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Abstract 

Most mortgages in the U.S. are securitized in agency mortgage-backed securities (MBS). Yield 

spreads on these securities are thus a key determinant of homeowners’ funding costs. We study 

variation in MBS spreads over time and across securities, and document a cross-sectional smile 

pattern in MBS spreads with respect to the securities’ coupon rates. We propose non-interest- rate 

prepayment risk as a candidate driver of MBS spread variation and present a new pricing model 

that uses “stripped” MBS prices to identify the contribution of this prepayment risk to the spread. 

The pricing model finds that the smile can be explained by prepayment risk, while the time-series 

variation is mostly accounted for by a non-prepayment risk factor that co-moves with MBS 

supply and credit risk in other fixed income markets. We use the pricing model to study the MBS 

market response to the Fed’s large-scale asset purchase program and to interpret the post-

announcement divergence of spreads across MBS. 
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“Whoever bought the bonds [...] couldn’t be certain how long the loan lasted. If an entire neighborhood moved (paying off its

mortgages), the bondholder, who had thought he owned a thirty-year mortgage bond, found himself sitting on a pile of cash instead.

More likely, interest rates fell, and the entire neighborhood refinanced its thirty-year fixed rate mortgages at the lower rates. [...] In

other words, money invested in mortgage bonds is normally returned at the worst possible time for the lender.” — Michael Lewis,

Liar’s Poker, Chapter 5

1 Introduction

At the peak of the financial crisis in the fall of 2008, spreads on residential mortgage-backed se-

curities (MBS) guaranteed by the U.S. government-sponsored enterprises Fannie Mae and Freddie

Mac and the government agency Ginnie Mae spiked to historical highs. In response, the Federal

Reserve announced that it would purchase MBS in large quantities to “reduce the cost and increase

the availability of credit for the purchase of houses.”1 Mortgage rates for U.S. homeowners reflect

MBS spread variation as most mortgage loans are securitized. After the announcement, spreads

on lower-coupon MBS declined sharply, consistent with the program’s objective; however, spreads

on higher-coupon MBS widened. This paper shows that the differential response can be explained

with an MBS pricing model that features multiple sources of risk. We first characterize the time-

series and cross-sectional variation of MBS spreads in a 15-year sample, and then present a method

to disentangle contributions of different risk factors to variation in MBS spreads.

Credit risk of MBS is limited because of the explicit (for Ginnie Mae) or implicit (for Fannie

Mae and Freddie Mac) guarantee by the U.S. government. However, MBS investors are uniquely

exposed to uncertainty about the timing of cash flows, as exemplified by the quote above. U.S.

mortgage borrowers can prepay the loan balance at any time without penalty, and do so especially

as rates drop. The price appreciation from rate declines is thus limited as MBS investors are short

borrowers’ prepayment option. Yields on MBS exceed those on Treasuries or interest rate swaps to

compensate investors for this optionality. But even after accounting for the option cost associated

with interest rate variability, the remaining option-adjusted spread (OAS) can be substantial. Since,

as shown in the paper, the OAS is equal to a weighted average of future expected excess returns

after hedging for interest rate risk, non-zero OAS suggests that MBS prices reflect compensation for

additional sources of risk. We decompose these spreads into risks related to shifts in prepayments

1http://www.federalreserve.gov/newsevents/press/monetary/20081125b.htm. The term “MBS” in this paper
refers only to securities issued by Freddie Mac and Fannie Mae or guaranteed by Ginnie Mae (often called “agency
MBS”) and backed by residential properties; according to SIFMA, as of 2013:Q4 agency MBS totaled about $6 trillion in
principal outstanding. Other securitized assets backed by real estate property include “private-label” residential MBS
issued by private firms (and backed by subprime, Alt-A, or jumbo loans), as well as commercial MBS.

1

http://www.federalreserve.gov/newsevents/press/monetary/20081125b.htm


that are not driven by interest rates alone, and a component related to non-prepayment risk factors

such as liquidity.

To measure risk premia in MBS, we construct an OAS measure based on surveys of investors’

prepayment expectations, and also study spreads collected from six different dealers over a pe-

riod of 15 years. In both cases, we find that, in the time series, the OAS (to swaps) on a market

value-weighted index is typically close to zero but reaches high levels in periods of market stress,

such as 1998 (failure of Long-Term Capital Management) or the fall of 2008. We also document

important cross-sectional variation in the OAS. At any point in time, MBS with different coupons

trade in the market, reflecting disparate rates for mortgages underlying each security. We group

MBS according to their “moneyness,” or the difference between the rate on the loans in the MBS

and current mortgage rates, which is a key distinguishing feature as it determines borrowers’ in-

centive to prepay their loans. In this cross section we uncover an “OAS smile”: spreads tend to be

lowest for securities for which the prepayment option is at-the-money (ATM), and increase if the

option moves out-of-the-money (OTM) or in-the-money (ITM). A similar smile pattern also holds

in hedged MBS returns.2

The OAS smile suggests that investors in MBS earn risk compensation for factors other than

interest rates; in particular, these may include other important systematic drivers of prepayments,

such as house prices, underwriting standards, and government policies. While the OAS accounts

for the expected path of these non-interest-rate factors, it may still reflect risk premia associated

with them, because prepayments are projected under a physical, rather than the risk-neutral, mea-

sure. These risk premia, which we refer to as “prepayment risk premia,” cannot be directly mea-

sured because market instruments that price these individual factors are typically not available.3

While prepayment risk premia may give rise to the OAS smile, risk factors unrelated to prepay-

ment, such as liquidity or changes in the perceived strength of the government guarantee, could

also lead to such a pattern. For example, newly issued MBS, which are ATM and more heavily

traded, could command a lower OAS due to better liquidity. Without strong assumptions on the

liquidity component, prices of standard MBS (which pass through both principal and interest pay-

ments) are insufficient to isolate prepayment risk premia in the OAS. Instead, we propose a new

approach based on “stripped” MBS that pass through only interest payments (an “IO” strip) or

2Correspondingly, a pure long strategy in deeply ITM MBS earns a Sharpe ratio of about 1.9 in our sample, as
compared to about 0.7 for a long-ATM strategy. We also show that OAS predict future realized returns, and that realized
returns are related to movements in moneyness in a way consistent with the OAS smile.

3Importantly, in our usage, “prepayment risk” does not reflect prepayment variation due to interest rates; instead it
is the risk of over- or underpredicting prepayments for given rates.
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principal payments (a “PO” strip). The additional information provided by separate prices for

these strips on a given loan pool, together with the assumption that a pair of strips is fairly valued

relative to each other, allows us to identify market-implied risk-neutral (“Q”) prepayment rates as

multiples of physical (“P”) ones. We refer to the remaining OAS when using the Q-prepayment

rates as OASQ, while the difference between the standard OAS and OASQ measures a security’s

prepayment risk premium.

