool produces recommendations for the configurations required to keep the application’s
computations in memory. The instrumentation my tool needs is a small additional step
from the tracking already done by Spark to manage its own memory or for diagnostics. The
overhead of this additional instrumentation is very small, so it would be viable to enable it
for all runs of an application.

My tool’s recommendations make a compromise: they do not precisely navigate the
memory/performance tradeoffs a program faces. Consequently, they are frequently more
conservative than they need to be — a user would experience nearly the same performance
by allocating less memory. From this compromise, I gain efficiency, there is little over-
head in terms of user effort or lost performance, and consistency, the recommendations are
large enough, unlikely to be offset by measurement anomalies. This consistency comes from
targeting not performance per se, but choosing the ‘memory’ side of memory/performance
tradeoffs offered by a user application.
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Chapter 6

Predicting Garbage Collection
Overheads

Most memory usage in a batch analytics program typically has a definite tradeoff — either
data fits in memory or does not. Garbage collection overheads arguably follow this pattern,
but the data to fit in memory is everything allocated by a program — it is not like a cache
where one only pays for current active items. In practice, where garbage collection overhead
is significant, it is not practical to store all allocations; they amount to hundreds or thousands
of times the active memory of the program. Thus, memory recommendations must, instead,
account for a memory/time tradeoff.

For Spark, the garbage collection overhead varies significantly between programs — be-
cause of different behavior of application-defined functions and different types of objects
being stored by applications within Spark’s data structures. For these programs, I propose
a simplified model of their garbage collection overhead. It captures the behavior of a family
of throughput-oriented garbage collectors. Combined with this model, I capture a summary
of how the program’s memory demands drive the garbage collector.

To make collecting this data and evaluating the model efficient, I focus on measuring
an ‘average’ behavior over the entire program, and I avoid predicting short-term effects and
garbage collection latencies. Rather than precisely model real garbage collectors, I model
a simpler garbage collector that should provide a bound on typical throughput-oriented
garbage collectors. The primary goal of this model is not precise predictions but avoiding
configurations with very high overheads by predicting an upper-bound on the overhead of a
real system.

In this chapter, I describe and evaluate this model that forms a component of my memory
recommendation tool SLAMR. I begin by describing the operation of garbage collectors
generally, introducing related terminology. Then, I review a particular simplified garbage
collector that is the basis of my model. To apply this to real Apache Spark programs, I
describe what data I need to collect and the mechanisms I use within a particular language
runtime, OpenJDK, to collect it. Given this data and the simplified model, I then show how
to predict the number of garbage collector cycles across a range of configurations. Based on
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the correlations in overhead observed across a variety of Spark programs, I extend predictions
of the amount of garbage collector activity to an estimate of the overall garbage collection
overhead of programs. I then present an evaluation the effectiveness of these predictions
across a variety of Apache Spark programs.

6.1 Garbage Collector Overview and Terminology

To provide a background for describing garbage collectors, I will briefly review the operation
of garbage collection and some terminology to describe it. The terminology I use in this
dissertation is mirrors the terminology used by OpenJDK in describing its garbage collectors.

Fundamentally, garbage collectors manage a heap, the entire managed memory region for
a program. User programs allocate objects in this heap. These objects may contain references
to other objects on the heap. In addition, there may be references to objects from outside
the heap, such as in the stacks and registers of running threads, tables of global variables,
etc. In fact, some set of references outside the heap represents all the ways the running
program has to identify objects on the heap. This set of references is known as the root set.
An object is considered reachable or live if there is any path via references from the root set.
All the paths from the root set form a DAG of reachable objects. Unreachable objects are
garbage, and making the space they occupy available for future objects is collecting them.

In the simplest form of garbage collection, one scans the graph of reachable objects start-
ing with the root set by following the references in the root set and each object discovered.
Each object found in this scan is marked as reachable. Then, there are multiple options
about how to reclaim the space used by unreachable objects. The most common choice is
to perform compaction. All reachable objects found are moved to a contiguous part of the
heap, with references contained in the root set and these objects adjusted accordingly. I will
call a garbage collection pass of this sort a full collection.

In developing SLAMR’s model of garbage collector operation, I closely model a somewhat
more complicated design, which divides the heap into multiple spaces or generations. These
generational garbage collectors, first described by Lieberman, et al., [50], call these spaces
generations because the objects are typically partitioned based on when they were allocated
— their age. This partitioning takes advantage of objects with shorter ages being more likely
to become garbage.

These generations can be collected independently from each other. As with a full collec-
tion, one marks all reachable objects and then somehow reclaims the memory used with a
generation from each other. This scanning needs to account for objects in other generations
that contain references. This could be done by scanning through all objects, regardless of
which generation they are in. But, most commonly, this is done by having a card table to
identify which parts of other generations might contain references and limit the amount of
scanning which must be performed. A card table generally has one entry for every page or
similarly sized region, indicating whether any objects in that region might contain references



CHAPTER 6. PREDICTING GARBAGE COLLECTION OVERHEADS 90

Eden Old

eden size
(config parameter)

old generation size
(config parameter)

(a) Two-generation model

Eden FromTo
Survivor

Old

young size (config parameter)

survivor ratio (config or auto)

old generation size (config parameter)

(b) Three-generation model

Figure 6.1: A simplified model of garbage collector regions (two-generation model) and a
better approximation (three generation model) of the garbage collector that is the default
in OpenJDK.
Shaded parts in each region represented used memory within each region. Solid lines and
raised boxes represent typical movement of objects between regions; dotted lines represent
less common movements.

to other generations. This card table can be maintained with a write barrier, some code
inserted before every reference update to also update the corresponding card table entries.

After identifying the reachable objects within a generation, the collector needs to mark
the remaining memory as free. In a generational collector, this is most commonly done
by promoting or evacuating the objects to another generation. Like with compaction, the
collector needs to fix all references to these objects.

6.2 Two-Generation Model

In my simplified model based on a typical generational garbage collector, managed memory is
divided into two generations: the eden space and the tenured space. These generations have
fixed sizes which do not change over the course of a program. The configuration problem
for the garbage collector is limited to choosing these sizes, which in results in choosing the
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overall memory footprint of the program.
Objects are allocated in eden space. When there is not sufficient room to allocate an

object there, then an eden collection occurs first. During this, all threads are stopped, and a
marking phase occurs. This marking phase scans references to the eden space starting with
the root set and changed references in tenured space. After this marking phase, all objects
marked as live are copied to the tenured space. If this would exhaust the tenured space, then
a full collection occurs. In a full collection, threads remain stopped, a marking phase occurs
starting with the root set but covering all accessible objects, not just objects in eden space.
Then all live objects are moved to the beginning of the tenured space and the remainder
of the tenured space is marked as free. Since some of these objects were previously in eden
space, there may not be enough available space to do this; if so, an out of memory error is
raised and the program crashes.

My goal in applying this model is to determine whether an out of memory error is likely
and to estimate the amount of time spent with threads paused to perform collections. I
do not try to model all overheads, but merely the change in overheads that will influence
configuration decisions. For example, generational garbage collectors usually require an extra
‘write barrier’ before pointer manipulations [41], but these costs are paid regardless of the
frequency of collections.

6.2.1 Variances from the real collector

In evaluating and building my model, I target OpenJDK’s default parallel collector. Open-
JDK, or java language runtimes that share most code with it like Oracle’s JDK, are by far
the most popular runtime for Spark. The parallel collector was the default garbage collector
until OpenJDK 9 and remains the recommendation for applications where throughput is
most important. Other Java implementations, including IBM’s JDK and Jikes have similar
collectors, and I believe the model can capture a wider range of common collectors with
some modifications.

This model, as described above, matches the behavior of OpenJDK’s default collector
with heap size configured with some notable exceptions. For a small number of these excep-
tions, I make minor adjustments to my predictions to compensate.

Survivor spaces. Survivor spaces, a common feature of generational collectors including
OpenJDK’s, are not modeled. These are extra memory regions which are used as a ‘second-
chance’ after eden space. The survivor space is divided into a from and to region; only the
‘from’ region is used between garbage collections, and it is sorted to track the age (number
of survived collections) of objects.

In place of eden collections, OpenJDK has minor collections. During a minor collection,
live objects in the eden and from space are marked; then, marked objects are copied to the
‘to’ space unless the it is full or the objects exceed an age threshold. In the latter cases, the
objects are promoted to the tenured space instead.
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There are several options for dealing with survivor spaces with my model. The easiest
solution is to simply disable them by fixing the age threshold to 0. As will be shown in
Section 6.7.3, they seemed surprisingly unhelpful on Spark programs I examined, so this
seems to be a reasonable choice. A second solution is to pessimistically assume the addition
of survivor spaces will have a small negative effect — perhaps doubling the eden collection
time by requiring an extra copy assuming the ‘second chance’ is never helpful. A third
solution would be to extend the model to estimate how effective the survivor space would
be at preventing promotions to the tenured space, as I will discuss in Section 8.3.1.

Part of OpenJDK’s implementation of survivor spaces is that, by default, one does not
configure the size of the eden space, but sets the total size of the eden and survivor spaces
put together. There are several options for accounting for this difference without modeling
survivor spaces themselves: one would be to assume that OpenJDK’s ‘ergonomics’ [88]
for setting eden and survivor space sizes will arise on a solution at least as good as the
performance obtained with something close to the maximum eden space. More conservative
option would be to model the eden space as having the minimum possible size — one-third
of the total ‘new generation’ space — or to arbitrarily fix the eden and survivor space sizes.

Allocations out of eden. My model assumes that all allocations start in eden space,
but there are some exceptions. Allocations larger than the size of the eden space must
be allocated elsewhere, probably in the tenured space. Even if the allocations would fit,
assuming that very large objects will live longer than the next eden collection is likely
to be a good heuristic. I account for these allocations by counting them as part of the
amount promoted from eden space to tenured space, to compute the correct number of
full collections. I do not model any changes to which allocations meet the threshold as
configuration parameters change, which could cause misestimates of the number of eden
collections.Generally, however, for the programs I examined, I found that I needed to select
extremely small and thus poorly performing eden sizes to noticeably change this behavior.

Forced full collections. My model assumes that full collections are only triggered when
tenured space is filled, but OpenJDK triggers full collections in some other circumstances.
If, based on the recent amounts ‘promoted’ to tenured space during an eden collection,
OpenJDK estimates that an eden collection would immediately trigger a full collection, and
so proceeds directly to a full collection. Ordinarily, this is faster, but measurements of
recent promotions may not reflect what would occur if eden collections were attempted. For
programs which have an initial phase where they load data, almost all allocations during
this phase to be promoted to eden space. If the loaded data fills up enough of the tenured
space relative to the size of the eden space, then those large promotions will cause future
eden collections to be skipped. Since the runtime will never attempt another eden collection,
it might never fix its prediction of the amount promoted. The result will be that where my
model would predict frequent but fast eden collections, there would actually be frequent and
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slow full collections. I can avoid this by requiring there to be enough extra space for the
(typically small) eden space free in the tenured space.

Another way full collections can be triggerd because of metadata for classes. These
are allocated in a separate region because they rarely need to be garbage collected. For
recent OpenJDK versions, the rare cases where this memory region (‘MetaSpace’) fills up,
a full collection is triggered. A program creates many new classes (not just objects of
existing classes) can trigger this. I saw this with some prior versions of Spark that did not
reuse temporary classes constructed when serializing closures as much as it should have. To
control this effect, I record the total amount allocated in the space. Based on this total, I
can estimate the number of forced collections for a given size; then I can set the minimum
size for this region to ensure the number of forced collections will be similar to the number
of full collections triggered by normal allocations.

6.3 Measuring Program Behavior

A program’s demands on the garbage collector can be characterized by the order in which
objects are allocated, their sizes, and their lifetimes. When the garbage collector only does
work in response to allocations, as my model assumes, this trace of allocations completely
determines its behavior and overhead. Most simply, one could collect this full trace directly
from a program and run a simulation of the garbage collector, tracking the location of each
allocated object after each additional allocation.

A full trace of object allocations and lifetimes is much too detailed. Many billions of
objects may be allocated even in quite trivial programs that, for example, create an object
to represent each line of input. Even neglecting the size of trace, collecting the exact infor-
mation on lifetime is particularly difficult. Either one needs to bound the object’s lifetime
using program analysis or triggering garbage collections to obtain reasonable bounds. Since
useful predictions must survive minor changes to the order of program execution (from mul-
tithreading, difference in I/O performance, minor changes to the calculations, etc.), such
detail should not be so important. Instead, I will focus on using approximations that can
use the bounds from observing normal garbage collection activity.

To make this possible, I make some simplifying assumptions. First, I try to capture the
‘average’ program behavior rather than modeling dependencies within the program explic-
itly. This will generally take the following form: when I require some statistic derived from
object size and lifetime distribution, When possible, I measure the average value from a rep-
resentative run. When this would not produce reasonable results, I instead use the empirical
distribution of that value. The resulting model will assume that whenever a measurement
is needed, it can be selected independently from that distribution when using it to make a
prediction.

This independence assumption may neglects some common program behaviors. For ex-
ample, if a greater proportion of objects is promoted to tenured space at the times when
the tenured space is small — a likely result of periods of ‘loading’ — I would not account
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for this correlation. As a result, I might assume the average portion of objects promoted to
tenured space implies a higher rate of full collections than it really does. Similarly, if there
were a correlation of the opposite type, I would underestimate the rate of full collections.
Fortunately, my evaluation shows that, after capturing the statistics I have chosen, these
effects do not substantially effect predictions over a variety of programs.

To estimate the number of times garbage collections are triggered, the statistics I will
measure are: the total number of allocated bytes (Section 6.5.1), the average number of pro-
moted bytes for each possible eden space size (Section 6.5.2), and the empirical distribution
of total bytes live (Section 6.5.3). For the first two, the value I am measuring is a mere
average; for the latter, I found it necessary to capture the distribution to achieve reasonable
accuracy as described in Section 6.3.1. Both the promoted sizes and total live sizes can re-
flect when there are clusters of related object allocations, so these summaries capture more
than simply the distribution of live objects.

To estimate the total CPU overhead of garbage collections, I collect measurements of the
CPU time of garbage collections and corresponding sizes and perform a linear regression as
described in Section 6.6. This regression capture the relationships between garbage collection
time and the mix objects being processed by the collector.

6.3.1 Phased Behavior of Programs

A major risk in making predictions from averages is that program behavior varies over time.
Correlations make combining these averages risky. For example, if a program places more
pressure on the garbage collector in the form of promotions to tenured space during the times
when tenured space is tightest, then this will likely have worse performance than if they are
uncorrelated. And averages are not often not a good summary; for example, the maximum
size occupied determines the minimum space needed, not simply average.

Figure 6.2 shows some examples of different ‘phases’ of behavior with respect to the
total memory. These measurements (on the y-axis) are obtained by plotting the size of a full
collection. The time (x) axis is in terms of the number of bytes allocated in total (rather than
the portion of old collections that occurred), which makes the resulting shape not change
significantly as the tenured space size changes. To obtain a sufficiently detailed plot, the
tenured space size is set to a small value to force many full collections.