Our pricing model finds that the OAS smile is explained by higher prepayment risk premia

for securities that are OTM and, especially, ITM. There is little evidence that liquidity or other

non-prepayment risks vary significantly with moneyness, except perhaps for the most deeply ITM

securities. In the time series, instead, we document that much of the OAS variation on a value-

weighted index is driven by the OASQ component. We show that OASQ on the index is related

to spreads on other agency debt securities, which may reflect shared risk factors such as changes

in the implicit government guarantee or liquidity. Even after controlling for agency debt spreads,

OAS are strongly correlated with credit spreads (Baa-Aaa). Given the different sources of risk in the

two markets, this finding may suggest the existence of a common marginal investor in corporates

and MBS that exhibits time-varying risk aversion, such as an intermediary subject to time-varying

risk constraints (for example, Shleifer and Vishny, 1997; He and Krishnamurthy, 2013). Consis-

tently, we find that a measure of supply of MBS (based on new issuance) is also positively related

to OASQ.

The OAS response to the Fed’s large-scale asset purchase (LSAP) announcement in November

2008 provides further evidence in line with our findings. According to our model, the OASQ fell

across coupons, as investors anticipated that the Fed would absorb much of the near-term MBS

supply, thereby relieving private balance sheet constraints. The divergence in OAS across coupons

was driven by higher-coupon securities’ prepayment risk premia increasing as these securities

moved further ITM, reflecting the more general smile pattern.

Related literature. Several papers have studied the interaction of interest rate risk between MBS

and other markets. This literature finds that investors’ need to hedge MBS convexity risk may ex-

plain significant variation in interest rate volatility and excess returns on Treasuries (Duarte, 2008;

Hanson, 2014; Malkhozov et al., 2016). Our analysis is complementary to this work as we focus on

MBS-specific risks and how they respond to changes in other fixed income markets. Closer to this

paper, Boudoukh et al. (1997) suggest that prepayment-related risks are a likely candidate for the
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component of MBS prices unexplained by the variation in the interest rate level and slope. Carlin

et al. (2014) use long-run prepayment projections from surveys, which we also employ, to study

the role of disagreement in MBS returns and their volatility.4

Gabaix et al. (2007) study OAS on IO strips from a dealer model between 1993 and 1998, and

document that these spreads covary with the moneyness of the market, a fact that they show to be

consistent with a prepayment risk premium and the existence of specialized MBS investors. Gabaix

et al. do not focus on pass-through MBS and, while their conceptual framework successfully ex-

plains the OAS patterns of the IOs in their sample, it predicts a linear, rather than a smile-shaped,

relation between a pass-through MBS’s OAS and its moneyness, since they assume that securities

have a constant loading on a single-factor aggregate prepayment shock. We show that the OAS

smile is in fact a result of prepayment risk but of a more general form, while also allowing for

liquidity or other non-prepayment risk factors to affect OAS. Similarly to this paper’s empirical

pricing model, Levin and Davidson (2005) extract a market-implied prepayment function from

the cross section of pass-through securities.5 Because they assume, however, that the residual risk

premia in the OAS are constant across coupons, the OAS smile in their framework can only be ex-

plained by prepayment risk and not liquidity. By using additional information from stripped MBS,

this paper relaxes this assumption. Furthermore, we provide a characterization of spread patterns

over a long sample period and study risk premia covariates.

Two interesting papers subsequent to this work also emphasize the importance of prepayment

risk for the cross section of MBS. Chernov et al. (2016) estimate parameters of a simple prepayment

function from prices on pass-through MBS. Consistent with our results, they find an important role

for a credit/liquidity spread (assumed constant in the cross section) in explaining price variation

over time. In terms of prepayment risk, their model implies a dominant role for risks related to

turnover independent of refinancing incentives, rather than risks related to refinancing activity of

ITM borrowers. Diep et al. (2017) study the cross section of realized MBS excess returns. As in

this paper, they find evidence of a smile pattern in their pooled data, with ATM pools earning rela-

tively lower excess returns. However, they argue that different conditional patterns of returns exist

4Song and Zhu (2016) and Kitsul and Ochoa (2016) study determinants of financing rates implied by MBS dollar
rolls, which are generally affected by liquidity, prepayment and adverse selection risks. Dollar rolls are matched pur-
chases/sales of MBS contracts settling in two subsequent months. While implied financing rates partly reflect MBS
liquidity, their calculation relies on prepayment rate expectation under the physical measure and therefore should also
incorporate prepayment risk premia as discussed in this paper. Furthermore, as Song and Zhu (2016) emphasize, dollar
rolls are strongly affected by adverse selection risk.

5Cheyette (1996) and Cohler et al. (1997) are earlier practitioner papers proposing that MBS prices can be used to
obtain market-implied prepayments.
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depending on whether the MBS market as a whole is ITM or OTM, suggesting that prepayment

risk premia change sign with market moneyness. As we show in Section 3, the smile pattern in ex-

pected excess returns as measured by OAS holds irrespective of market type, and cross-sectional

patterns in returns are also consistent with the smile when we study their relation with changes in

mortgage rates (and thus moneyness).

2 Background on agency MBS

This section overviews the agency MBS market (or, for brevity, MBS market), one of the largest and

most liquid fixed income markets in the world. In an agency securitization, a mortgage originator

pools loans and then delivers the pool to Fannie Mae or Freddie Mac in exchange for an MBS

certificate, which can be subsequently sold to investors in the secondary market.6 Servicers, which

are often affiliated with the loan originator, collect payments from homeowners that are passed on

to MBS holders after deducting a servicing fee and the agency guarantee fee. In a standard MBS,

also known as a pass-through, homeowners’ payments (interest and principal) are assigned pro-

rata to all investors. However, cash flow assignment rules can be more complicated with multiple

tranches, as is the case for stripped MBS that separate interest and principal payments. We focus

on MBS backed by fixed-rate mortgages (FRMs) with original maturities of 30 years on 1-4 family

properties, which account for more than two-thirds of all MBS.

In MBS, the risk of default of the underlying mortgages is not borne by investors but by the

agencies that guarantee timely repayment of principal and interest. Because of this guarantee,

MBS are generally perceived as free of credit risk. While Ginnie Mae securities have the full faith

and credit of the U.S. government, assessing credit risk of Fannie Mae and Freddie Mac securi-

ties is more complex. Government backing for these securities is only implicit and results from

investors’ anticipation of government support under a severe stress scenario, as when Fannie Mae

and Freddie Mac were placed in federal conservatorships in September 2008.7

The bulk of MBS trading occurs in the to-be-announced (TBA) market. The TBA market is a

forward market for pass-through MBS where a seller and buyer agree on a number of character-

istics of the securities to be delivered (issuer, maturity, coupon, par amount), a transaction price,

6In addition to these “lender swap” transactions, Fannie Mae and Freddie Mac also conduct “whole loan conduit”
transactions, in which the agencies buy loans against cash from (typically smaller) originators, pool these loans them-
selves, and then market the issued MBS.

7The conservatorships have resulted in an effective government guarantee of Fannie and Freddie securities since
September 2008, but (at least in principle) this guarantee is still temporary and thus not as strong as the one underlying
Ginnie Mae securities.
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and a settlement date either 1, 2, or 3 months in the future (Vickery and Wright, 2013). The precise

securities that are delivered are only announced 48 hours prior to settlement, and are chosen on a

“cheapest-to-deliver” basis. Aside from the TBA market, trading also occurs for “specified pools,”

either for securities that are not TBA-eligible or for ones that are especially valuable.

MBS with different coupons coexist primarily because of disparate loan rates of the mortgages

underlying an MBS, resulting from different loan origination dates or other factors such as “points”

paid (or received) by the borrowers. The benchmark TBA contract is the “current coupon,” a

synthetic 30-year fixed-rate MBS obtained by interpolating the highest coupon below par and the

lowest coupon above par.8 While newly originated mortgages are securitized in coupons trading

close to par, the current coupon is not representative of the market as a whole because only a small

share of all outstanding MBS trades close to par. For example, as shown in Figure 1, the current

coupon at the end of 2010 was around 4% (red line, measured on the right y-axis) but securities

with a 4% coupon were only about 20% of the total outstanding balance. Rather than focusing on

the current coupon, below we compute value-weighted spread averages for the MBS universe and

study the cross section of all outstanding traded MBS coupons.9

A distinct feature of MBS is the embedded prepayment option: borrowers can prepay the loan

balance at par at any time without paying a fee to the current holder of the loan. Borrowers’

prepayments are uncertain and depend on changes in their characteristics (e.g. credit scores) and

macroeconomic factors such as house prices and, most importantly, interest rates. Borrowers tend

to refinance and prepay their mortgages when available rates on new mortgages are below the

coupon rate they are currently paying. MBS investors, which are short the borrower’s American

prepayment option, therefore have limited upside as rates decline. Pricing this embedded option

is crucial in the valuation of MBS, as discussed in more detail next.

3 Spreads and returns in the MBS market

In this section, we provide formal descriptions and definitions of MBS cash flows, prices, and yield

premia (or spreads). In particular, we define the option-adjusted spread (OAS) and a prepayment-

risk-neutral version of it (OASQ), and characterize what risk premia they represent. We then pro-

8Alternatively, it is obtained by extrapolating from the lowest coupon above par in case no coupon is trading below
par (which has frequently been the case in recent years). Sometimes the term “current coupon” is used for the actual
coupon trading just above par; we prefer the term “production coupon” to refer to that security.

9Another limitation of the current coupon is that since it is a synthetic contract, variation in its yield or spreads can be
noisy because of inter- and extrapolations from other contracts and the required assumptions about the characteristics
of loans that would be delivered in a pool trading at par (Fuster et al., 2013).
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vide stylized facts about OAS and relate them to MBS returns, both theoretically and empirically.

3.1 MBS cash flows, prices, and spreads

Consider a complete probability space (Ω,F , P), where Ω is the state space, F is the σ-algebra of

observable events and P is a probability measure assigning probabilities to events. The uncertainty

in the economy arises from three sources: Nr factors ρt that drive the evolution of interest rates in

the economy, Nγ non-interest rate factors γt that impact prepayments, and a factor lt that affects

MBS market liquidity.

For concreteness, we assume that the Nr interest rate factors evolve according to a vector Brow-

nian motion with (potentially) stochastic drift and stochastic volatility:

dρt = µrtdt + σrtdZrt, (3.1)

where Zrt is an Nr-dimensional Brownian motion under the physical probability measure P, and

µrt and σrt are a scalar- and a vector-valued function of ρt, respectively. The evolution of the interest

rate factors (3.1) is fairly general and includes, as special cases, traditional affine term structure

models (e.g. Dai and Singleton, 2000) and the Markovian version of the Heath, Jarrow, and Morton

(1992) model employed in the empirical pricing model of Section 4. Under a Markovian factor

evolution, the yield y(n)t on a risk-free bond with time-to-maturity n only depends on current rate

factor realizations: y(n)t = y (ρt, n). Below, the instantaneous risk-free rate is also denoted by

rt = y(0)t .

Similarly, non-interest-rate prepayment factors γt evolve under P according to a Brownian

motion with (potentially) stochastic drift and stochastic volatility:

dγt = µγtdt + σγtdZγt, (3.2)

where Zγt is an Nγ-dimensional standard Brownian motion under P uncorrelated with Zrt, or

Et

[
dZrtdZ′γt

]
= 0, and σγt are a scalar- and a vector-valued function of (ρt, γt), respectively. For

example, γt could reflect the strength of the housing market that may affect prepayments due to

household relocations. Finally, the liquidity factor lt follows a Poisson jump process with jump

intensity µt, counting process dJt and compensated jump process dNt = dJt − µtdt. When a jump

is realized, each MBS security loses a (security-specific) fraction α of its market value. For example,

α could represent the price impact of an MBS market liquidity shock (as in Acharya and Pedersen,

2005) or a (perceived) weakening of the agency guarantee.

Consider a mortgage pool with original balance of 1, maturity date T and coupon rate c. Let c̃
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be the fixed mortgage rate paid by the mortgagor, which is about 50 bps higher than c in order to

cover servicing and guarantee fees. As shown in Appendix A, the remaining principal balance θt

at time t is:

θt = e−
∫ t

0 s∗udu × ec̃T − ec̃t

ec̃T − 1
.

where s∗t represents instantaneous unscheduled principal payments. Unscheduled payments s∗t

depend on a borrower’s refinancing incentive c̃− y(T)t , where y(T)t is the interest rate on new loans,

and on the vector of non-interest risk factors γt:

s∗t = f
(

γt, c̃j − y(T)t

)
.

In this section, we consider standard pass-through MBS that pay out cash flows, dXt, equal

to all principal, −dθt, and interest payments net of fees, c θtdt: dXt = c θtdt − dθt. As shown

in Appendix A, the evolution of the principal balance dθt is locally-deterministic, so dθt = −µθtdt,

where µθt is known at time t. Then the cash flows to the pass-through are also locally-deterministic,

with dXt = µXtdt and µXt known at time t.