These two plots show two different kinds of ‘phased’ behavior. In the case of the ADAM
conversion program, none of the input needs to be kept in memory persistently, so the
program loads a chunk of the input, processes it, and writes out a converted version, causing
the cyclic memory usage shown in the figure. In contrast, the sorting operation has a distinct
‘loading’ phase and processing phase. The existence of useful programs, like the conversion
program, with large, fast variation in the amount of live objects suggests that an approach
based of identifying phases and modeling each phase as if it were a separate program would
not always be effective.
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(b) BAM to ADAM conversion

Figure 6.2: Estimate of total live object size over time. Time in this estimate is measured
based on the approximate number of bytes allocated in total in the program, and the size
estimates are based on the number of live bytes after a full garbage collection.
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6.4 Instrumentation Logistics and Modifications

The language runtime most commonly used for Apache Spark programs, OpenJDK, in-
cludes several ways to obtain statistics from its garbage collector. These include the Java
Management Extensions (JMX), a standard Java interface targeted at enabling monitoring,
especially remote monitoring, of services; the JVM Tool Interface (JVMTI), a standard Java
interface targeted primarily at profiling and debugging tools; an internal ‘jvmstat’ interface,
exposed through the ‘jstat’ tool; and human-readable logs of garbage collector activity. Each
of these interfaces does provide slightly different capabilities than any other, so my tool relied
on a combination to collect its measurements.

Primarily, SLAMR uses measurements of each garbage collection pass, to record various
sizes and overheads from that garbage collection pass. To trigger these measurements, JMX
provides an ability to run code after each garbage collection operation. While JMX provides
information about garbage collector region usage, it does not indicate the size of promotions
into tenured space. It also does not make it easy to identify if, due to high CPU load,
multiple garbage collections occurred since a measurement was triggered, so counters of
garbage collection time reflect extra collections.

Fortunately, the jvmstat interface does provide easy access to this information, providing
fast access to the last amount promoted and counts of the total number of garbage collections
of each type since program startup. Missing from the jvmstat counters are sizes before a
garbage collection occurred. This information is recorded in the human-readable logs, but
I modified my version of OpenJDK to record the pre-collection eden space size as a new
jvmstat counter to make measurement simpler. A less precise alternative would be to poll
the counter for the current generation size to approximate the pre-collection size.

The most invasive instrumentation I required was to vary the effective eden space size,
as described in Section 6.5.2.2. To do this efficiently, I required support to allocate an
uninitialized array or to directly support changing the eden size, which I added to OpenJDK.
Without such a modification, a less precise alternative is to allocate a normal array, at the
cost of the substantially increased overhead from the compute time spent initializing it.

6.5 Counting Garbage Collections

The most important prediction of my model is estimating the number of garbage collections
of each type. This is more important than estimates of the amount of CPU overhead during
each of these garbage collection because of how the garbage collector behaves in constrained
memory situations. When garbage collector performance is poor, it is likely because of an
explosion in the number of collections, and not any change in the overhead of each collection.

As the tenured space becomes more and more constrained, the number of required full
collections increases — potentially approaching the total number of objects allocated as
almost every allocation could force a full collection. Similarly, as eden space becomes more
and more constrained, the number of eden collections increases up to essentially the total
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number of objects allocated. Also, the number of full collections increases as the portion of
objects promoted to tenured space increases. In the case of full collections, the total overhead
per collection is essentially constant, as discussed elsewhere, so predicting the number of
collections is by far the most important. For eden collections, there is a strong relationship
between the eden space size and the cost of the collection, but the worst situation still occurs
when eden space is very constrained and fixed per-collection costs dominate.

6.5.1 Measuring Total Allocations

Ultimately, SLAMR estimates the total amount of garbage collector overhead to make con-
figuration decisions. Although it models ‘average’ behavior, it does not capture a throughput
(overhead to useful computation) ratio. Instead, it measures the total amount of garbage
collector activity of the program and eventually compare this to the observed non-garbage
collector runtime (see Chapter 7) to determine if that overhead is reasonable. To measure
the total amount of garbage collector activity, it estimates the total number of allocations
by counting eden collections. To a first approximation, this is merely the number of eden
collections that occur times the number of bytes in the eden space. There are likely to be
some differences, however. I investigated several of these to determine whether adjustments
were required.

One major concern is that the allocations would not fill up the entire eden space. When
objects are large relative the eden space size, eden collections may be triggered when a
substantial amount of the eden space is free. To account for this, I can examine the size
of the eden space before collections instead of use the total capacity of the eden space.
Generally, however, I found that the difference between assuming the entire eden space was
filled and using the actual amount filled was negligible for the programs I examined, except
in configurations with very small, poorly performing eden space sizes.

Another concern is that some allocations skip the eden space entirely. I do not attempt
to adjust the total allocations measurement for this effect. I do include these allocations
in my measurement estimate of promotions (Section 6.5.2), to avoid biasing the estimated
number of full collections. Based on the lack of variation in the total allocation measurements
seen in Figure 6.4 across a wide range of eden space sizes, this appears to be a reasonable
simplification for the programs I examined..

When memory is tight in an instrumented run, a significant number of full collections may
be triggered without an eden collection occurring. To adjust for this, I count full collections
and assume that space corresponding the eden size was allocated to trigger each, representing
the case where the collection was triggered because an eden collection was skipped. This is
not always the cause of full collections, accounting for the distortion for small tenured space
sizes in Figure 6.3.

After this adjustment, the measurement remains approximately constant even over vari-
ations in tenured space size (see Figure 6.3) and eden space size (see Figure 6.4). Thus, it
seems safe to use it predict behavior across a wide range of configurations.
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6.5.2 Estimating Promotions From Eden

The amounts of objects promoted from eden space to tenured space is probably the most
important input to the model. These are dependent on both the program being run (its
mix of object lifetimes) and the garbage collector configuration — most notably, on the size
of the eden space. My goal is to instrument an execution of a program to determine its
promotion behavior and how that behavior varies with eden size.

The most simple model of promotion behavior would be to take the generational assump-
tion to the extreme — assume objects either stay in memory forever or are released almost
immediately. If program behaviors were this binary, then a reasonable way to estimate the
amount promoted would be to observe how much is promoted in some run of the program.
Program behavior is often more subtle as shown in Figure 6.5; some of the programs exhibit
the straight line one expects from this simple model and some do not. In particular, the
assumption of ‘binary’ behavior is likely to break for very small or very large eden sizes —
two extremes that are otherwise likely recommendations depending on the relative cost of
eden and full collections.

Figure 6.5 shows the results of reference measurements — the circles — running the same
program with varying eden size and measuring the average promoted. The solid line shows
an example of the approximate measurement of this behavior I obtain by sampling over an
single execution.

6.5.2.1 Safety of Interpolation

In measuring the amount promoted for many eden sizes, I want to be able to interpolate
between individual measurements and extrapolate to unmeasured eden size ranges to make
predictions. In doing so, I will use the assumption that short-term variation in collection
behavior can be ignored.

One could construct a program that, if run at eden size N , each eden collection would
occur immediately after the lifetime of all allocated objects. If one changed this program to
start by allocating N − 1 bytes of useless objects, then each eden collection would instead
promote almost all objects. Although possible, these pathological cases seem essentially
impossible to trigger in practice; instead, real behavior is more continuous. So, I approximate
behavior by assuming that eden collections behave the same throughput the program: the
amount promoted for eden size N is simply the average portion of objects still alive over all
possible N -unit window of allocations. This is essentially the ‘steady-state’ model of program
behavior that motivates the control-loop model in [88]. The result of this assumption is that
amount of objects promoted changes smoothly as eden sizes changes, so if it holds, one can
interpolate between measured portions promoted.

This assumption also bounds the amount promoted even for values larger than those
measured. The portion promoted must decrease monotonically as the size of the eden space
increases. The amount promoted with some eden size N is the portion of bytes allocated
that survive for (N − 1) bytes of allocation, plus the portion that survive (N − 2) and so
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on. The average amount promoted is thus some weighted average of the portion of bytes
surviving for at most N bytes of allocation. For an eden size N + ∆, the difference in the
amount promoted are terms for allocations surviving (N + 1), (N + 2), . . . , (N + ∆) bytes.
Thus, the average portion promoted for size N + ∆ is the weighted average of the average
portion promoted for eden size N and the portion of allocations that survive for strictly
more than N bytes of allocations. Since the portion of allocations surviving more than N
bytes of allocations is no more than that the portion surviving for N or less, this weighted
average must be no more than the portion promoted for size N .

This also provides a test that may indicate if the this assumption of continuity is danger-
ously wrong. Namely, if there are significant decreases in the portion of objects promoted as
eden sizes increase, this would be evidence that the synchronization of eden collections with
object lifetimes was important. Empirical measurements of my example programs did not
uncover such contradictory behavior.

6.5.2.2 Measuring Multiple Eden Sizes

The easiest way to estimate the amount that will be promoted for a range of possible eden
sizes is to run a program several times with a variety of eden sizes. This requires many
sample executions to obtain reasonable estimates, some at very inefficient (small) eden sizes.

To avoid this, instead, I sample multiple different eden sizes from one run. Typical
garbage collectors do not include an interface for changing the eden size without restarting
the program. Instead, I simulate this effect, by setting the eden size larger than the maximum
size to sample and allocate space after each eden collection to shrink the available eden space.
To minimize overhead, I allocate a single array of non-references and immediately make it
unreachable. The unreachable array will not be scanned or copied by the garbage collector
and the allocation itself only requires incrementing a pointer, so it ought to have essentially
no effect on performance.

While the array itself imposes almost no garbage collector overhead, its initialization is
not free. In Java, per the language specification, arrays start initialized to all 0s (or nulls in
the case of an array of references), and this initialization can require a non-trivial amount of
time. To avoid this overhead, I made a small JVM modification: support for allocating an
uninitialized array. In OpenJDK, this already existed internally for use by the optimizer (in
case it can prove that an array being uninitialized will have no effect); I merely made this
functionality accessible externally.

Given a way to change the eden size, one policy would be to sweep across the range of
eden sizes as the run completes. But, because of the existence of ‘phases’ of garbage collector
behavior, this would be unwise; such sweeping would be likely to sample unevenly from each
phase. To avoid this, I sample randomly from the range of eden sizes. To avoid getting
correlated samples for any given size, I choose a new random size after each eden collection.

One concern with this measurement technique is that a garbage collection could be trig-
gered while the dummy array was reachable. In this case, it may be promoted from the
eden space, significantly biasing our measurements. Because real programs have ‘loading’
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phases with substantially larger promotions than the rest of a program, simply discarding
‘outlier’ promotions is not an acceptable technique to remove this bias. Instead, I avoid this
by allocating at least half the eden space. Thus, if the‘promoted space is ever big enough to
hold the array, then the measurement is invalid, so such mismeasurements can be reliably
detected at the cost of allocating more eden space. In practice, such invalid measurements
are very rare.

A safer, more invasive option would be to modify the JVM to support actually resizing
the eden space. OpenJDK’s default garbage collector supports this internally, which it uses
for a mode where it adjusts the eden size via a control loop. To check the accuracy of array
allocation technique, I compared it to using this internal interface. I compared the resulting
measurements using a two-dimensional variant of a Kolmogorov-Smirnov test [69], and it did
not show the two distributions were significantly different (p > 0.5). Modifying the garbage
collector is a less general technique because it requires region resizing support a garbage
collector might reasonably omit, as opposed to merely support for introspection of sizes and
occurrences of garbage collection that at least Java standardized has felt could be universal
across Java implementations.

6.5.2.3 Range of Measurements

After obtaining samples of the amount promoted at varying eden sizes, it is necessary to
interpolate this into a function mapping eden sizes to the amount promoted. To do this, I take
a sliding window of a 10% portion of all the measurements and use that as a lower-bound for
the portion of items promoted at the high end of the window. I constrain this measurement
to be monotonically increasing, taking a running maximum of the amount promoted in the
window and amount promoted in all windows for smaller eden sizes. Assuming there are
enough samples in the window to be representative of all phases of the program being studied
this should be a conservative estimate.

It would be ideal to obtain some confidence interval on average amount promoted and
some firm guidance about suitable window sizes. Since the phase-based program behavior
implies that individual measurements are not independent, it is difficult to see how to obtain
a reasonable bound. Certainly, given multiple sample runs, one could do this. Each run
would give an independent measurement of the promotions at each eden size, so obtaining a
sensible confidence would require a large number of sample runs.

Vertical jumps seen for some programs in the measured lines in Figure 6.5 illustrate some
of the loss of precision from short-term variations in object lifetimes. For some programs,
there are brief phases when many times a normal amount is promoted from eden — such
as when data is being loaded. When there are relatively few eden collections, the window
containing these exceptionally large samples has a large jump. Based on the interpolation
rule, all subsequent measurements are constrained to this minimum portion. Generally, this
distortion does not seem to result in unsafe (too low) promotion predictions because the
sliding window was generous enough to hide to the distortion.
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One concern with these measurements is whether they produce consistent results when
one measures samples very different ranges of eden sizes, or if the measurements are only
predictive over a small range of eden sizes. Figure 6.6c shows promotion estimates obtained
from runs with an approximately factor of ten difference in sampled eden size range (lines)
and actual measurements of promotions at different eden sizes for those programs (dots).
This factor of ten variation in the in the range of eden sizes measured produces measure-
ments at most around two or three times too conservative. And, over most of the range of
the measurement from the smaller eden size, the values from the larger measurement were
too conservative by much less than 50%. Given this, even if one starts from a very poor
configuration guess, it is reasonable to believe that using one instrumented run to choose
the next instrumented run should quickly converge to well-informed configuration.

6.5.3 Measuring Live Bytes

To use promotions from eden to predict when full collections must occur, one must predict
how much of the tenured space these promotions have to fill between full collections. In my
model, this requires measuring the amount of free space after a tenured collection. Like for
promotions, I rely on obtaining samples of these sizes from a example run.

At any time during a program, there is some definite amount of objects that are live. My
tool attempts to capture this as a function of time — with time measured in terms of the
number of allocations that have occurred. For a given trace of allocations, this value should
be the same regardless of the actual garbage collector parameters.

The only reliable way of which I am aware to obtain a good measurement of the number
of live objects is to observe a full garbage collection. I simply interpolate between whichever
of these measurements I observe. This interpolation produces a result like those shown in
Figure 6.2.

Rather than attempt to simulate full collections over time, I assume that full collections
are approximately uniformly distributed over the program’s lifetime. This allows the timeline
of live bytes to be summarized as an empirical CDF like those shown in Figure 6.8. Given
a particular tenured space size, the number of eden collections is the amount promoted per
eden collection divided by the space remaining. I derive a distribution for the computed
number of eden collections from the distribution of live bytes. Taking the mean of this new
distribution gives the expected number of full collections per eden collection.