Below, we will use different risk-neutral measures to define OAS and OASQ. To streamline

the exposition, we consider a generic measure R that is absolutely continuous with respect to the

physical probability measure P. Under no-arbitrage, there exists a pricing kernel MR
t under R

such that the time t price of the pass-through security is given by

Pt = ER
t

[∫ T−t

0

MR
t+s

MR
t

(1− α)
∫ s

0 dJt+u µX,t+sds

]
. (3.3)

Since the pass-through security loses a fraction α of its market value every time that a market

liquidity event occurs, (1− α)
∫ s

0 dJt+u is the fraction of market value that remains after
∫ s

0 dJt+u liq-

uidity events occur between time t and time t + s. Under R, the risk-free rate, rt, is

rtdt = −ER
t

[
dMR

t

MR
t

]
,

and an investor in the pass-through security earns an instantaneous excess return

drxR
t =

dPR
t + µXtdt

Pt−
− rtdt, (3.4)

where Pt− is the price the instant before the uncertainty about a jump occurring at date t is resolved.
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Under no arbitrage, excess returns satisfy the fundamental asset pricing equation:

ER
t

[
drxR

t

]
≡ rpR

t dt = −ER
t

[
dMR

t

MR
t

drxR
t

]
; (3.5)

that is, the expected excess return compensates an investor in the MBS for decreases in cash flows

that occur when the equilibrium marginal discount rate is high. Iterating (3.4) forward, the price

of the pass-through is

Pt = ER
t

[∫ T−t

0
exp

(
−
∫ s

0

(
rt+udu + drxR

t+u

))
(1− α)

∫ s
0 dJt+u µX,t+sds

]
. (3.6)

MBS are often valued in terms of a yield premium, or spread, which is a parallel shift in the risk-

free yield curve that equalizes the market price and the expected discounted value of cash flows:

Definition 3.1 (ypR). The yield premium on a mortgage-backed security under measure R, ypR
t , at time t

is implicitly defined as

Pt = ER
t

[∫ T−t

0
exp

(
−
∫ s

0

(
rt+u + ypR

t

)
du
)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
. (3.7)

This is the continuous-time analog of a standard spread measure used in industry (see Hayre,

2001, for example), where the cash flows that accrue to an investor include the payments made

into the pass-through, µXtdt, but also allow for losses of market value due to liquidity shocks, αdJt.

The yield premium is increasing in the discounted value of cash flows relative to the market price,

so that an MBS trading below the model price under R has a positive yield premium.

The standard OAS is constructed under an interest-rate-risk-neutral measure Qr, which dif-

fers from the usual asset pricing (fully) risk-neutral measure Q. Crucial to our analysis is also

the interest-rate-and-prepayment-risk neutral measure Qr,γ. The three measures (summarized in

Table 1) are all absolutely continuous with respect to the physical probability measure P and are

distinguished by the subset of securities having martingale discounted gains processes under each

measure.10 To define the three measures, consider the price Pχt of a claim to generic cash flows

dχt = µχtdt + σχr,tdZrt + σχγ,tdZγt,

10For a security with price Pχt and cash flows dχt, the discounted gains process dGR
χt under measure R is (Duffie,

2010a)

dGR
χt = d

(
exp

(
−
∫ t

0
rudu

)
Pχt

)
+ exp

(
−
∫ t

0
rudu

)
dχR

t .
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that loses a fraction αχ of market value each time a liquidity shock if realized. Under the standard

risk-neutral measure Q, the discounted gains process is a martingale, the yield premium is zero

(ypQ
t ≡ 0), and the price Pχt of a stream of cash flows {dχt+s}s≥0 that has exposure αχ to the

liquidity shock is given by

Pχt = E
Q
t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)
(1− αχ)

∫ s
0 dJt+u dχt+s

]
. (3.8)

In practice, MBS investors actively hedge interest rate risk but are exposed to liquidity risk and

non-interest factors that affect prepayments, such as changes in lending standards, house prices

and government policies. As a result, MBS are typically valued in terms of the option-adjusted

spread (OAS), which is a yield premium that takes into account variability in the future path of

interest rates and the resulting variation in prepayment due to interest rates only.11 The practical

reason why the OAS does not incorporate non-interest factors is that market instruments priced

off each of these factors are not available; thus, risk premia associated with these factors cannot be

measured directly.12 Formally, the industry-standard OAS is the yield premium under the interest-

rate-risk-neutral measure Qr:

ypQr
t ≡ OASt.

Under the interest-rate-risk-neutral Qr, the discounted gains processes of securities not exposed to

either prepayment or liquidity risk (Et [dχtdγt] = 0 and αχ = 0) are martingales. The price of such

securities is:

Pχt = ER
t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)
dχt+s

]
, (3.9)

with R = Qr. For securities that are exposed to either prepayment or liquidity risk, the discounted

gains process is no longer a martingale under Qr, and the price is given by (3.3) for R = Qr. When

liquidity and prepayment risks are priced, the OAS for these securities will be non-zero.

To separate prepayment risk from other risks (such as liquidity), we introduce the rate-and-

11Earlier versions of this paper also studied spreads that do not account for interest rate volatility (often called zero-
volatility spreads, or ZVS) as well as the difference between these spreads and the OAS.

12House prices are an important factor driving prepayments. While they are themselves dependent in part on inter-
est rates, empirically the link is surprisingly weak (e.g., Kuttner, 2014). Risk premia for the residual component could
potentially be measured if there was a liquid market for house price futures; however, despite various efforts this is not
the case (see e.g. https://www.inman.com/2012/03/23/market-housing-futures-has-yet-take/; accessed Decem-
ber 1, 2017). There exist other assets that could potentially be used to partially hedge home price risk (e.g. stocks of
construction companies), but this is associated with basis risk and complexity.
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prepayment-risk-neutral measure Qr,γ. Under this measure, only the discounted gains processes

of securities not exposed to liquidity risk (αχ = 0) are martingales and the price of these securities

is given by (3.9) with R = Qr,γ. For securities exposed to liquidity risk, the discounted gains

process is not a martingale under R = Qr,γ, and the price is given by (3.3) with R = Qr,γ. To

distinguish the yield premium under Qr,γ from the traditional OAS and to simplify notation, we

denote the prepayment-risk-neutral yield premium by OASQ (rather than OASQr,γ ):

ypQr,γ
t ≡ OASQ

t .

3.2 Risk premia in OAS and OASQ

Which risk premia do OASt and OASQ
t reflect? To study this, we express the evolution of cash

flows to the pass-through in terms of interest and principal payments, cθtdt and −dθt. Further-

more, we use of the fact that, for a security with fractional market value recovery in the case of

a jump, the jump component modulates the discount rate, given the measure-appropriate jump

intensity (e.g., Lando, 2009, Ch. 5.6). Thus, the price of the pass-through is

Pt = ER
t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t + αµt+uπR
l,t+u

)
du
)(

cθt+τdτ − dθR
t+τ

)]
,

where µtπ
R
lt is the intensity of the liquidity jump process under measure R, and the evolution of

the remaining principal balance, dθR
t , is also taken under R. Integrating by parts and substituting

the evolution of the remaining principal balance:

Pt = θt

{
1 + ER

t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t + αµt+uπR
t+u + s∗t+u

)
du
)
×

× ec̃T − ec̃τ

ec̃T − ec̃t

(
c−

(
rt+τ + ypR

t + αµt+τπR
l,t+τ

))
dτ

]}
.

To simplify the exposition, we next assume that there are no shocks to the interest-rate factors,

thus y(T)t = rt ≡ r. We assume further that the arrival rate of liquidity shocks is constant, so that

µt ≡ µ, and that the price of liquidity risk is constant as well, so that πlt ≡ πl .13 Then the price of

13In Appendix D, we show under more general assumptions that holders of MBS securities are compensated for both
prepayment and liquidity risks.
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the pass-through simplifies to

Pt = θt

{
1 +

(
c−

(
r + ypR

t + αµπR
l

)) ∫ T−t

0
e−(r+ypR

t +αµπR
l )τ ec̃T − ec̃(τ+t)

ec̃T − ec̃t SR
t,τdτ

}
, (3.10)

where SR
t,τ is the expectation under R of the cumulative unscheduled principal prepayment be-

tween dates t and t + τ:

SR
t,τ = ER

t

[
exp

(
−
∫ τ

0
s∗t+udu

)]
.

We are now ready to evaluate what the OAS (the yield premium under the interest-rate-risk-

neutral measure, Qr) and the OASQ (the yield premium under the prepayment-and-interest-rate-

risk-neutral measure, Qr,γ) on the pass-through represent. Under the fully risk-neutral measure Q,

based on (3.10), the equilibrium price of the pass-through is given by:

Pt = θt

{
1 + (c− (r + αµπl))

∫ T−t

0
e−(r+αµπl)τ

ec̃T − ec̃(τ+t)

ec̃T − ec̃t SQ
t,τdτ

}
. (3.11)

That is, the equilibrium price in this case reflects both the risk-neutral probability of a liquidity

shock µπl and the expected prepayment path SQ
t,τ under the risk-neutral measure.

Next, the standard OAS is given as the solution to

Pt = θt

{
1 + (c− (r + OASt + αµ))

∫ T−t

0
e−(r+OASt+αµ)τ ec̃T − ec̃(τ+t)

ec̃T − ec̃t St,τdτ

}
. (3.12)

Comparing (3.11) and (3.12), we see that the standard OAS compensates the investor both for dif-

ferences between the risk-neutral and the physical expected cumulative prepayment (differences

between SQ
t,τ and St,τ) and for the difference between the risk-neutral and the physical probability

of a liquidity shock (the difference between αµπl and αµ).

Finally, the prepayment-risk-neutral OAS, OASQ, is given as the solution to

Pt = θt

{
1 +

(
c−

(
r + OASQ

t + αµ
)) ∫ T−t

0
e−(r+OASQ

t +αµ)τ ec̃T − ec̃(τ+t)

ec̃T − ec̃t SQ
t,τdτ

}
. (3.13)

Thus, the prepayment-risk-neutral OAS only compensates the investor for the difference between

the risk-neutral and the physical probability of a liquidity shock. Indeed, comparing (3.11) and

(3.13), we see that OASQ is given by
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OASQ
t = αµ

(
πQ

l − 1
)

. (3.14)

Substituting into (3.12), we have

Pt = θt

{
1 +

(
c−

(
r + OASt −OASQ

t + αµπl

)) ∫ T−t

0
e−(r+OASt−OASQ

t +αµπl)τ ec̃T − ec̃(τ+t)

ec̃T − ec̃t St,τdτ

}
.

Thus, the difference between OAS and OASQ only reflects the difference between the physical St,τ

and the risk-neutral SQ
t,τ expectation of the prepayment path. We therefore define:

Definition 3.2. The prepayment risk premium on a pass-through security is equal to OAS−OASQ.

3.3 OAS variation in the time series

To provide a sense of variation in the standard OAS (which the yield premium that market par-

ticipants generally focus on and report) we next study it both in the time series (using a market

value-weighted index) and in the cross section (in terms of MBS moneyness). We then return to

the model expressions above, and in Section 4 explain and implement our method to isolate pre-

payment risk premia, as just defined.

Because OAS are model-dependent, we collected end-of-month OAS on Fannie Mae securities

in the TBA market from six different major dealers over the period 1996 to 2010.14 As a result,

the stylized facts we present are robust to idiosyncratic modeling choices of any particular dealer

and, through data-quality filters we impose, issues arising from incorrect or stale price quotes.

Whenever possible our analysis uses OAS relative to swaps, rather than Treasuries, since these

instruments are more commonly used for hedging MBS (see e.g. the discussion in Duarte, 2008)

and also because interest rate volatility measures, used to calibrate the term structure model, are

more readily available for swaps.15 Throughout the paper, OAS are expressed in basis points (bps)

per year, following market convention. Further details on the sample, the data-quality filters, and

descriptive statistics are provided in Appendix B.

To characterize time-series OAS variation, we follow the methodology of fixed income indices

(such as Barclays and Citi, which are main benchmarks for money managers) and construct a mar-

14Freddie Mac securities are generally priced relatively close to Fannie Mae’s, reflecting the similar collateral and im-
plicit government backing. The prices of Ginnie Mae securities can differ significantly (for the same coupon) from Fan-
nie and Freddie MBS, reflecting the difference in prepayment characteristics (Ginnie Mae MBS are backed by FHA/VA
loans) and perhaps the explicit government guarantee. Throughout this paper, we focus on Fannie Mae MBS.

15Feldhütter and Lando (2008) study the determinants of spreads between swaps and Treasuries and find that they
are mostly driven by the convenience yield of Treasuries, though MBS hedging activity may also play a role at times.
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ket value-weighted index (the “TBA index”) based on the universe of outstanding pass-through

MBS. In contrast to other indices we do not rely on any particular dealer’s pricing model; instead,

we average the OAS for a coupon across the dealers for which we have quotes on a given day, and

then compute averages across coupons using the market value of the remaining principal balance

of each coupon in the MBS universe.

The resulting time series of spreads on the TBA index is shown in the top panel of Figure 2.