Figure 6.7 shows how these predictions differ from the simpler approaches of only using
the mean or maximum live bytes. The curved line in each graph is the effective amount live
after a full collection using the distribution-based model — that is, the constant live objects
size that would produce the same result. Alongside it, the maximum (dashed lines) and mean
(straight, solid lines) amounts of live objects are plotted. For programs that have substantial
variation in their memory demand, using the full distribution interpolates between assuming
performance is dominated by the maximum memory usage (for small capacities) and by the
mean memory usage (for large capacities).
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Unlike eden collections, it is not uncommon for a program execution to have very few full
collections. Also, unlike measurements of promotions, these measurements have unlimited
sensitivity to outliers: the maximum observation determines the minimum size with finite
estimated overhead. For promotion sizes, in contrast, adding a single possible observation
will only change estimates by a bounded amount. With few collections and high sensitivity,
there is risk that given few samples, one may predict a configuration has low overhead when
it would, in fact, result in failure.

As long as program’s memory usage is dominated by memory managed by the framework,
following the framework’s size estimates can constrain this problem. For programs that take
advantage of the framework well enough, either the program will keep little data in memory
or almost all of the memory of the program will be in memory. Thus, absent samples from
actual collections, the maximum amount live will be bounded by the framework’s size in
memory is in memory plus some small factor for unmanaged data. In my evaluation, I
primarily rely on this heuristic to keep my configurations safe.

Without trusted framework estimates, one can instead obtain more information by ex-
plicitly forcing extra full garbage collections to happen, which will reduce the maximum
amount used, allowing one to conservatively configure a smaller tenured space size after
obtaining these observations. These forced collections may add substantial overhead, but if
one triggers the collections above a certain space threshold, one can guarantee a reduction
in the memory configurations. Less conservatively, one could assume that, when starting
from a program with few full collections relative to the amount of allocations which is not
extremely garbage collector friendly, at least some small portion of memory will be garbage,
perhaps 5%, which would permit one to immediately lower the memory allocation.

In practice, with more than around five full collections, I have not observed cases where
the maximum amount observed live is not close to the amount required (based on what
tenured sizes complete successfully), even without any adjustments for framework estimated
memory usage. This makes sense for a typical batch analytics program as one expects a
majority of the program’s time to be spent with the working set loaded.

The stability of the measured amount live with different numbers of collections can be
seen in Figure 6.9. This figure shows CDFs for measurements of the amount live varying
by about a factor of two in old generation. Generally, the instrumented run producing the
dashed green curve is constructed from less than ten full collections, and the instrumented
run producing the red curve is constructed from many tens of full collections. This shows
that the bias of runs with few measurements is usually towards higher observations, probably
leading more conservative estimates. Occasions when there is relatively little memory usage,
times at which tenured space is less likely to fill up triggering a garbage collections, are what
tends to be missed. In addition, in the cases where the maximum memory usage was ‘missed’
by having fewer full collection observations, the difference is not so large that a configuration
that would fail is a likely recommendation.
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6.6 Timing Garbage Collections

Although explosions in the sheer number of garbage collections dominate the bad cases in
performance, it is important to have a reasonable estimate of the overhead they induce.
The most important reason for this is that there are pathological estimates one might make
otherwise. For example, a typical eden collection is fast — on the order of tens of milliseconds
— and a typical full collection with a large heap is slow — often several seconds. But this
has less to do with the differences the mechanisms of eden and full collections than the much
smaller amount of data involved in eden collection.

A model which assumed constant time per eden collection would, given a some time
corresponding to a small eden size, infer that having eden collections effectively substitute
for full collections would produce much better performance when usually performance is
substantially worse. Similarly, given a constant time from a large eden size, a model would
drastically overestimate the overhead of smaller eden sizes and never suggest trying them. I
do not attempt to do precise performance profiling, but I try to collect information that will
correct for gross errors like this and permit more reasonable extrapolations.

In general, I take advantage of OpenJDK already recording the total time spent in
garbage collection. Based on my understanding of the important operations within each
type of garbage collection, I correlate this with other measurements over the observed execu-
tions with a linear regression to make rough predictions of the amount of time per garbage
collection with other parameters.

To consolidate these predictions into a model, my goal is to predict the mean time per
garbage collection, which is not the same as predicting the typical time per garbage collection.
Garbage collection times tend to have a long-tailed distribution, which I wish to take into
account — recognizing that they increase the total overhead.

6.6.1 Eden Collection Time

For eden collections, there are two tasks that should determine the collection time. One
is spent moving promoted objects. For most programs, this seems to dominate garbage
collection times, but if a program promotes very little from eden space, instead, the amount
of time spent marking objects may dominate.

The amount of time spent for moving objects should be proportional to their sizes —
because they will be copied — and the number of references to them that must be updated.
Consequently, the time will vary based on the types of objects a program uses. Rather than
attempting to measure the mix of types of objects for a program and feed that to a generic
model of garbage collection performance, I measure the correlation between total sizes and
times, assuming that they will take into account that program’s mix of objects. This makes
it possible to evaluate the model with information that is much easier to obtain from a Java
virtual machine implementation.

In assuming this correlation is linear, I assume that the mix of object sizes will not
change dramatically as the relevant configuration parameters change. The objects that
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survive eden collections for smaller eden sizes may be qualitatively different than those for
much larger eden sizes. By not taking this into account, I am making an assumption about
the representativeness of the instrumented run that trains the model: it is ‘close enough’ to
the true runtime behavior of the program. My goal is that a user using the recommendations
as a feedback loop — feeding instrumentation from one run to suggest the next instrumented
run — will converge on a configuration of approximately equal cost no matter their starting
point. Since I incorporate correct notions about the directions in which garbage collection
time changes, I believe there will not be false minimas that would prevent this convergence.

6.6.1.1 Promotions and Time

Because of the cost of copying objects during eden collections, I estimate that the eden
collection time is proportional to the number of bytes copied. From a single example run
with many eden collections, one can capture examples of the variation in time when different
amounts are promoted, especially if one is also varying the effective eden size to ensure a wide
range of possible amounts promoted are covered. Figure 6.11 shows a density plot of this
data for my example programs. From this data, a linear regression produces a simple model
of the amount of time given predictions of promotions. As a modification to the regression,
I enforced that garbage collections take at least the minimum amount of time ever observed
during the example program. This avoids degenerate predictions where shrinking the young
generation would apparently make garbage collections free.

The predictions from this per-garbage collection model are generally not as accurate as
predictions obtained by running the program multiple times with different eden sizes, then
training a linear model on the mean amounts promoted and garbage collection times over
the entire program. The easily found correlations can be seen in Figure 6.10.

One likely reason is that different phases of the original program have both a different
typical portion promoted and a different mix of types of objects. As a result, the regression
using many points from a single run mixes the effects of varying amounts promoted with the
effects of varying the phase being run. These effects of variation between program phases can
be seen in Figure 6.11 in several ways. Many programs have periods with few promotions
and consequently have exceptional density at very small promotion sizes. Some programs,
like the ALS example, seem to have two distinct types of eden collection costs with their own
straight regression lines — likely representing two different phases of behavior. A regression
over whole-program averages hides these phase effects entirely, but requires much more data
collection time.

6.6.1.2 Old Size and Eden Collection Time

For the time spent during eden collections, the size of the tenured space can matter. This
can be seen empirically in the results in Figure 6.12. This is surprising because the number
of objects to promote from eden space does not change substantially. There are two likely
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causes, both related to the card table where changed references in the tenured space are
marked.

One step during an eden collection is scanning and clearing all the entries in the card
table. This should typically be low overhead compared to the cost of copying live objects out
of the eden space, but programs where the amount of data copied out of eden is very small
are likely exceptions. In OpenJDK, there is one, one-byte card table entry for every 512
bytes of tenured space, so this scanning should be dominated by reading and writing around
0.2% of the tenured space size. For most example programs, the configurations determined
by my tool result in substantially larger amounts being copied out of the eden space than
the likely size of the card table.

I recorded how many objects were scanned during eden collections and found that, sur-
prisingly, this increased somewhat when the tenured space size was increased. This suggests
that the card table also became less efficient for larger heap sizes. Each card table entry
represents multiple objects, but can only be marked as ‘modified’ or ‘not modified’. Even
though only one reference may have changed in a 512-byte region, all objects in that region
are scanned. With less frequent compacting full collections, there is more fragmentation in
the heap. Each full collection effectively defragments the heap, so the time since the last
collection should determine how likely it is that an object is next to an inactive object in
memory.

Whatever the cause of the change in time per garbage collection, empirically it appears
from Figure 6.12 that a linear model is a good predictor of these effects. This linear model
is straightforward to produce given samples of execution at multiple tenured space sizes.

Thus, I only model this effect when multiple samples are available. For the programs
where this substantially effects accuracy — mostly ones where garbage collection overhead
is generally low — this would start to compensate for the bias in predictions after two or
three runs.

6.6.2 Full collection time

If full collections worked like eden collections, one might expect their costs predicted by the
distribution of sizes of the and total number of live objects at each full collection. Since,
unlike eden collections, full collections consider all live objects, the set marked should not
vary much based on garbage collection parameters, but rather on the particular points of time
sampled by collections will vary. Under the assumption that full collections are uniformly
distributed over allocations, this would imply that the overhead per collection will not vary
— but this is not what happens empirically.

The results in Figure 6.13 show that the amount of time required for a full collection
varies based on the capacity of the tenured space. This does not occur for all programs.
For example, the ALS recommender program and genomics sorting examples experienced no
significant change in the amount of time per full collection as garbage collection region sizes
were changed, but some other examples experienced much more significant changes.
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Unlike the eden collection operation, however, the full collection operation is in-place.
This means that copying might be avoided when objects were already compacted in a pre-
vious pass. A typical strategy scans over the entire heap to avoid problems with overlap
between the old and new locations of objects and allow for easy management of pointer redi-
rection metadata. These differences can explain an empirical observation of Figure 6.13 —
the size of the tenured space has a significant influence on the amount of time a full garbage
collection takes. Empirically, this difference appears to be approximately linear.

To model the time per tenured space collection, then, I use two approaches: when there
is not data from a variety of tenured space sizes, I assume that the time per collection
is constant. Since, generally, one will start with a larger tenured space size to produce a
configuration with a smaller tenured space size, this should generally result in conservative
estimates. When given observations of multiple tenured space sizes, I use a linear regression
to estimate the time per old collection as a function of the tenured space size.

There are factors that suggest that the time per tenured space collection could instead
decrease as heap sizes increases. There ought to be more garbage collections when the heap
capacity is closer to its usage — based on the same logic by which I predict the number
of tenured space collections. These garbage collections should require moving more objects.
This effect would mean that the average amount used after garbage collections would be
larger for smaller tenured space sizes. In practice, this change is not significant for the Spark
programs I examined as can be seen in Figure 6.14. This is likely because any differences
are too small to observe. For example, for a program which alternates between equally long
2GB-usage quiet periods and 5GB busy periods, full collections during the busy period would
account for around 80% at a 6GB heap size and 66% at a 7GB heap size. In this case, the
average space used after a full collection would increase by only around 10%. Not only is
this hypothetical effect small, but the actual variation in live data sizes observed in Figure
6.7 is rarely so extreme.

6.7 Evaluation

To evaluate the garbage collector modeling predictions, I ran the example programs from the
prior chapter on the same modified version of Spark 1.4.2. Since I make some assumptions
about the regularity of program behavior, I tested across the same variety of analytics
programs as described in Chapter 5. In addition to including a variety of types of framework
usage, I believe these programs have variety in their garbage collector demands, including
both cases where persistent data dominates and data processing is mostly temporary data
and including both programs that represent their data mostly as primitive arrays and as
many small objects.

I first choose the framework parameters — storage size, etc. — using the procedure in
the previous chapter. Then, using these parameters, I choose a training configuration that
provided at least 150% of the memory estimated to be required for framework usage in the
tenured space, and an eden space one-sixth the size of total memory allocated. To handle
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cases where the Spark-managed memory usage was very small, I additionally required that
this allocate at least 0.5 GB per core. When using multiple worker nodes to run the training
program, I expanded the memory allocated to the JVM to fill left over space on each node
— essentially ‘rounding up’ memory usage as one would do when training over multiple
fixed-sized nodes.

For most runs, I disable use of survivor spaces, to make the configurations most closely
match my garbage collector model. In the training run, I enabled the random sampling of
the eden size, making the effective average eden size to around 1/24th of the total memory
allocated. The default configuration for OpenJDK on Linux allocates around one-sixth of
the total memory to eden and survivor spaces, so the effective size is less than the default
ratios (even if the survivor spaces have the maximum size); however, for almost all Spark
programs I have observed, the best performing garbage collector configuration appears to
use a much smaller young generation than the default.

From this sample run, I inferred a base configuration by minimizing a utility metric: the
estimated total runtime times amount of memory used. Starting from this base configuration,
I performed a sensitivity analysis: I ran programs with eden space and tenured space sizes
at leas 60%, 80%, 120%, 140% and 160% of the base configuration — as long as these sizes
would fit in the memory available on the virtual machine in use.

When comparing predictions and actual observations, I use graphs like those in Figure
6.16. In these graphs, circles represent actual measurements. The solid green line represents
conservative predictions and the dashed blue line represents less conservative predictions.
The difference between the two predictions is whether the rule that the tenured space must
always have enough space to store a copy of the entire eden space is in effect. The left of the
graph contains regions marked with horizontal green lines and red vertical lines. The green
markings represent regions that are predicted to cause crashes; the red markings represent
regions where crashes or requiring more than a generous time limit (of at least twice the
original runtime) occurred, if any such runs were attempted.

6.7.1 Number of collections

6.7.1.1 Eden collections

Since the number of eden collections are proportional to the amount allocated, and, as
established in Section 6.5.1, this is very stable, predicting the number of eden collections
given the size of the eden space is trivial. Figure 6.15 shows that such predictions have very
high accuracy so long as the size of eden space is fixed.

6.7.1.2 Full collections

Predictions of full collections are not as straightforward as eden collections because they are
sensitive to both the total allocations and promotions. Figure 6.16 shows predictions for
the number of full collections (lines) versus actual observations as the tenured space size is
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varied. For my example programs, the conservative are consistently slightly higher than the
actual observations, and the less conservative predictions are around exactly the value.

6.7.2 Time estimates

To evaluate estimates of individual garbage collection times, I compared the mean time per
garbage collection of each kind, as measured by the JVM’s performance counters, to my
predictions of the time per cycle. In each case, the mean time I compare is the estimated
mean time per collection from my model based on the corresponding linear regression model.

6.7.2.1 Eden collections

Figure 6.17 shows predictions of young collection times versus actual collection times from
some example programs. These predictions are made based on the results of the single
example configuration which usually has a much larger eden size than the instrumented run.
As a consequence, the predictions are sometimes poor — off by perhaps a factor of two —
but this can likely be corrected by referring to closer eden sizes.

6.7.2.2 Full collections

Obtaining useful predictions of the time per full GC requires instrumentation at different
tenured space sizes. Figure 6.18 shows results using just two tenured space sizes. The
resulting regression lines sometimes yield estimates of full collection time that would suggest
negative collection times at small heap sizes. Presumably, this is a result of a combination
of measurement error and non-linear effects (such as from memory locality). To prevent this
from resulting in ridiculous predictions, I can fix the y-intercept at 0; the result of doing this
is shown as the solid green line. The lower dotted blue line does not include this adjustment.

6.7.3 Effects of Survivor Space

Figures 6.19 and 6.20 show the difference between performance with survivor spaces enabled
and disabled for several programs as garbage collector parameters were varied. Generally,
I found that Spark programs had more GC overhead when survivor spaces were enabled.
The likely reason is that these programs do not take good advantage of this extra region —
either most objects are freed very soon or kept in memory for a long time. Consequently,
the benefit of adding survivor spaces is freeing the few objects with short lifetimes which
happened to be around at the time of the eden collection faster at the very substantial cost
of copying long-lived objects a second time.

This is supported by an examination of the garbage collector counters from these runs.
Based on the initial loading phase, the garbage collector often reached to a configuration
where objects are promoted to the survivor space, but were then all copied to the tenured
space in the next collection. This occurs rapidly, presumably because the ‘data loading’ phase
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Program Base + GC counters + Eden Vary (x1) + Eden Vary (x2)
EM-LDA 169 s ± 2 s 171 s ± 2 s 185 s ± 0 s 175 s ± 3 s
ALS 799 s ± 7 s 799 s ± 8 s 826 s ± 13 s 806 s ± 11 s
ADAM sort 4563 s ± 0 s 4568 s ± 30 s 4673 s ± 0 s 4558 s ± 10 s
Carat 2400 s ± 31 s 2495 s ± 124 s 2647 s ± 29 s 2502 s ± 7 s

Table 6.1: Runtime with various amounts of instrumentation enabled, showing mostly negli-
gible runtime overhead. Instrumentation of eden collection decreasing the effective eden size,
and this can easily have much larger effects on performance than my instrumentation. The
difference in cost when increasing or not increasing the allocated eden space to compensate
shown.

means that a majority of early allocations are for objects which will have long lifetimes.
This easily exhausts the survivor space with any threshold that would hold objects from
the tenured space for longer. The amount surviving tracks very closely with the amount
promoted, showing that most objects copied to the survivor space are promoted immediately
thereafter.

One can compensate for the tendency towards keeping items in survivor spaces only one
collection by forcing the survivor space size to be larger. As shown in Figure 6.21, without
tuning that fixed size, this results in about the same performance as disabling survivor spaces
entirely.

6.7.4 Measurement Overheads

Unlike measurement of Spark, measurements of garbage collection overhead are far more
invasive. These measurements require effort after each garbage collection and deliberately
change eden collections to explore different, potentially more costly behavior.

To evaluate the measurement overhead, I selected a configuration for a program based
on what minimized the predicted memory times time. This generally has more constrained
eden space sizes than the default configuration and so will exhibit higher overhead than a
typical training run. I measured the difference in time between running the program with
only extra instrumentation of the framework (from the last chapter), with recording after
GC, and finally, with the changes to the effective eden size discussed in section 6.5.2.2. Since
a major cause of extra overhead for changing the eden size is from the additional garbage
collector activity required, and not measurement overhead per se, I evaluated two options.
In one, I increase the eden size by a factor of two to make the decrease in the average effective
size of the eden space less significant, in the other I leave it the same.

The results are shown in Table 6.1. Each measurements is derived from three runs, and
the mean and standard deviation are shown. The only significant (versus other variations in
performance) overhead comes from the effect of the eden size measurement. This overhead
is generally not more than 10%, and typically much less. However, the overhead can become
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very large if the instrumented runs use a very small eden size. We believe that this can be
avoided by starting with larger configurations and using conservative estimates from this
configuration to choose future runs. In addition, when choosing the configuration for a run
with eden size instrumentation from the model, I choose an eden size large enough that the
mean sampled size will match the target, not the maximum sampled size.

In addition to the time overhead, this sampling has space overhead from the additional
size of the eden space. With the dummy allocation technique, sampling eden sizes from 0 to x
requires 4x eden space. Alternately, with uniform sampling over the range, obtaining ‘about’
the performance of eden space y requires 2y eden space. Good configurations generally
require less than 10% eden space, or the total memory required is very small (the program
does not store much persistent data), so the overhead of this is usually less than 10%. In
general, the largest eden space the JVM supports is around 33% of the total memory size, so
the space overhead should not be much more than that. In general, it seems that the space
overheads from starting with a more conservative than needed memory configuration would
dominate even a 10-20% measurement overhead.

6.8 Conclusion

By making careful summaries of a program’s garbage collection behavior from an example
run, one can make reasonable estimates about its behavior in other configurations. Taking
advantage of the desire to make throughput and not precise latency predictions and allowing
the predictions to be wrong — as long as they are conservative — makes this task substan-
tially similar. One simplification this enables is not trying to simulate the exact garbage
collector, but instead simulating a simpler one. From these simplifications, I produce a
model whose inputs are practical to collect with little extra overhead and whose outputs can
be computed without doing something akin to a simulation of the program.

As a theme, the summaries I collect are single numbers, sizes and times per unit size,
when that will suffice and distributions when it will not. For very important behavior of
eden generation — the most efficient garbage collection pass, and one which feeds into all
garbage collector passes — I collect many samples over a program. To predict how this
behavior varies for different configuration parameters, I vary the configuration over these
samples — choosing randomly to avoid correlation between configuration parameter and the
‘phase’ of the program. For other quantities, I primarily rely on one observation, and choose
quantities that are independent of configuration changes. When this is not possible, the
errors introduced tend to be very small compared to the ‘performance breakdown’ effects I
correctly predict and I device techniques to eventually correct these given information from
additional runs.

Generally, the model predicts garbage collector performance across a variety of config-
urations from examples of behavior under one or two configurations. I demonstrated that
it produces good estimates across a variety of analytics programs, which impose a range of
demands on the garbage collector. These predictions can be obtained from a single, naively
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configured program execution and are consistently conservative enough to allow them to be
used to recommend configurations. Although I relied on some modifications and interfaces to
obtain statistics to the underlying language runtime, these modifications and interfaces are
trivial (allocating uninitialized objects, accessing sizes) and depend only on the most general
aspects of the design of the language runtime’s garbage collection system. Using this model
and its corresponding instrumentation should be an effective way to find good garbage collec-
tor configurations — and because of careful choices about ‘dangerous’ behavior, conservative
configurations — starting from trivial, likely wasteful configuration.
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Figure 6.3: Measurement of total allocations across multiple tenured space sizes.
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Figure 6.3 (con’t): Measurement of total allocations across multiple tenured space sizes.
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Figure 6.4: Measurement of total allocations across multiple eden sizes (with survivor space
disabled).
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Figure 6.4 (con’t): Measurement of total allocations across multiple eden sizes (with survivor
space disabled).
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Figure 6.5: Single run measurement of total promoted (line, sliding window average) versus
actual runs with fixed eden sizes (circles).
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Figure 6.5 (con’t): Single run measurement of total promoted (line, sliding window average)
versus actual runs with fixed eden sizes (circles).
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(c) Differences in the empirical recordings of amount promoted based on extreme eden sizes (lines)
along with measurements from actual runs for comparisons. Graphs on the left represent recording
using a small maximum eden size; on the right using a large maximum eden size.
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(d) GLM

Figure 6.7: Estimated space left over for a particular tenured space size based on distribution
of sizes observed after full collections (red, non-straight line), and based on average and
maximum sizes observed after full collections (green lines).
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Figure 6.7 (con’t): Estimated space left over for a particular tenured space size based on
distribution of sizes observed after full collections (red, non-straight line), and based on
average and maximum sizes observed after full collections (green lines).
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(d) GLM

Figure 6.8: Weighted CDFs of amount live after full collections captured from instrumented
runs. The weight is the portion of allocations experienced when the program is at approxi-
mately that live size. Note the variety of behavior — many programs have essentially a fixed
amount of memory they require, but some have substantially variation across their lifetime.
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(h) Naive Bayes

Figure 6.8 (con’t): Weighted CDFs of amount live after full collections captured from instru-
mented runs. The weight is the portion of allocations experienced when the program is at
approximately that live size. Note the variety of behavior — many programs have essentially
a fixed amount of memory they require, but some have substantially variation across their
lifetime.
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(d) GLM

Figure 6.9: Difference in recorded estimates of amount of live with varying tenured space
sizes (by factor of 2). Lines show estimates from runs with minimum and maximum tenured
space size. When there are no full collection to base an estimate on, the average occupancy
is used, which generally results in an overestimate.
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(h) Naive Bayes

Figure 6.9 (con’t): Difference in recorded estimates of amount of live with varying tenured
space sizes (by factor of 2). Lines show estimates from runs with minimum and maximum
tenured space size. When there are no full collection to base an estimate on, the average
occupancy is used, which generally results in an overestimate.
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Figure 6.10: Average time per eden collection versus average eden size.
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Figure 6.10 (con’t): Average time per eden collection versus average eden size.
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Figure 6.11: Time per eden collection versus promoted per eden collection across the eden
collections (density, blue is least common) from an instrumented sample run along with
actual measurements from varying eden space sizes (stars). The observations use a fixed, but
different (usually smaller, based on the suggested garbage collector configuration) tenured
space size than the instrumented run, which may account for why they seem slightly offset
from the linear regression line. Section 6.6.1.2 describes how I can compensate for this effect.
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Figure 6.11 (con’t): Time per eden collection versus promoted per eden collection across the
eden collections (density, blue is least common) from an instrumented sample run along with
actual measurements from varying eden space sizes (stars). The observations use a fixed, but
different (usually smaller, based on the suggested garbage collector configuration) tenured
space size than the instrumented run, which may account for why they seem slightly offset
from the linear regression line. Section 6.6.1.2 describes how I can compensate for this effect.
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Figure 6.12: Time per eden collection versus tenured space size.
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Figure 6.12 (con’t): Time per eden collection versus tenured space size.
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Figure 6.13: Mean time per full collection versus heap capacity. The heap capacity is varied
by only changing the tenured space size.
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Figure 6.13 (con’t): Mean time per full collection versus heap capacity. The heap capacity
is varied by only changing the tenured space size.
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Figure 6.14: Mean space used after full collection versus tenured space capacity.
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Figure 6.14 (con’t): Mean space used after full collection versus tenured space capacity.
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Figure 6.15: Predicted versus actual eden collection counts as eden space size is varied.
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Figure 6.15 (con’t): Predicted versus actual eden collection counts as eden space size is
varied.
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Figure 6.16: Predicted versus actual full collection counts as tenure space size is varied.
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Figure 6.16 (con’t): Predicted versus actual full collection counts as tenure space size is
varied.
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Figure 6.17: Predictions of time per eden collection from single instrumented run (line) as
new generation size is varied versus actual times (circles).
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Figure 6.17 (con’t): Predictions of time per eden collection from single instrumented run
(line) as new generation size is varied versus actual times (circles).
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Figure 6.18: Prediction of time per full collection from two instrumented runs (lines) as
tenured space size is varied versus actual times (circles).
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Figure 6.19: Difference in collection time between enabling survivor spaces as tenured space
size varies. Note that enabling survivor spaces appears to cause substantially more overhead
for each of these programs.
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Figure 6.20: Difference in collection time between enabling survivor spaces as young gener-
ation size (survivor + eden) varies.



CHAPTER 6. PREDICTING GARBAGE COLLECTION OVERHEADS 143

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

to
ta

l 
g
c 

ti
m

e
 (

s)

(a) Tenured space varied

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

to
ta

l 
g
c 

ti
m

e
 (

s)

(b) Young space varied

Figure 6.21: Difference in collection time with fixed survivor space sizes (set to a fixed portion
of the eden space size) for the ALS example for varying tenured and young generation size.



144

Chapter 7

Making Sizing Recommendations

The models described in the previous chapters do not directly yield configurations. In
the simplest case, where users can ask for any portion of the memory of some massive
machine — minimizing overhead is easy; the user can ask for it all. But to make sensible
recommendations, my tool SLAMR must model the user’s costs that make it worth asking
for less. In addition to concerns about costs, a user’s choices involve not only knowing how
much to request but in what form to request it. On common shared computing platforms, as
described in Section 2.3, users have a choice between requesting a small amount of memory
across many machines or a large amount of memory on a few machines.

To turn framework minimums and garbage collection overheads into recommendations,
SLAMR relies on a rough model of user utility. It does not spend the collect data sufficient to
map out some time/space tradeoff precisely and especially not the benefits or lack of benefits
of parallelism for each program. The goal of using a notion of utility, then, will be to find
an efficient point and rule out ridiculous configurations. Given the lack of precision in my
runtime estimates, I target this utility metric towards selecting a ‘minimal viable resource’
configuration; among configurations with approximately equal cost, absent other guidance,
I bias my model towards the smallest.

7.1 User Utility Models

The biggest challenge in producing a single recommendation is mixing the ‘keep everything
in memory’ heuristic with the time overhead model for the garbage collector. To do this, one
needs to decide what is an acceptable amount of overhead. To make this choice, one must put
that overhead in context. The way I will do this is by trying to estimate a virtual ‘cost’, based
on the amount of machine resources (memory, compute) a user allocates and the estimated
runtime of the program. Estimating the runtime will require taking into account both the
time overhead of the garbage collector and the normal useful runtime of the program.
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7.1.1 Quick Estimates of Non-GC time

To make sensible recommendations, some assumptions about program scaling will be re-
quired. One cannot simply ignore changes in parallelism because of how users change mem-
ory configurations. Users cannot abstractly choose any amount of memory to use. For dis-
tributed computing platforms like Spark, they choose a number of workers and the amount of
memory each of those workers has. In any environment where they can run a framework like
Spark, their choice of how much memory is coupled with their choice of how much compute
resources.

Nor will the heuristic of specifying a ‘minimum’ save one from modeling performance
scaling. Otherwise, absurd suggestions are likely: leaving half a machine’s cores unused to
save a tiny amount of memory or barely fitting in the memory of one machine at the cost
of huge garbage collection overheads. I do not attempt to construct precise predictions of
runtime, as modeling parallelism accurately likely requires more detailed and less program-
agnostic instrumentation. Instead, my heuristic assumption is that there are diminishing
returns from parallelism after the working set size is allocated. My goal will be to produce
the point where these diminishing returns start. From this, users can choose to allocate
larger amounts of resources to improve compute time if they choose.

A naive approximation for estimating runtime is assuming linear scaling. But this quickly
produces absurd results. Garbage collection overheads are often superlinear: doubling the
amount of free space available to a program can decrease garbage collection overhead by
about a factor of two (by halving the number of full collections, at least). Doubling the
memory available to a program will more than double the amount of free space available
(since the initial free space will be more than half the memory). Thus, the logical conclusion
would be that best efficiency is achieved at an essentially infinite degree of parallelism.
The superlinear scaling of garbage collection means this absurdity could even survive minor
relaxations of linear scaling, like assuming a small fixed overhead.

To avoid this, when suggesting degrees of parallelism, I make conservative assumptions
about parallel scaling. I pessimistically model a large portion (around 50%) of the compu-
tation as serial. The primary goal of this choice is to avoid the absurd configurations. One
absurdity to avoid is the ‘infinite’ size configurations that assuming super linear or near-linear
scaling is likely to result in; this heuristic clearly avoids suggesting such configurations. An-
other are configurations that thrash and essentially never complete due insufficient memory;
these are avoided with relatively little sensitivity to how good the scaling estimate is. So
long as the scaling is not so extreme as to cause the ‘cliff’ of very high estimated overheads
to appear good, configurations with absurdly few resources will still be avoided.