The OAS on the value-weighted index is typically close to zero, consistent with the view that

credit risk of MBS is generally limited; however, the OAS spiked to more than 150 bps in the fall

of 2008, and also rose significantly around the 1998 demise of the Long-Term Capital Management

fund. To provide initial evidence on potential drivers of this time-series variation we study the

relation between the OAS on the TBA index and commonly used fixed income risk factors. Table 2

shows estimated coefficients from a regression of the OAS on: (i) the convenience yield on Treasury

securities (reflecting their liquidity and safety) as measured by the Aaa-Treasury spread; (ii) credit

spreads as measured by the Baa-Aaa spread; (iii) the slope of the yield curve (measured by the yield

difference between 10-year Treasury bonds and 3-month Treasury bills); and (iv) the swaption-

implied volatility of interest rates.16

The OAS on the TBA index is strongly related to credit spreads (and to a lesser extent to the

Aaa-Treasury spread) both over the full sample (column 1) and the pre-crisis period (ending in July

2007, column 2), and is largely unaffected by the other risk measures. This suggests the existence

of common pricing factors between the MBS and corporate bond markets.17 In contrast, implied

rate volatility does not explain the OAS variation, which is to be expected since the OAS adjusts for

interest rate risk and thus should not reflect interest rate uncertainty. The slope of the yield curve,

often used as a proxy for term premia, is also not systematically related to the OAS. In Section 5, we

return to the determinants of the time-series variation in spreads, focusing on mortgage-specific

risk factors.
16All right-hand-side variables are standardized so that each coefficient estimate can be interpreted as the spread

impact in basis points of a unit standard deviation increase. As in Krishnamurthy and Vissing-Jorgensen (2012) the
Aaa-Treasury spread is the difference between the Moody’s Seasoned Aaa corporate bond yield and the 20-year constant
maturity Treasury (CMT) rate. The Baa rate is also from Moody’s, and bill rates and 10-year Treasury yields are CMTs as
well. All rates were obtained from the H.15 release. Swaption quotes are basis point, or normal, volatility of 2-year into
10-year contracts, from JP Morgan. We choose the Newey-West lag length based on the Stock-Watson rule-of-thumb
measure 0.75 ∗ T1/3.

17Brown (1999) relates the OAS to Treasuries of pass-through MBS over the period 1993–1997 to other risk premia and
finds a significant correlation of the OAS with spreads of corporate bonds to Treasuries. He interprets his findings as
implying a correlation between the market prices of credit risk or liquidity risk on corporates and that of prepayment
risk on MBS, but notes that it could also be driven by time variation in the liquidity premium on Treasuries.
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3.4 OAS variation in the cross section: the OAS smile

While variation in OAS on the TBA index is informative of the MBS market as a whole, it masks

significant variation in the cross section of securities. As discussed above, this cross section is

composed of MBS with different underlying loan rates. This rate variation across MBS leads to

borrower heterogeneity in their monetary incentives to refinance. We refer to this incentive as a

security’s “moneyness” and define it (for security j at time t) as

Moneynessj,t = Couponj + 0.5− FRMratet,

where FRMratet is the mortgage rate on new loans at time t, measured by the end-of-month value

of the Freddie Mac Primary Mortgage Market Survey rate on 30-year FRMs. We add 0.5 to the

coupon rate because the mortgage loan rates are typically around 50 bps higher than the MBS

coupon.18 When moneyness is positive, a borrower can lower his monthly payment by refinanc-

ing the loan—the borrower’s prepayment option is “in-the-money” (ITM)—while if moneyness is

negative, refinancing (or selling the home and buying another home with an equal-sized mortgage)

would increase the monthly payment—the borrower’s option is “out-of-the-money” (OTM).

Aside from determining the refinancing propensity of a loan, moneyness also measures an

investor’s gains or losses (in terms of coupon payments) if a mortgage underlying the security

prepays (at par) and he reinvests the proceeds in a “typical” newly originated MBS (which will

approximately have a coupon equal to FRMratet minus 50 bps). MBS based on ITM loans make

higher coupon payments than newly-issued MBS at the current market rate and therefore typically

trade at a premium; MBS based on OTM loans conversely trade at a discount. An investor in

premium MBS loses when prepayments increase, while an investor in discount MBS benefits.

The bottom panel of Figure 2 shows the (pooled) variation of spreads as a function of security

moneyness. OAS display a smile-shaped pattern: they are lowest for at-the-money (ATM) securi-

ties and increase moving away in either direction, especially ITM. OAS on deeply ITM securities

on average exceed those on ATM securities by 50 bps or more.

In Table 3 we report results from regressions that allow us to more precisely quantify this pat-

tern and assess its statistical significance. Instead of imposing parametric restrictions, we simply

regress OAS on 50-basis-point moneyness bin dummies, with [−0.25, 0.25) as the omitted category.

18The difference gets allocated to the agency guarantee fee as well as servicing fees (see Fuster et al., 2013, for details).
We could alternatively use a security’s “weighted average coupon” (WAC) directly, but the WAC is not known exactly
for the TBA securities studied in this section.
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Column 1 of the top panel studies the pooled variation over the full sample (as displayed in Fig-

ure 2), confirming a statistically and economically significant smile pattern. Column 2 shows that

this pattern remains almost unchanged if we control for month fixed effects (meaning that only

cross-sectional variation is exploited). In columns 3 and 4, we repeat the same regressions but end

the sample before the onset of the financial crisis in August 2007. For ITM coupons, this somewhat

reduces the relative spread differences to ATM securities, but the differences remain monotonic in

absolute moneyness and highly statistically significant.

In panel (b) of the table, we split the sample in terms of the moneyness of the agency MBS

market as a whole, in order to investigate changes in cross-sectional OAS patterns. As we discuss

in more detail below, the model in Gabaix et al. (2007) predicts that the relationship of OAS with

moneyness is linear at a point in time, but can be either upward sloping (if the market is ITM)

or downward sloping (if the market is OTM). More recently Diep et al. (2017) present a similar

theory which also predicts that prepayment risk premia change sign with market moneyness.19

Instead, our findings indicate that the OAS smile is present irrespective of whether the market is

ITM or not, even though coefficient estimates vary somewhat and are not always very precise due

to limited number of observations (e.g. for ITM bins in OTM markets). In Appendix C, we present

further robustness evidence on the smile pattern in OAS, showing for instance that it holds when

excluding outliers or coupons with low remaining balance.

What explains this smile pattern? In the framework of Section 3.1, the OAS reflects both the dif-

ference between the physical St,τ and the risk-neutral SQ
t,τ expectation of the prepayment path, and

the exposure to liquidity risk, α. Consequently, the OAS smile may arise if the fraction of market

value lost in case of a liquidity shock, α, has a smile-shape—for example, if more recently issued

securities (which tend to be at-the-money) are more liquid than older securities. Alternatively, the

OAS smile can arise as compensation for prepayment risk.