7.1.2 Exact Memory Charging

After estimating runtimes, one needs to concretely compare the ‘costs’ of a certain amount
of memory and runtime with another amount. The simplest way I will do this will be an
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idealized form of utility computing. If memory is the most constrained resource in a shared
cluster, then to a first approximation, users will pay only for memory for each unit of time.

In this approximation, the cost of the compute resources is negligible and users can pay
for exact amounts of time and memory. Reality, of course, has other constraints. This ap-
proximation is particularly useful for evaluating recommendations. Although the real world
is more discrete, this very precise charging lets any two performance results be meaningfully
compared. Rounding to the nearest hour or nearest whole machine size would often prohibit
comparisons of different recommendation.

7.1.3 Library of Node Choices

In reality, users cannot just purchase as much memory resources as they want in isolation.
There are multiple models for renting computing resources. But, generally, the economies
involve imply minimum and maximum ratio of compute, memory, and storage resources that
must be obtained together. It is important to navigate these real-world complications.

The dominant charging model for utility computing providers like Amazon EC2 reflects
these realities. They have users choose from a library of virtual machine sizes. In Amazon’s
case, these sizes are chosen so that it is plausible that Amazon statically partitions phys-
ical machines into fixed virtual machines. Ultimately, the size of these physical machines
determines the ‘boxes’ into which users must fit their resource requests.

Even more flexible providers like Google Compute Engine (GCE) impose restrictions on
the ‘shape’ of acceptable virtual machines that go beyond what’s supported by the underlying
physical hardware. For example, as of this writing, GCE requires that virtual machine
allocations between 0.9 GB and 6.5 GB per virtual core, even though they support up to 32
virtual cores and up to 208 GB of memory per node is supported. Consequently, in any of
these environments, the decision about how much memory to allocate is necessarily also a
decision about how many worker machines to use and how many cores to allocate. The cost
users pay is based on a combination of this factors.

To evaluate configurations for this environment, then, SLAMR estimates the cost based
on the number and type of worker nodes allocated and how long they are allocated. To turn
the time and worker usage estimates into a cost, I use a continuous estimate of the time even
though charging is not continuous. Since SLAMR uses a rough approximation of runtime,
it is not reasonable to imagine that I account for time rounding effects, and I assume users
will have work of the type sampled to do for a long enough time to amortize these costs.

7.2 Refining Configurations

7.2.1 Instrumentation Runs

A user starts searching for configurations from one successful execution. From this execu-
tion’s instrumentation, my tool obtains the framework-level configuration. Because it used
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a different framework configuration, the garbage collector demands of this instrumented run
may not be typical of the final configurations. So rather than rely on my garbage collector
model, I first suggest a configuration with what is generally more than enough extra space.
In my tests, I added 50% to the space that I estimated to be required by Spark itself (ac-
cording the framework model only) for garbage collector usage. A less conservative approach
would be to use the initial misconfigured run to infer initial garbage collector configurations
so long as that run allocated ‘too much’ memory to the framework and did not use many
more workers.

While it is safe to make inferences for framework parameters from any successful run, the
same is not true for garbage collector configuration. When Spark stores changes the amount
stored in its cache, this may dramatically change garbage collector behavior. In addition to
the occupancy of memory changing, additional recomputation, reading and writing data to
persistent storage, etc., may change the quantity of allocations and the distributions of their
lifetimes — precisely what the garbage collector instrumentation is supposed to measure.

In some cases, however, the only significant change will be the occupancy of memory. For
example, when changing the number of workers while keeping framework data in memory,
there should be little change to the mix of garbage collector demands. To roughly estimate
the effect of these changes, I adjust the measured amount of memory free after full collections
according to the portion by which Spark’s storage size estimates changes in this case. To
keep this from causing major misconfiguration, I still constrain estimates by Spark’s total
space estimates and do not make this adjustment when Spark’s storage space was configured
to be much larger than required, meaning that most of it would never be occupied. At the
cost of not second-guessing sometimes inaccurate framework size estimates, this ensures that
programs whose memory usage is managed by Spark complete with manageable overheads.

The measurement overheads to obtain SLAMR’s recommendations are low enough that
configuration recommendations can be a continuous process. In my experiments, I arise at a
final, stable configuration after the second run where the Spark parameters are settled. For
Spark estimates, the final configuration arises after one successful run. For garbage collector
estimates, at least another execution is usually necessary, to avoid observing the effects
of additional data kept in memory or recomputed. In cases where ‘second-order’ effects
like tenured space sizes or scaling assumptions matter, more iterations may be required for
garbage collector configurations to converge on a final value. These additional observations
provide information about the effects of changing worker counts and tenured space sizes
which cannot be inferred from any single run.

7.2.2 Applying the Utility Model

To choose the number of workers and type of workers, I apply one of the utility models
described in Section 7.1. When using the ‘library of node types’ approach, SLAMR tries
each node type — each possible amount of memory and compute resources per worker —
and chooses the one with the best estimated cost. Generally, the final node type will be the
one with highest memory density, but programs with smaller memory requirements or user
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constraints on the minimum number of cores to select could cause other node types to be
selected. Once a type of node is fixed, I find the best number of nodes by first finding the
minimum number of nodes that fit the framework configuration. Then, I find the cost of the
best garbage collector configuration on that number of nodes, and larger number of nodes
until the cost starts increasing.

In this search, I also include the ‘virtual’ node types created by not using all available
cores. Usually, this will be inadvisable — it will be better to use all the compute resources
one is paying for, since it’s unlikely that this would require substantially more memory
resources. In extreme situations, however, this might be necessary to fit the computation at
all. For example, if partition sizes are large, computing on less partitions at a time may be
the difference between fitting the partitions in memory and not even on the machine type
with the highest memory:CPU ratio.

To produce a garbage collection configuration, I choose the eden and tenure space sizes
in addition to the number and type of worker nodes. My tool finds the optimal eden and
tenure space sizes by performing a grid search over the possible configurations, and then
performing a heuristic local search using the downhill simplex method starting from the
best feasible point found by the coarse grid search. For the local search, I assume that the
predicted overhead is continuous round the minimum cost region. When a library of node
types in in use, there is effectively only one parameter (either the eden size or tenured space
size) to configure, since optimal configurations use the entire space available on each node
(after accounting for page cache and OS requirements).

7.3 Evaluation

To evaluate recommendations, I primarily examine recommendations under the ‘exact’ model
— where a user’s cost is based on the exact amount of memory used and the exact time for
which it used. I do this instead of directly evaluating the more realistic scenario of node
choices, because dangerous mispredictions will only show up near the margins: predictions
will be rounded up to the next whole number of nodes, so any mispredictions would often
survive this. In addition to evaluating the overall accuracy of combined predictions, I will
examine the sensitivity of recommendations. I am concerned about two types of sensitivity:
sensitivity to the training run, especially whether my inferences about the number of nodes
to configure are reasonable, and sensitivity to cost models, especially my assumption that
because I am producing configurations close to a configurations that experience conserva-
tively estimated performance cliff, my exact runtime estimates do not dramatically change
recommendations.

7.3.1 Garbage Collector Predictions Across Node Counts

A major concern for observations of garbage collector activity is that, as the number of
worker nodes changes, one might need an example run from the exact same number of
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Figure 7.1: Measured promoted bytes per eden collection for fixed eden size and varying
worker counts. X’s represent a failure to complete at a specified eden size. Outside of these
failures, these results show that the behavior is consistent even when the work of the program
is divided more ways.

nodes to make predictions. For general programs, this is infeasible given the measurements
described in Chapter 6 because one cannot predict how much data will be active on each
node. Fortunately, for Spark programs, one can use the higher-level framework information
to reason about data which will must be replicated on each node and data which will be
divided between nodes.

For several of the measurements drive my model of garbage collector overhead, no ad-
justment is necessary. The amounts promoted from a given eden size is stable as the number
of worker nodes is varied, as shown in Figure 7.1. The total amount allocated is roughly
constant as the number of nodes varies, as shown in Figure 7.2. Thus, the amount allocated
on each node can simply be computed as the total amount allocated divided by the total
number of nodes. Both of these reflect that these measurements essentially capture the ac-
tivity of the computations being done on each worker rather than the data stored on each
worker.

One measurement used in the garbage collector model, the distribution of live objects
over time, will clearly change more significantly. To approximate this, I rely on data from the
Spark framework. Based on the Spark configuration I know what the change in the amount
of data Spark thinks is stored is between a sampled configuration and a new configuration.
I compute a new distribution which is simply adjusted by this fixed difference. For the
most concerning case, inferring the behavior of a configuration with fewer nodes, this should
usually overestimate the requirement, since Spark’s size estimates are usually overestimates.
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Figure 7.2: Measured total allocated bytes for varying node counts (or indication of failure
to complete at specified node count)
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7.3.2 Cost Accuracy and Trends

To evaluate predicted costs, I examined the change in SLAMR’s predicted and the measured
actual costs as each of the eden and tenure space size configurations were varied. Qualita-
tively, this should show whether the minimum cost matches the goal of being ‘beyond’ the
performance knee, giving the effect of choosing a ‘minimal’ value for the garbage collector pa-
rameters. It also provides an indicator of accuracy. Although I evaluated whether overhead
estimates are consistently conservative in Chapter 6, if overhead estimates were substantially
more biased for large configurations than small ones, the resulting recommendations could
still be too small. As this evaluation shows, that is not the case.

Figures 7.3 (tenured space size) and 7.4 (eden size) show the results. The cost function
for each of these is memory used times runtime, without attempting to account for ‘fixed’
overheads for the operating system, driver program, or setup time. The graphs show two
types of estimated costs: the solid represents a more conservative model while a dotted line
represents a less conservative model. The less conservative model makes changes to two parts
of the garbage collector model: First, it does not require there to be room for the entire eden
space in the tenured space to account for variation in eden space size. Second, it uses the
mean amount promoted in a local window of eden sizes rather than the running maximum
of the mean amounts. In particular, this makes it less sensitive to outliers in the amount
promoted, which makes a significant different for some programs.

In most cases, the estimates are based on the first run with the final framework con-
figuration The configurations are varied around the recommended configuration based on
that execution. In a small number of cases, the garbage collector configuration suggested
based on this run used a different number of workers, so the evaluation shows estimates cost
from an instrumented run with a matching number of worker nodes. I separately evaluate
sensitivity to estimating costs with different numbers of worker nodes in Section 7.3.3.

For tenured size (Figure 7.3), there is a clear minimum for estimated cost. For the actual
cost at and above this minimum value, the corresponding predictions are accurate, but they
are too conservative below. For some programs, the measurement of the minimum amount of
space required is too conservative because of constraining recommendations based on Spark’s
conservative size estimates or because there is insufficient data in the training runs to know
the true maximum memory occupancy. As a result, configurations are considered infeasible
when they are not.

For eden size (Figure 7.4), generally my model predicts a steep incline in cost for very
small eden sizes, but the actual incline is more modest. This is dictated by the range of sizes
covered by the example run. For eden sizes at the bottom end of this range and below it, there
are few samples of the actual promotion behavior. Thus, the model conservatively predicts
a larger amount will be promoted based on the behavior actually observed at slightly larger
eden sizes. This dictates the recommendation in most cases. In some cases the predicted cost
values are higher by an essentially fixed amount; this reflects cases where the full collection
time because the training run had a very different tenured space size. Notably, this error
does not substantially effect the overall recommendation.ch, reflecting the relative stability
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Figure 7.3: Estimated costs (lines) measured by memory used times time for varying tenured
space sizes and single node configurations versus actual cost (circles). Two models are shown,
one conservatively assuming that space for all of the eden space needs to be available in the
tenured space (green, solid) and one ignoring this effect (blue, dashed)
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Figure 7.3 (con’t): Estimated costs (lines) measured by memory used times time for varying
tenured space sizes and single node configurations versus actual cost (circles). Two models
are shown, one conservatively assuming that space for all of the eden space needs to be
available in the tenured space (green, solid) and one ignoring this effect (blue, dashed)
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Figure 7.4: Estimated costs (lines) measured by memory used times time for varying eden
space sizes and single node configurations in terms of memory-size and time (without fixed
costs for a master node, startup costs, etc.) versus actual cost (circles).
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Figure 7.4 (con’t): Estimated costs (lines) measured by memory used times time for varying
eden space sizes and single node configurations in terms of memory-size and time (without
fixed costs for a master node, startup costs, etc.) versus actual cost (circles).
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Figure 7.5: Contour plot of estimated costs for garbage collector configurations for ALS
examples.

in the amount promoted
In some cases, like for the naive Bayes example, there is a sharp increase in the predicted

cost after a certain point. This is a result of the heuristic that full collections occur when
tenured space cannot fit the entire eden space for the less conservative model. In this
configuration there is relatively little free space in the tenured space, so that constraint is
met, even though it turns out that the corresponding bad behavior does not occur in practice.

There is an exception in some cases, which is caused by the amount of ‘extra’ space in the
corresponding (constant) tenure size configuration being close to the eden size. As the eden
size increases, our heuristic that there must be enough space for the entire eden space to be
copied into the tenured space to make full collections seem worthwhile is binding. Making a
corresponding increase to the tenured space size would avoid this.

Figures 7.3 and 7.4 show the effects of changing eden and tenured size are shown in
isolation. In practice the optimal configuration is decided by the tradeoff between the two
values. Finding a configuration effectively relies on being able to efficiently search for good
tradeoffs. For this to be practical, it would be helpful for the estimated costs to be smooth
in the region of viable costs, so that local optimization would be a viable approach. To test
the viability of this approach, I examined the shape of the estimated cost space, shown for
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the PageRank example in Figure 7.5.

7.3.3 Cost consistency

[p]
[p]
The cost estimates shown in the previous section generally use runtimes measured with a

particular number of workers and using this to infer the runtime with a different configuration
on the same number of workers. In reality, I would like to be able to take a configuration with
an inappropriate number of workers and use it to recommend a more appropriate number.
To do this, I made the same scaling assumptions described in Section 7.1.1. These scaling
assumptions appear to have little effect on the overall recommendations.

To discover this, I examined how the recommendations based on inferring for a different
number nodes than the training run. I varied how runtimes were estimated to choose the
optimal configuration and examined the resulting change in minimum cost configurations.
In Figure 7.6, I add a ‘startup cost’ to the estimated runtime of a varying proportion of the
total time and see how the recommended configuration changes based on that. In Figure
7.7, I show predicted worker configurations given four workers and four cores per worker —
more than each of training runs at issue — given estimates of varying portions (from 25 to
100%) of the workload being serial (color scale).

In both cases, the overall recommendation in terms of total memory allocated is quite
stable. The amount of tenured space suggested is stable, varying by around 10% in the most
extreme cases between assuming the entire program will enjoy parallel speedup and the entire
program is serial. If one ignores the configurations that assume almost all of the program
is serial, then the variation is well less than 5%. The amount of eden space recommended
is less stable, though the absolute differences are small and, as shown in Figure 7.4, there
is not much change once a threshold is reached. Thus, given the small change in absolute
memory usage, the variation in eden size is from a set of configurations of approximately
equivalent cost.

7.3.4 Finding minimum node counts

To evaluate our heuristic for estimating the impact of scaling, I examined the resulting
estimated number of nodes versus performance as the number of nodes changed. Figure
7.8 shows total runtime as the number of nodes varies for several programs, along with the
number of nodes estimated based on the heuristic that 50% of the execution in the observed
run is serial. These programs are the indicated example programs, with smaller worker sizes
to better illustrate the worker count choice. To find configurations for the smaller node
counts than SLAMR’s recommendation for comparison, I first tried to make a configuration
that satisfied Spark’s restrictions; if that failed, I tried to make a configuration ignoring non-
JVM (shuffle data cached by OS) requirements; if that failed again, I copied the configuration
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Figure 7.6: Change in the lowest ‘utility’ configuration applying a variable penalty (ranging
from 0% to 100% of the initial runtime) to the estimated runtime to account for less than
predited changes in runtime.
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Figure 7.6 (con’t): Change in the lowest ‘utility’ configuration applying a variable penalty
(ranging from 0% to 100% of the initial runtime) to the estimated runtime to account for
less than predited changes in runtime.
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Figure 7.7: Change in the lowest ‘utility’ configuration for four nodes with four cores each
given variable assumptions portion of the initial runtime that was parallel work.
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Figure 7.7 (con’t): Change in the lowest ‘utility’ configuration for four nodes with four cores
each given variable assumptions portion of the initial runtime that was parallel work.
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Figure 7.8: Runtime with varying node counts versus recommended configurations (marked
with +), assuming 50% serial overhead. Xs represent failing or timed-out runs
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Framework Runtime
Program Storage Execution Sum Tenured + Fit Framework

Carat 0% —9% -5%—0% -5% —9% -20%—-16% 5%
GLM -13%—0% -0%—0% -13%—0% -1% —3% -12%
PageRank -4% —0% -0%—0% -4% —0% -2% —14% -34%
KMeans -5% —0% -0%—0% -5% —0% -11%—0% -10%
ALS -9% —0% -0%—0% -9% —0% -16%—-5% -49%
Naive-Bayes -5% —0% -0%—0% -5% —0% -5% —1% -6%
ADAM sort -0% —0% 3% —5% 2% —5% -3% —0% -10%

Table 7.1: Difference between predicted and ‘optimal’ value based on a sensitivity analysis.
For framework parameters, the optimal value is chosen by counting recomputations (for
storage space) or spilling (or execution space). For GC space, it is measured by finding the
estimating best memory × time cost ignoring constraints on size from framework parameters
(total tenured space size is allowed to be smaller than the framework ‘memory’ size). Values
within 10% of the lowest observed cost are considered best (to discount random variation
in runtime). Ranges represent the observations in the sensitivity analysis that bound the
transition from the ‘best’ value to a non-best value that sit closest to the predicted point.

from the ‘optimal’ size. Although clearly this estimate is not accurate, it is sufficient to avoid
the timing-out (taking much longer than twice the larger run) or failing configurations.

For most of these programs I identify the minimum working estimate for the given worker
size. The result of increasing the worker count is at best comparable to the increase in number
of cores assuming linear scaling. For two of the four programs I examined in this way, the
program fails to complete successfully for smaller worker counts. For one program, the ALS
example, my recommendation seems high. This is because the program uses a large amount
of shuffled data. In an attempt to keep the shuffled data in memory, I require a large amount
of page cache to be available. But, as shown in Section 5.1.4, this has some effect, but not
a very strong effect on performance for this program.

7.3.5 Estimating Slack

To obtain an overall evaluation of my combined estimates, I estimated the total amount
of ‘slack’. Generally, the estimates are conservative — that is, they require more space
than needed to meet configuration objectives. A fully accurate estimate would be no more
conservative than necessary. My goal is to evaluate how close my overall recommendations
are to this goal.

To do this, I look at two different kinds of accuracy. For framework estimates, I consider
the most accurate estimate to be the one with minimum memory where the framework does
not make use of alternatives to memory — recomputation or spilling. For garbage collection
estimates, I use a utility-based approach, considering the most accurate estimate to be one
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which minimizes the ‘cost’ in terms of memory times run time. Since I assess accuracy of the
garbage collection prediction alone, I ignore the limitations imposed by estimated framework
sizes on the memory size that would ordinarily be part of recommendations.

Accuracy by this metric for several example programs in shown in Table 7.1. Values
are shown in terms of the portion total worker memory consumption. Ranges represent the
region in which the ‘most accurate’ configuration ought to occur based on measured runs.
For framework configurations, this is between the largest-memory configuration with recom-
putation and spilling and the next highest memory configuration (with no recomputation).
For garbage collector configurations, this is the configuration closest to the recommendation
within 10% of the lowest observed cost. The margin should compensate for inconsistency in
runtimes from minor changes in scheduling and I/O performance.

The results show that framework recommendations accurately identify when extra work
is performed due to insufficient memory across programs which make different uses of Spark’s
abstractions. That additional work occurs does not indicate that this is the point of best
performance; instead, it shows that the configurations are successfully in meeting the goal
of keeping the computation in memory, effectively providing an upper-bound on memory
requirements.

Garbage collector recommendations, on the other hand, are much more variable given
that they lack such bright line criteria. But they consistently seem to be more conservative
than necessary. Consistent with the observation that Spark can overestimate the amount
of memory required for data it manages (Section 5.2.1), the largest source of error is the
constraint the tenured space is large enough to hold Spark’s estimated size. These estimates
were consistently conservative but generally not by a large more than 20%. Given the variety
of programs, many types of data (graphs, genomes, sensor readings, matrices, etc.) and a
mix of programs dominated by transient or persistent data sets that were iterated over
repeatedly, this shows that the garbage collector model is not limited to a particular kind of
program that might be written for Spark.

For most of the programs, I observed, Spark required 10–30% extra space over what
garbage collector measurements showed was actually used. I observed this misestimation go
up to 50% in the case of an iterative graph computation which is likely to have lots of shared
references (perhaps to graph labels) between different iterations. As noted in Section 5.2.1,
this extra space may be fragile, in that it may become required space in unlucky cases such
as where partitions are transferred between workers.

7.4 Summary and Discussion

By carefully combining models for different components in in-memory analytics, I devel-
oped SLAMR, a tool that produces consistently conservative memory recommendations for
analytics programs. Converting the models into recommendations is non-trivial, with two
problems: first, making sure the interaction of the components is properly dealt with, and
second, using estimates of garbage collection overhead to drive configuration choices.
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The primary constraint in handling the interaction between components is that it is dif-
ficult to infer how configuration changes in the framework affect the load on the language
runtime. I used two strategies to compensate. First, I was careful about observing the
language runtime workload. I provide extra space for the language runtime when the frame-
work had a very different configuration rather than assuming that my tool was presented a
realistic garbage collector workload. Second, I restrict the language runtime configurations
based on the framework’s measurements of memory usage. In practice, this restriction is
often determines the memory requirements more than the actual garbage collector demands.

This indicates that, although I rather precisely evaluate what the framework measures
as its memory occupancy, the framework’s accounting often leaves something to be desired.
The most likely cause for this is sharing between multiple stored items, such as in strings.
If one was not concerned about failures from cases where this sharing does not occur, then
one could simply rely on the language runtime estimates to configure and save a substantial
amount of space. Unfortunately, this is risky because the sharing might easily be broken, for
example, if the strings are serialized to the network due to a different computation pattern.

Another interaction between the language runtime model and framework model is turning
overhead estimates into recommendations. My strategy for this problem was to produce a to-
tal runtime estimate and use it estimate a user’s ‘utility’. By accounting for the framework’s
scaling in way biased towards small sizes, this has a similar effect to choosing a minimum
size. Because of the steep increase in overhead that occurs with small language runtime
configuration parameters, this approach is not very sensitive to exact choice of accounting
for runtime — important since I do not collect enough information to accurately estimate
scaling.

Overall, I showed that I can quickly arise at a good memory configuration by observing
normal executions of an analytics program. My procedure chooses these example runs such
that they are conservatively, rather than needing to exhibit the bad behavior I wish these
recommendations to avoid. Thus, they are suitable for running the program normally during
development. Given the high accuracy of the framework model and how it often constrains
the language runtime configuration, it is likely that every run after the first working example
will be substantially better configured than any user guess — without risking failures that
discourage users from tweaking memory configurations.
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Chapter 8

Future Directions

Analytics frameworks and language runtimes provide incomplete support for modeling their
memory usage. Most of the challenges are ones of visibility: instrumentation focused on
performance modeling often provides little information about the decisions leading to that
suboptimal execution. Increased visibility could make both writing memory analysis tools
easier and allow them to provide more detailed and more accurate recommendations.

In the case of my memory models, there are several opportunities where my memory
model could be generalized to improve recommendations in this way. These center around
relaxing assumptions. I chose to model a simplified garbage collector, but the same approach
could be extended to better reflect the wider options users have to configure modern garbage
collectors. Also, in modeling my simple garbage collector, I relied on relatively coarse-
grained observations of program behavior. More detailed observations should decrease the
dependence on observing the program in a ‘close enough’ execution.

Similarly, when modeling the behavior of the Spark framework, I chose to measure the
memory usage needed to keep the computation in memory, not judging any user choices about
what to allow to be stored in memory. Evaluation of the performance tradeoffs of the example
programs I explored revealed that this is not always a good choice. For many programs, the
benefits of avoiding recomputation or filesystem I/O are minimal. The problem is that
sometimes it matters substantially; the main challenge is obtaining enough information to
determine when. Since the framework does not naturally encounter this behavior in a typical
run, this requires special instrumentation.

In general, improving models of memory usage in analytics programs is limited by the
visibility into those programs. Gaps in visibility come from where the underlying language
runtimes and frameworks do not expose the right kind of information. Examining these
gaps provides insight into both how to improve tools for users to configure analytics and
how frameworks might make the work of these tools easier.

In this chapter, I review several avenues for generalizing my memory recommendation
tool and designing future analytics stacks to make resource requirements more visible. I start
by examining the state of instrumentation, both in analytics frameworks and in language
runtimes, including more invasive but complete ways of extracting information than I used.
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I then discuss several extensions to the models of garbage collector and framework memory
usage I presented. For the garbage collector model, I discuss generalizing my model to handle
more types of garbage collectors. For my framework model, I look at the tradeoffs involved
in extending the model to provide users insight about what to keep in memory. I conclude
with a summary of these challenges and opportunities for improving visibility into memory
usage in analytics stacks.

8.1 State of Framework Instrumentation

Spark’s instrumentation is extensive but matches imprecisely with monitoring its memory
requirements. Spark’s monitoring is driven by a combination of operational needs — such
as deciding when to use secondary storage — and a desire for user feedback, usually through
a web-based monitoring interface. This latter seems the primary reason for its ‘event log’ I
use to collect data for analysis. The event log stores the same network messages used by the
web interface and permits it to be archived to provide this interface for completed programs.

Much of the information Spark collects in the event log represents items that are in-
evitably communicated to the Spark driver and were thus trivial to log. This includes when
tasks are started and stopped, since these are decisions made on the master in Spark’s cur-
rent architecture. It also includes what RDD partitions were updated by tasks, which the
master needs to track to schedule tasks locally to their input partitions. Also included in
this data is the size of each of these partition as stored in memory or elsewhere, which is
tracked internally at the Spark driver for all workers.

After a task is scheduled on a worker, the decision about whether to read its data from
local cache or recompute it is local. These decisions were not always apparent from the
centralized event logs. It was from the logs at the workers but not in a form intended for
machine parsing. Generally, this information was never sent to a central location, outside of
external log collection systems.

Higher-level information used by the scheduler is also included in Spark’s machine-
parseable log. Spark groups tasks into jobs, representing the computation of a single output.
These jobs are in turn divided into stages, representing all the computation up to comple-
tion or some shuffle step. For each stage, Spark records the RDDs it depends on and the
dependencies between stages caused by shuffles. From debugging, this also includes a stack
trace of where the stage was triggered, which might be useful for providing user feedback —
although this often occurs deep inside libraries, such as implementations of machine learning
algorithms.

This instrumentation is not quite enough to reconstruct computation dependencies.
Spark programs often create RDD, then perform some operation that forces it to be com-
puted, then use the result of this operation to construct new RDDs. For example, a typical
implementation of a sort over the Spark core might compute a sample of the input to the
sort, then use this to construct a partitioning for the actual sort operation. The dependen-
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cies tracked by Spark could omit the relationship between the final sort operation and the
sampling operation.

Some other parts of Spark’s instrumentation are driven by performance monitoring. Much
of this seems due to [66]’s performance diagnosis work. This includes breaking down how
tasks spend their time — between garbage collection overheads, computation and I/O wait.
It also includes measuring how much I/O tasks do and from what source — which will show
the effects of a failure of caching, but not identifying when the cause is a failure to cache
data.

To support displaying these measurements and the web interface and perform the analyses
like in [66], this information is collected and sent to the driver. The overhead is limited
by piggybacking on existing task completion messages. To enable interesting statistics to
be recorded anywhere, Spark internally allows look-up of the task the current thread is
responsible for to add information to its future task completion messages. While this ensures
that the effects of performance affecting decisions are accounted correctly, this decouples
decisions to log when I/O or computation occurred without from the operations which trigger
that work.

Generally, Spark’s instrumentation of data sizes is opportunistic, so memory sizes are only
recorded when Spark uses the size to make memory usage decisions. This avoids overheads,
since size estimation involves a potentially expensive traversal of an object and its references,
but it meant that some sizes I required for my analysis were unavailable. Spark did generally
record sizes when they were easy to measure, such as sizes of serialized data or the amount
of data read from or written to files.

8.1.1 Estimating Managed Data Sizes

To assess memory usage, it is important to have actual measurements of memory usage. In a
framework like Spark that takes advantage of a managed language, this information is neither
free nor exact. For cases where data is serialized, sizes are easy to obtain and often available
centrally. For example, in implementing its shuffle, Spark sometimes centrally collects the
size of each map output — one for each mapper/reducer pair — which has low overhead
since this is the size of serialized data. But when data is not already in a serialized form,
size estimation requires traversing trees of references, so Spark samples the data structure
to control overhead even to measure the size of one item.

Such size estimation is inexact, sometimes significantly. For one example program I
examined, the total gap between Spark’s size estimate and the actual heap occupancy was
around half of the total size. The most likely cause was overlap between objects. Given
multiple items whose total size must be tracked, it is natural to add up the sizes of distinct
items to tell if enough space is left. When these items overlap internally, however, this
produces a number that is too high. Such overlap is a natural consequence of one data
structure being transformed into another. Frequently such transformations will cause the
resulting data structure to refer to the exact sample objects as the original — for example
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references to the strings may be copied rather than the strings themselves. Accounting for
these shared objects is difficult.