We now illustrate how prepayment risk premia could vary in the cross section, using three

stylized representations of borrowers’ prepayment behavior, and for simplicity assuming that there

is no liquidity risk (α = 0). In each case, we assume that the non-interest prepayment factors are

constant, but unknown to the investors in the security.20 Under the physical measure, assume the

factors γi are log-normally distributed with mean µi and variance Σi: γi ∼ logN (µi, Σi). Under

the risk-neutral measure, the factors γi are log-normally distributed with mean µQ
i and variance

19They document patterns in realized returns that appear consistent with this prediction; we further discuss the
relationship between our findings and theirs in the next subsection.

20One can also think of the non-interest factors as parameters of the prepayment function.
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ΣQ
i : γi ∼ logN

(
µQ

i , ΣQ
i

)
. Figure 4 plots the OAS as a function of the prepayment incentive with

a positive prepayment risk premium (µQ
1 > µ1, ΣQ

1 > Σ1) (top panel) and a negative prepayment

risk premium (µQ
1 < µ1, ΣQ

1 < Σ1) (bottom panel) for each of the three cases.

Case 1: st = γ1β. This is essentially the framework studied by Gabaix et al. (2007). Each pool

has a constant exposure β to a single market-wide prepayment shock γ1. The solid blue lines in

Figure 4 show that regardless of the sign of the prepayment risk premium, the OAS in this case is

monotone in moneyness. The intuition for the linearity is that OTM securities and ITM securities

act as hedges for one another (as premiums and discounts have opposite exposure to γ1), such that

their risk premia must have opposite signs. This case is thus inconsistent with the OAS smile.

Case 2: st = s̄ + γ1(c− r). Like in the previous case, a single factor drives prepayment behavior,

but the security’s exposure to the prepayment shock now depends on its moneyness, which varies

over time. This functional form implies that when ITM securities prepay faster than expected (a

positive shock to γ1), OTM securities prepay slower than expected. This may arise because of

mortgage originators’ capacity constraints in (larger than expected) refinancing waves.21 The OAS

for this case is plotted as the dashed red lines in Figure 4. When the prepayment risk premium

is positive (which is the natural case since every security has a positive exposure to γ1), the OAS

exhibits a smile-shape in moneyness. When the prepayment risk premium is negative, the OAS

exhibits an inverse smile-shape in moneyness.

Case 3: st = s̄ + γ11c<r + γ21c≥r. In this multi-factor formulation, OTM and ITM prepayments

are driven by different shocks (which for simplicity we assume to be orthogonal). For instance, γ1

might represent the pace of housing turnover while γ2 might be the effective cost of mortgage refi-

nancing (which varies with underwriting standards and market competitiveness). In equilibrium,

the signs of the prices of risk πγi are determined by the average exposure of the representative in-

vestor. Holding a portfolio of ITM and OTM securities, this investor will have a negative exposure

to γ1 risk (since OTM securities benefit from fast prepayment) and a positive exposure to γ2 risk

(since the price of ITM securities declines with faster prepayments). Thus πγ1 < 0 and πγ2 > 0,

resulting in a positive risk premium for both ITM and OTM securities and a (v-shaped) OAS smile,

as shown by the crossed green lines in Figure 4. If the prepayment risk premium is instead nega-

21When capacity is tight, mortgage originators may be less willing to originate purchase loans (which are more labor
intensive), and they may reduce marketing effort targeted at OTM borrowers (for instance, to induce them to cash out
home equity by refinancing their loan). Fuster et al. (2017) show that originators’ pricing margins are strongly correlated
with mortgage application volume, consistent with the presence of capacity constraints.
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tive, the OAS has an inverted v-shape.

In sum, the risk premium displays a smile pattern in moneyness if prepayments are driven by

the specification in case 2 or 3, but not in the single-factor representation of case 1. More generally,

prepayment risk premia can explain the OAS smile whenever OTM securities are not a hedge for

ITM ones (as they would be in case 1).22 To separate liquidity and prepayment risk premia, in the

next section we provide a method to identify the prepayment-risk-neutral OASQ. This will allow

us to identify the prepayment risk premium as the difference between the OAS and OASQ.

3.5 OAS and MBS returns

The OAS is a valuation measure that is widely tracked by financial market participants but that has

also been called into question for its model dependence (Kupiec and Kah, 1999). In this section, we

address this issue by first deriving the formal relationships between OAS (and changes in OAS)

and expected excess returns, and then testing these relationships in the data.23 We show that

the cross-sectional smile pattern exhibited by OAS is also present in realized returns, but also

demonstrate that realized returns to an important extent depend on realized rate changes, which

in our view makes it preferable to study ex-ante expected returns (as measured by OAS) rather

than ex-post realized ones.

In what follows, we derive the relationship between returns and yield premia under Qr, i.e.

the standard OAS, since that is what we will test in the data; however, the derivations apply more

broadly for the generic measure R. Comparing expression (3.6) for the price of the pass-through

to the expression (3.7), both with R = Qr, the yield premium on the security is related to the path

of instantaneous expected excess returns:

E
Qr
t

[∫ T−t

0
exp

(
−
∫ s

0

(
rt+udu + drxQr

t+u

))
(1− α)

∫ s
0 dJt+u µX,t+sds

]
(3.15)

= E
Qr
t

[∫ T−t

0
exp

(
−
∫ s

0

(
rt+u + ypQr

t

)
du
)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
.

Linearizing the right hand side of (3.15) around zero OAS (= ypQr ), we obtain:

22This is also pointed out by Levin and Davidson (2005), who note that “[a] single-dimensional risk analysis would
allow for hedging prepayment risk by combining premium MBS and discount MBS, a strategy any experienced trader
knows would fail.”

23Shiller, Campbell, and Schoenholtz (1983) derive first-order approximations of the yield to maturity on coupon-
bearing Treasury securities in terms of future bond excess returns and of contemporaneous returns and yield changes.
Despite the analogy, our derivations (shown in Appendix A) differ from theirs because MBS cash flows are uncertain.
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Result 3.1. To a first-order approximation, the OAS is a weighted average of expected excess returns over

the lifetime of the security under Qr:

OASt = E
Qr
t

[∫ T−t

0

(
1− exp

(
−
∫ s

0
drxQr

t+u

))
wt,sds

]
, (3.16)

where the weights wt,s are declining in horizon s.

Proof. Follows from taking a first-order Taylor expansion of the right hand side of (3.15) around

ypR
t = 0 and solving for ypR

t ; the above is for R = Qr. See Appendix A for details.

We next turn to the relationship between realized excess returns, the level of the OAS and

changes in the OAS.

Result 3.2. Realized excess returns under measure Qr are, to a first-order approximation, equal to the sum

of income (or carry) and capital gains/losses resulting from duration-weighted changes in spreads (where Dt

is a security’s modified spread duration):

drxQr
t = OAStdt− DtdOASt. (3.17)

Proof. Follows from approximating the evolution of Pt in (3.7) under the measure R around locally

small changes in the yield premium over time and substituting that evolution into the definition

of an excess return under R, (3.4); above is for R = Qr. See Appendix A for details.