Sharing breaks the normal expectations for storage management math. If objects A and
B share space, then removing A and B together may save substantially more space than
removing A or B alone. Eviction policies that account for this sort of sharing reasonably
seem challenging, especially since systems like Spark lack the freedom to explicitly page out
the unshared parts only like operating systems which have a superficially similar tradeoffs
in managing shared memory can.

Frameworks like Spark could measure sharing by taking advantage of lineage. By com-
paring a value before and after a transformation, the framework could determine how much
is shared in memory between the two. By only doing this for a sample of values, the over-
head could be kept to a reasonable limit. A challenge for this approach, however, is if the
individual values are large, containing many references.

To determine the total sizes, frameworks can randomly sample references to get a good
overall sample of size of a data structure. But taking two random samples of references to
measure the amount of overlap between two data structures introduces considerably more
sampling error, thus requiring more samples. One could attempt to sample the two values
related by lineage in the ‘same way’, but this seems likely to break if, for example, one is
an array produced by filtering out values that match a predicate from the other, so every
reference is at a different index.

Besides measuring sharing, it is not clear how useful such information would be since
sharing might be disrupted by small changes to where partitions are computed. In particular,
this makes estimates of sharing risky for making memory configuration recommendations —
small changes to executions might erase the memory savings from sharing. If, instead of
computing a partition on the worker node where its dependency was, it is computed on
a different worker, then there will be no sharing. Even if later the dependent partition is
recomputed on the new worker, there is still likely to be no sharing. Instead, a new, entirely
separate copy of the value will be created. Similarly, ‘no-ops’ like saving a partition to the
local filesystem and restoring are likely to create new copies of data, destroying any savings
from sharing.

8.2 Gaps in Garbage Collector Monitoring

The garbage collector models of Chapter 6 use simple measurements and a model a simple
garbage collector. These simplifications make it practical to bound the garbage collector
overhead using measurements obtained with low overhead. More sophisticated measurements
and more complete models might make these bounds tighter, especially for applications
where low measurement overheads are not a priority. These tighter recommendations would
be enabled both by increased precision of the model and the ability to account for additional
garbage collector features.
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The measurements of garbage collector activity in Chapter 6 avoid requiring invasive
instrumentation of the language runtime. Without this limitation, it may be possible to
obtain much better information about allocation and garbage collector activity. In particular,
this could allow measurements of garbage collector performance to be better separated from
measurements of allocations.

For example, an eden collection consists both of object scanning costs, object relocation
costs, and actual copying costs. Some of these costs are related to the number of references
or number of objects to scan or relocate; some are more related to the amount of data
contained in these objects. Lacking easy visibility into the mix of objects, I captured the
total time as a function of promotion size for a particular program — including both the
time taken for object scanning versus copying and what particular mix of time was necessary
for that program. An alternate approach would be to instead capture the object scanning
time, object relocation time, and copying costs explicitly, then separately measure the object
counts, sizes, and number of traversed references.

I experimented with obtaining some of these measurements from OpenJDK. The instru-
mentation is fairly lightweight — counting the number of objects or references encountered
in a garbage collection pass in addition to the number of bytes. Generally, it appeared to
provide little benefit to accuracy versus predicting from total size. The likely reason is that
most of the programs I examined have roughly the same average object size, so the added
information did not substantially improve precision.

This approach should be more useful when measuring the distribution of objects is de-
coupled from sampling garbage collection overhead. There are two sorts of notable scenarios
where this might happen. First, this would allow one to use object size distribution mea-
surements on one system to infer the behavior of another. This, notably, would allow one
to make inferences about large changes in language runtime, such as estimating the effect
of switching from 32-bit to 64-bit pointers. Second, it would compensate for cases where
garbage collection time measurements might be available but would not cover the actual
region the garbage collector would operate in — or would not cover it accurately. Generally,
more direct measurements of object lifetime distributions should be less sensitive to ‘noise’
from other activity on the machine or apparently random variation.

One way to obtain such direct measurements is using the Java Virtual Machine Tool
Interface (JVMTI) [65]. Unlike aggregate garbage collection statistics, this mechanism allows
very fine-grained tracking of object sizes. JVMTI permits an instrumentation agent to ‘tag’
an object and learn when tagged objects are freed. Combined with instrumentation of
object allocations, this allows tracking of object lifetimes and the distribution of object sizes
with each particular lifetime. Example results are shown in Figure 8.1 for a partial run of
PageRank (using the LiveJournal dataset) on Spark. In addition to obtaining information
about the distribution of object sizes, this technique can obtain useful data over a wider
variety of lifetimes than simply observing young collections would allow given eden or survivor
space size settings.

Unfortunately, this instrumentation has very high overhead, even if it only tags a small
sample of objects (in this case biased by object size to avoid undersampling large arrays that
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Figure 8.1: Portion of objects alive (left) and mean size (in bytes) of objects alive (right)
after a given amount of allocations have passed for a partial execution of PageRank on Spark.
The two lines represent an upper and lower bound. Note that below the eden size used in this
execution (1/8th of a gigabyte) there are very poor bounds on the object lifetime, reflecting
that information is only obtained after a garbage collection.

account for most memory usage). In addition to the actual cost of scanning objects on each
collection, to obtain good bounds on lifetime, one needs to periodically force full collections
and/or force the eden size to be small — a very large source of overhead. The instrumentation
also has the danger of breaking escape analysis, an optimization where a heap allocation
is transformed into a stack allocation. The instrumentation relies on transforming Java
bytecode to call a native function to ‘tag’ an object. So to the optimizer, it will appear that
the heap allocation is always necessary. With more support for the language runtime, this
problem could be avoided.

By combining this type of detailed measurement of the lifetime distribution of objects
with detailed microbenchmarks of a garbage collector, one might obtain more precise pre-
dictions of garbage collector performance. In particular, since this measurement approach,
unlike mere measurements of the amount of live memory after a particular garbage collec-
tion, gives upper and lower bounds on object lifetimes, so it could more accurate bounds on
garbage collection overhead.

8.3 Handling More Garbage Collectors

Another reason to investigate detailed monitoring of program allocation activity is that it
would aid in extending my approach to other garbage collectors. This is especially true if one
were to be less concerned about having conservative bounds on garbage collection compute
time than about its performance more generally. Most notably, alternate garbage collector
designs may allow garbage collection to be overlapped better with I/O or avoid long pauses
that are inconvenient for streaming or distributed computation.

Two notable variations that real garbage collectors use that are not captured by the
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two-generation model of Chapter 6. One is garbage collectors with a different generation
structure. Typical generational garbage collectors use survivor spaces, so there is more op-
portunity to filter out objects before they reach tenured space. There are also collectors with
a more dynamic generational structure, like the OpenJDK’s Garbage-First (‘G1’) Collector,
which can divides memory into regions which it can process in any order. Separate from
region structure, many garbage collectors are concurrent. Instead of stopping a program to
perform garbage collection, they perform it asynchronously, which is beneficial if the pro-
gram has spare compute-cycles, as, for example, analytics programs which spend a lot of
time waiting for misbalanced stages to complete might.

8.3.1 Survivor spaces

The simplest way to add survivor spaces to the two generation model I propose is to continue
the ‘steady state’ assumption. Under this assumption, one assumes that the distribution of
object lifetimes is fixed. To be more precise, following the approach of [88], one can model the
lifetime of objects as continuous function L(x) representing the portion of objects which will
still be reachable after x more bytes are allocated. Given this, the portion of objects surviving
an eden collection for an eden size of E is E

∫ E
0 L(x)dx, since the first byte allocated after

the previous eden collection needed to survive E bytes being allocated and the last before
the eden collection 0 bytes.

To keep things simple, I will start by assuming that there is one relevant parameter
for the survivor space: the threshold number T of minor (eden and survivor) collections.
An object must survive before it is promoted to tenured space — the objects ‘age’. This
will implicitly determine the survivor space size. In practice, OpenJDK tries to adjust this
parameter based on the survivor space size, and any collector may need to promote objects
earlier if the survivor space fills up.

The objects that will be promoted in one eden collection are objects that survived T
eden collections. The size of objects in survivor spaces is then

∫ (T−1)E
E L(x)dx (neglecting

cases where the program ran out of room the survivor spaces). There are two approaches to
applying this formula given actual measurements: one can use measurements of the amount
promoted, and the amount surviving to approximate the function F (y) =

∫ y
0 L(x)dx. In

particular, in addition to obtaining a value of F (y) from an collections at an eden size y,
garbage collectors, including OpenJDK, can indicate how much of the survivor space is used
by objects of each age.

This provides an estimate of the amount of data in survivor spaces and the amount
promoted, but does not indicate the amount of time spent on survivor space collection. To
adjust the model of Chapter 6 to handle that, one can modify its time estimate for eden
collections. Instead of the time spent being proportional by the size of promoted objects, it
should be proportional to the size of objects either promoted or remaining in survivor spaces.
In generational collectors, surviving objects are usually copied after every minor collection
rather than incurring the additional complexity of handling fragmentation.
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A problem with the approach above is that it assumes a steady state — an assumption
that is not true as illustrated in Section 6.3.1. Variation from steady state is very problematic
for modeling survivor spaces. In particular, it is common for analytics programs to have
periods when a significant portion of objects are long-lived — some dataset is being loaded
— and periods when few objects are long-lived — a loaded dataset is being processed.
This pattern decreases the impact of survivor spaces. During these ‘loading’ periods, the
survivor spaces will be exhausted, and during the ‘quiet’ periods, the survivor spaces will be
comparatively underutilized.

One simplifying assumption that would aid in modeling these affects is that the amounts
remaining after different number of minor collections are highly correlated. Namely, the
times when the largest quantity of objects survives K eden collections are the same as the
times when largest quantity will survive after (K + 1) collections. Given this assumption,
one can segment the distributions of the amounts of objects surviving each number of eden
collections based on the how many minor collections could occur before survivor spaces
would be exhausted. The garbage collection overhead for each these segments could then be
estimated separately.

This segmentation assumes variation in the maximum age allowed in survivor space will
match the variation in the amount surviving rather than this maximum age, for example,
being set statically. For OpenJDK configured with a static survivor space size, this behavior
would depend on the control loop in [88] closely approximating this behavior as it attempts
to optimize throughput. If one also allows that control loop to dynamically change the
survivor space size (the default behavior), one could similarly assume that it is behavior will
approximate the optimal size for each region of portions promoted.

8.3.2 Concurrent collectors

Probably the most common concern about garbage collectors commercially is pause times,
that is times when application code is not allowed to run to let the garbage collector proceed.
For things like web services and online transaction-processing systems, these have the most
user visible effect on performance. To reduce pause times, many garbage collector designs try
to run concurrently with the application. This not without cost. One cost in additional syn-
chronization required to ensure that application activity does not interfere with the collector
and vice-versa. Another cost is from what is collected: where after a traditional garbage
collector completes, there will be no dead objects in memory, a concurrent collector will miss
some of the objects made unreachable while it was performing its collection pass. Conse-
quently, a concurrent collector is likely to have somewhat increased memory requirements to
achieve the same average overhead as a non-concurrent collector.

There are two problems for modeling garbage collector overhead for these collectors. One
is the different amount of objects they collect. To model this conservatively, one can consider
a simple form of concurrent collector — one imagines a two-generation collector, but whose
full collections only collect objects that were free immediately after the prior collection.
This would imply that the collector takes a ‘snapshot’ of live objects after it finishes doing a
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collection and immediately start the next collection. In practice, concurrent collectors that
take snapshots like this often start later, but this approach would seem consistent with the
conservative overhead estimation approach.

When concurrent collectors are most beneficial, it is because it is possible to overlap time
when useful computation cannot be done with garbage collection activity. So, to decide how
to use concurrent collectors, one should estimate how helpful this overlap is. The simplest
way to estimate this would be to measure the compute usage of the underlying program
to identify the aggregate number of compute cycles that are free. Problematically, this is
another case where the actual performance gains are likely to be sensitive to different phases
of program operation — only if the times when the analytics program does not pin the CPU
coincide with times when it needs garbage collection is the concurrent collector going to be
helpful. To account for this, one could group the measurements memory allocation activity
with corresponding measurements of compute demand.

For example, one could split the program execution into several fixed-sized segments,
and model each segment separately to limit the effect of the mismatch between where free
compute time is and where garbage collection is required. But generally, this does not lend
itself to an approach where one can reasonably say that overhead prediction was a upper-
bound on the actual overhead.

8.4 Interactions with Shared Storage

My focus on analytics programs has assumed that an analytics program uses memory inde-
pendently of other programs, with its memory managed within its own language runtime.
Some designs for in-memory analytics try to share memory between otherwise independent
queries. There are two common ways this is achieved: either by running one instance of a
framework, with a common language runtime, that has sessions with multiple users, or by
using an in-memory filesystem that allows frameworks to access the in-memory file directly
(such as via Alluxio [2] or HDFS with short-circuit local reads [8]).

These approaches make it more efficient both when the same data is being analyzed by
multiple users and when a single user has an analysis pipeline that combines multiple tools
built on different, otherwise incompatible frameworks. For it to work well, the data must be
manipulated without being transformed, likely requiring frameworks use the data in a form
other than what is most natural for user-defined functions.

The techniques I use to estimate framework memory requirements can largely estimate
requirements for these shared filesystems, which act similarly to a analytic’s framework inter-
nal data store. Problematically, however, except in cases where the user allocates resources
for a single pipeline, it is not clear how a user would use a recommendation — current prac-
tice does not have users explicitly request resources, and it is not clear what form requests
should take when data is shared between multiple users.
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8.5 Space/Time Tradeoffs

My configuration tool is premised on users making good decisions about what to make eligible
to keep in memory. As my evaluation illustrated, for some programs, the benefit of keeping
extra data in memory is minimal — and users would often be better off having some data
be recomputed or reread from disk.

The primary difficulty in accounting for this is estimating the cost of recomputing or
rereading data. Enabling caching is likely to the order of computations. When data is
produced on demand each element is likely to be computed or deserialized just before it is
used in the next stage of the computation. When it is cached, it is likely to be read or
written sequentially from or to an array.

Adding instrumentation to measure the computation time or deserialization time of small
slices of computation is likely to have high overhead, but is certainly possible. BigDebug[36]
does this for Spark for the purpose of identifying values that are very slow to process, and
reports around 20–120% (depending on the program) overhead for this type of monitoring.
But it is not clear whether assessing the cost of the slice of computation will produce accurate
estimates because of the changes to data locality and variation in I/O costs. To compensate
for this, one could test changing the caching policy at the granularity of full tasks or similarly
large units of work to estimate the difference in execution time.

Given an estimate of difference between caching and not caching — additional compu-
tation or serialization and I/O costs, a second problem is deciding which items to cache or
not cache. A simple way to apply them would be a greedy strategy, finding which caching
decisions results in the best reduction in estimated cost. Then, after each decision, one could
update the costs of new decisions based on corresponding changes in the times to compute
derived data from what would be cached. Doing this requires more examination of the ex-
ecution dependencies than my trace-based analysis uses. From these dependencies, one can
determine how the execution trace would change if a particular dataset were or were not
cached. The greedy strategy might not produce the best results: for example, if two derived
datasets have a common ancestor, caching that ancestor might be the locally best decision
(starting from no caching) while caching the derived datasets individually might be globally
best.

After obtaining a recommendation for what caching decisions to make, an important
matter of practical difficulty is the separation between the framework-level decision and the
user’s action. This is a place where the universal interface of the framework’s tasks and
datasets is not helpful. For example, it is common for user’s of Spark to use the framework
through a SQL layer or a machine learning library, etc. Telling a user where a dataset was
created that should or should not be cached is thus not actionable — this will often be
asking them to make a change within a library. Even when it is contained entirely within
their own code, the point to change may be part of a loop — either one needs to suggest
which iterations matter or be sure that recommendations apply to all iterations of the loop.
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8.6 Conclusion

Visibility into memory usage is imperfect. Even when one is only considering memory
usage within an specific analytics framework like Spark, there are challenges due to the
layers of abstraction within the it. My model relied on observing the lower level of Spark’s
abstraction and therefore is not so well connected to the actual computation specified by
the user. Because of this gap, I needed to add instrumentation to connect higher-level
decisions, like recomputation, to lower-level instrumentation. Frameworks would benefit
from being designed with making such abstraction breaking easy and more general, especially
as additional layers of abstraction, like shared in-memory storage systems, query engines,
and libraries are required.

Similarly, for reasoning about garbage collection, while modeling more complicated garbage
collectors is certainly challenging, there is distinct lack of visibility into program memory
demands. Some of this seems simple to fix — for example, that is hard to get counts of
objects instead of just sizes. Large benefits in modeling garbage collectors without simply
trying a variety of garbage collector configurations might come from being able to better
understand a program’s memory demands. Unfortunately, techniques for measuring this
well has high overheads because of the fundamental limitation that, beyond some sort of
complicated static analysis, the only way to determine lifetime bounds is to force garbage
collections.

The need to do extra work to force measurements also exists for framework configuration
issues, but seems less problematic. A major gap in my model is that the assumption that
users want to keep everything in memory does not appear to be appropriate, based on the
actual memory tradeoffs I observed. With some assistance from the framework and certainly
noticeable overheads, it seems likely one could estimate the effects of decisions about what
to actually keep in memory.

Generally, through coarse-grained observations and simplified models of analytics stacks,
I have provided useful memory recommendations. There is promise to improving these
recommendations by dropping some of these simplifications or relying on more detailed
instrumentation. In addition to expanding my work, the gaps in instrumentation I observed
suggest how future analytics systems could improve visibility into their memory usage. A
common theme was problems due to layering — true sizes and memory usage decisions were
not known at the layer from which instrumentation was recorded. Through more complete
monitoring and more complete models, future systems should be able to help users with
more memory usage decisions compensating for the increasing complexity of their memory
management.
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Chapter 9

Conclusion

When users deploy in-memory analytics programs, they face some unfortunate choices. When
they run their program on shared system, they are asked ‘how much do you want?’. And
whatever they answer, they pay for, especially for relatively constrained memory capacity.
In this process are users are not likely to receive feedback about whether their choice was
good — except in the form of bad behavior when their guess is too low.

In this dissertation, I demonstrated that, with a negligible compute overhead and space
overhead easily eclipsed by the resulting memory allocation savings, analytics frameworks
can provide useful feedback about memory requirements. By taking advantage of the high
level of abstraction of analytics frameworks, I can estimate memory requirements with con-
fidence without, as is typical of prior configuration suggesting systems, needing to obtain
a large number of samples to calibrate a model. Rather than focus on obtaining the most
accurate cost/performance configuration, I emphasized making sure estimates were conser-
vative. By doing this, I reduce user friction to using these estimates — users can start doing
so immediately and should not feel they need to inflate estimates ‘just in case’. By reducing
this friction, my system effectively addresses the main challenge of user memory configura-
tions in practice — users have no clue and it is easier for them to request excess resources
than spend a significant amount of time fixing it.

9.1 User Demands

I investigated how users misconfigure resource requests by examining a trace from a varied
workload on a Google cluster. Comparing the aggregate allocated and used resources, it
seemed around half the cluster’s memory and compute power was reserved and wasted. A
more detailed investigation, acknowledging that the resources need to be allocated to support
maximum rather than actual usage, suggests that the gap is somewhat smaller but still large
— at least a third of resources ‘wasted’.

This gap occurred in spite of apparent efforts to correct it by the cluster scheduler. It
appeared that resource usage was largely stable, and therefore perhaps predictable from
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past usage. The scheduler could and did overcommit resources, but did so very modestly.
Presumably, this behavior avoided inconveniencing users by preventing their programs from
running successfully by second-guessing their resource requests. This modesty, however, did
not prevent the scheduler from imposing high costs in terms of injected failures in the form
of evictions to make room for higher priority workloads.

These high costs of resource misestimation have become more of a problem as large-scale
data analytics software has evolved. Originally the developers of analytics frameworks fo-
cused almost exclusively on scale and taking best advantage of spinning disks, the medium
of choice for large online datasets. Then, with the decreased price of DRAM and increased
use of analytics frameworks for problems that were not among the largest datasets in exis-
tence, later framework developers shifted to using memory. This increased interactivity and
improved performance, especially for less straightforward computation.

One cost was increased sensitivity to memory allocations. No longer were the primary
performance tradeoffs based upon distributed filesystem performance or core count. Instead,
users needed to supply enough memory to store their working set of their program in whatever
(often virtual) machines they allocated for their program. If they missed, performance would
be very poor; if they did not, there was relatively little gain. On account of memory not
before being such a bottleneck in before these in-memory analytics frameworks, little prior
work had examined this problem.

9.2 Recommendation Goals

Faced with evidence of how poor memory configurations were, I built and evaluated a tool to
recommend memory configurations for these in-memory analytics programs, for which these
decisions are particularly important. Although in the cluster scheduler trace I examined
users nominally configured a single memory size, a real recommendation involves accounting
for several sizes, reflecting the several settings the user must configure. Configurations must
account for different regions within the user’s allocation with different purposes and how a
user’s memory allocation should be divided among multiple concurrent workers.

Underlying the configurations my tool SLAMR produced was the hypothesis that memory
configuration has a sharp tradeoff. Below some size, users experience very poor performance
from extra computation or I/O compensating for a lack of memory, but above that size,
users experience little benefit. This hypothesis largely matched the results of my sensitiv-
ity analysis. Sometimes the tradeoff was not so severe, especially for memory usage that
supported aggregation and many-to-many data transfers, where may be more dependent on
network performance.

The assumption of this extreme drop off simplified data collection when modeling frame-
work requirements. My tool did not need to measure the precise costs of computations,
model filesystem performance and serialization performance — all of which would likely re-
quire considerably more invasive instrumentation. The assumption also made using coarse
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estimates of ‘utility’ a practical approach; the steep increase in costs alleviates concerns
about sensitivity to small changes in cost estimates.

It also controlled my instrumentation overhead. As a result, the time overhead from
that instrumentation was minimal, which it may not have been if I needed to take detailed
performance measurements or compare different caching strategies. The main source of
overhead was extra space to support the more finicky garbage collector instrumentation.
But this should usually be made up for by the added memory-efficiency of my configurations
over naive user estimates.

Ultimately, by focusing on safety and low overhead, I believe I provided configurations
in a way which better meets user goals than a system that found the configuration with the
best possible performance. I provide users perhaps more wasteful configurations, but quickly
and with confidence about their potential negative consequences. In this way, my system
avoids getting in the way of users whose real goal is to perform some computation.

9.3 Analyzing Program Traces

To make configuration recommendations, I recorded traces of the behavior of frameworks
and language runtimes. These traces exposed data sizes and access patterns of the real
program. Using these traces, I replayed the program’s behavior in a way that could account
for a multitude of configurations. Key in supporting this analysis was carefully choosing
metrics that were mostly independent of the configuration, reflecting the demands of the
program and not the resources with which it happened to run.

By relying on these relatively low-level traces, I avoided depending on the detailed behav-
ior of the analytics framework or a particular program’s memory allocation patterns. The
cost was that I relied on executing programs to obtain low-level traces, rather than sampling
the program’s execution. In addition avoiding dependencies on implementation details in
the layers underlying the program, using actual traces limits concerns about sampling errors
that hard to reason about when user-defined functions are involved.

9.3.1 Framework Analysis

For framework recommendations, I examined the places where the framework, Apache Spark
in my case, maintained large amounts of data. In addition to identifying these large data
accesses, I also made sure to distinguish which of these accesses caused by insufficient mem-
ory. Thus, I ensured my analyses had the information to infer what would happen when
there was sufficient memory.

To make recommendations, I analyzed accesses to abstractions kept by the analytics
framework in question. This let me handle differences in where data was stored (e.g., once
on each worker versus on one worker) and what configuration parameters controlled whether
its storage would be attempted. Given this separation, I could account for memory’s con-
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tribution to different configuration parameters, and the results of changes to the degree of
parallelism likely to accompany larges changes in memory allocations.

To handle the very common behavior of frameworks and other systems acting like caches,
I used ‘stack algorithms’ based on classic work from the processor cache design literature.
These techniques permit efficient estimation of how much of a cache is ‘necessary’. Such
measurements are likely to be useful outputs for a variety of systems where users currently
wold be likely to empirically sample cache hit rates instead of performing this post-hoc
analysis.

This form of memory was by far most important to determining performance. It was
important overall to model other sources of memory usage, where the framework constructs
some large temporary data structure for each task or stores a large amount of data on each
worker. But these programs were either relatively easy to configure for memoryA represented
by pathological cases. Some programs either had very small memory requirements overall,
and these dominated — they were essentially disk-to-disk transformations. Alternately, they
were programs where the memory usage was only large because of a low partition count.
In this case, experimental results indicated, that at least on my tests systems with fast
(SSD-backed) disks, there was no performance benefit to avoiding higher partition counts.
SLAMR’s main benefit in this case would be identifying the space savings of a higher partition
count.

9.3.2 Garbage Collector Analysis

Unlike in the above analysis, for garbage collectors, the abstractions provided by the language
runtime do not nicely compartmentalize memory usage. Instead, I largely rely on measuring
garbage collection activity and the aggregate sizes that the garbage collector sees. As with
framework measurements, I took some effort to do this in a way that would efficiently capture
activity relevant to a variety of potential configurations.

Capturing appropriate information required some more active intervention. Most notably,
to obtain reasonable measurements, I varied the size of the eden (youngest generation) region
as the program ran. This parameter permitted very fine grained sampling, avoiding problems
from changing configurations that would arise from different ‘phases’ of program behavior.
My examination showed such phases were common, making it unwise to simply rely upon
measurements of average sizes and times. Exploring different eden sizes effectively measured
the low end of the lifetime distribution. Using this, I could estimate the effectiveness of the
generational assumption that more recently allocated objects are more likely to be garbage.

Otherwise, I focused on measuring values that would be roughly constant for a particular
program, even if the garbage collector parameters changed. My choices were validated by
checking that the parameters were constant for a variety of programs despite configuration
changes. Similar to measurements based around varying eden sizes, these values reflected
the mix of object lifetimes and sizes in the program rather than the garbage collector’s
configuration.
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While my goal was to avoid dependence on configuration choice when measuring garbage
collector activity, I was not entirely successful. My estimates of garbage collection time
depended on the total memory allocated to a worker, which I could not effectively vary of
a single execution. Instead, I needed multiple measurements to accurately account for this
effect. Fortunately, this was rarely an important factor in overall recommendations. This is
especially true for natural scenarios where the main issue is the number of workers to use
rather than the size of each of those workers.

Changing the number of workers, however, was more of a concern. The ‘short-term’
measurements of program behavior were very stable, and even the total allocations performed
across each worker was close to constant. But the total amount of space stored on each
worker certainly changed. Fortunately, I could estimate this effect using framework-level
information.

9.3.3 Comparing and Combining Models

I produced complete memory recommendations by combining the framework model with the
garbage collector model. In actually applying these combined models, I needed to merge
the minimum sizes for framework storage along with overhead estimates for the garbage
collector. How this should be done varied depending on how the user pays for resources.
Although looking at precise amounts of memory is more informative for evaluation, under
common models of cluster provisioning the question is more of how many (virtual) machines.

Before looking at the overall recommendations my tool produced, my expectation was
that the framework model would be the more accurate model and the garbage collector one
less accurate. But there were surprising sources of inaccuracy with the framework model.
One was that while the extra work was required due to insufficient memory, it had much less
performance impact than I expected, at least in my testing environment with its relatively
fast storage. More unexpected was that though configuration parameters that were close the
minimum that avoided extra work, the usage explicitly tracked by the framework sometimes
did not match actual memory usage.

One likely reason for this rational paranoia — similar to that of users when making their
memory configuration decisions. To avoid crashes from memory exhaustion, it is better to
overestimate how much memory one is using than spend any effort that would risk under-
estimating it instead. Another is that there is sharing between different sets of stored data
that are hard for frameworks to account for when data is stored as ‘natural’ objects in a
language runtime.

Except for the differences between framework accounting and language runtime account-
ing, the garbage collector estimates generally were less accurate. Part of this is because
they are about overhead and not a Boolean decision, so mismeasurement of compute times
can affect results. Another part is that there is less direct measurement of program activity
available at language runtime level, where one must somehow deal with a large number of
small objects.
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9.4 Summary

Through instrumentation with at most negligible time overheads and space overheads easily
recovered by the improved memory configuration, SLAMR efficiently provides users with
recommendations about their memory usage. I focused on providing recommendations which
would avoid memory exhaustion problems rather than finding the optimal price/performance
point. This goal made constructing recommendations more efficient and better matched user
incentives.

Failures and very poor performance encourage users to dramatically overprovision re-
sources. I saw this sort of overprovisioning empirically in actual mixed cluster workloads
typical of where analytics programs are run. Similar incentives would encourage them to
add ‘slack’ on top of not-so-reliable recommendations. To compensate for this, I focused on
constructing my recommendations to represent an upper bound on the necessary memory
allocation. To lower friction for users and accommodate more ad-hoc analyses newer ana-
lytics frameworks allow, I also made these recommendations with minimal instrumentation
overhead, piggybacking on the user’s normal program executions.

My technique for producing recommendations was focused around collecting traces of the
program behavior during these executions. By observing an actual execution, I did not need
to account for much of the machinery of analytics frameworks and their underlying language
runtimes. I measured the workload placed upon the framework and its underlying language
runtime avoiding measurements that would simply reflecting its current configuration. I used
approximate models of cache behavior and of garbage collector behavior, making approxi-
mations that may overestimate sizes to account for variable or hard-to-measure behavior.

These multilayered analytics stacks do not need to be black boxes. By observing a
summary of the demands a program places on some layer of the stack, one can estimate
the behavior of the stack in a variety of configurations. Thus, using observations gener-
ally sharing infrastructure with the mechanisms they use to make runtime decisions, these
systems can demystify their resource requirements. This is particularly useful for memory
requirements, which are increasingly important for end users to understand as large-scale
data analysis becomes more accessible. Rather than making the deployment of analytics
applications a guessing game, the layers of abstraction for managing data in these relatively
new systems can be a boon to helping users understand their resource requirements.
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