Relationship (3.17) should not be surprising as analogous expressions have been shown for

coupon-bearing Treasury securities (Shiller et al., 1983) or defaultable corporate bonds (Campello,

Chen, and Zhang, 2008). They are also actively used by practitioners (Lehman Brothers, 2008).

In order to test the results derived above in the data, we conclude by noting that expected

excess hedged returns under Qr coincide with expected excess hedged returns under the physical

measure P:

Result 3.3. The expected excess return on an interest-rate-hedged portfolio under the interest-rate-risk-

neutral measure coincides with the expected excess return on the portfolio under the physical measure.

Proof. Follows from the fund separation theorem. See Appendix A for details.

Breeden (1994) shows that the OAS predicts future MBS excess returns between 1988 and 1994,

consistent with Result 3.1. In the remainder of this section, we confirm this finding in a longer sam-

ple, then test the contemporaneous relation between excess returns and OAS implied by Result 3.2,
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and show that excess returns also exhibit a smile pattern with respect to moneyness. Finally, we

show that the relationship between MBS returns in the cross section and changes in interest rates

is also consistent with the OAS smile, but not with alternative theories.

Constructing MBS returns is complex because of the large number of securities, different pric-

ing conventions, and security-specific prepayments. We rely on monthly return data from the

MBS sub-components by coupon of the Bloomberg Barclays Aggregate Bond Index, which is the

leading benchmark for fixed income index funds. MBS returns are available both unhedged (that

is, as measured from MBS prices and prepayments alone) and interest-rate-hedged (relative to

a duration-matched portfolio of Treasury securities).24 We are primarily interested in expected

hedged returns, since they correspond to expected excess returns under Qr in our derivations

above, but also analyze unhedged returns for robustness.

Bloomberg Barclays MBS returns have recently been analyzed by Diep, Eisfeldt, and Richard-

son (2017), and we match their 1994-mid 2016 sample period and size cutoff (excluding coupons

with less than $1 billion in outstanding principal). Unlike in the previous subsections, here we rely

on the Barclays OAS relative to Treasuries that covers this entire sample period.

The first two columns of panel (a) of Table 4 report estimates of a regression of future 1-year

hedged MBS returns (t → t + 12) on OASt either including or excluding time fixed effects; panel

(b) shows corresponding coefficients for unhedged returns. Estimated loadings on the OAS range

between 0.8 and 1.5 and are highly statistically significant (based on Newey-West standard errors

with 18 lags).25 Columns 3 and 4 repeat the same exercise using 1-month returns. The loading of

excess returns on the lagged OAS is about 1.8 both with and without time fixed effects for hedged

returns (p < 0.01 based on standard errors clustered by month), and it is similar for unhedged

24The return on an MBS is equal to the sum of price appreciation, coupon yield and paydown return. Because more
seasoned securities often trade at a premium to the TBA price, the Barclays index adjusts the capital gain return com-
ponent with “payup” information. In addition, the calculation of the index incorporates cusip-specific prepayment
information to compute the paydown return. The index uses same-day settlement as opposed to standard PSA settle-
ment (fixed monthly dates) as it is typically the case in TBA trading, which is associated with discrete price drops on PSA
dates, which is when the attribution of prepayments and coupons is determined (see Chapter 29 in Fabozzi, 2016, for
more detail). The excess return for an MBS is calculated as the difference between its total return and that of the equiva-
lent Treasury position, where the equivalent position is obtained from key-rate durations, which are sensitivities to the
movement of specific parts of the yield curve. For additional information see, for example, Lehman Brothers (2008). We
have also verified that qualitative patterns are similar when using data from a different dealer (results available upon
request).

25As is well known in the literature (Hansen-Hodrick), the overlapping return sample generates an MA(12) compo-
nent in the error term. We use NW with 18 lags to guarantee a positive definite variance covariance matrix and counter-
act the underweighting of higher covariances from the NW kernel function. Realized returns in the sample move about
one-for-one with the OAS; we do not have a sharp prediction on the size of the coefficient since the right-hand side of
(3.16) features declining weights whereas in our empirical implementation we apply equal weights and truncate at one
year.
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returns. In sum, OAS predict realized hedged and unhedged returns at the 1-month and 1-year

horizon consistent with the prediction of Result 3.1.

To study Result 3.2, we extend the 1-month regression to include contemporaneous changes in

the OAS. As predicted, the coefficient on the spread change is always negative (p < 0.01) across

the four specifications with point estimates that range between -1.8 and -3.3. The adjusted R2 in the

hedged return regression when omitting time effects exceeds 50%, meaning that changes in OAS

explain much of the realized variation in hedged returns.

A key feature of the cross section of OAS is the smile pattern with respect to moneyness (see

Section 3.4). Figure 3 shows that 1-month excess returns display a similar pattern, which is also

reflected in differential Sharpe ratios (SRs) across moneyness levels. We compute (annualized) SRs

based on monthly Barclays index returns for portfolios of ITM, ATM and OTM MBS.26 Relative to

ATM securities, SRs are much larger for non-ATM securities: using unhedged returns (minus the

risk-free rate from Ken French’s website), the SR of a long-ITM (long-OTM) portfolio is 1.86 (1.15)

compared to a SR of 0.66 for a long-ATM position. The pattern in hedged returns is similar, though

more pronounced for ITM securities (ITM SR = 0.68; OTM SR = 0.12; ATM SR = 0.04).

The above analysis established that there is a tight link between realized hedged returns and

changes in OAS: when OAS fall, realized returns tend to be high. In addition, we have documented

a smile-shaped pattern both in expected and realized returns. We now combine these relations to

test an additional prediction about the link between realized returns and changes in mortgage

rates, without relying on OAS directly. Movements in mortgage rates change the moneyness of

MBS by moving them along the smile, and the OAS smile predicts an opposite effect of rate changes

on hedged returns depending on whether an MBS is ITM or not. For an OTM MBS, changes in OAS

and changes in rates are positively related, as the MBS moves closer to being ATM when rates fall.

This implies a negative relationship between rate changes and contemporaneous hedged returns

on OTM securities. Conversely, for ITM securities, hedged returns and rate changes should be

positively related.27

Panel (c) of Table 4 shows that as predicted, hedged returns are negatively (positively) related

to changes in mortgage rates for OTM (ITM) securities, irrespective of whether fixed effects are

26We compute the ATM portfolio using the return on the coupon that is closest to zero moneyness in each period, as
long as it is not more than 25 bps ITM or OTM. For the ITM (OTM) portfolio we use the most ITM (OTM) coupon as
long as it is at least 100 bps ITM (OTM).

27The OAS smile implies that OTM securities tend to outperform ITM securities when rates fall, as for example was
the case following the November 2008 LSAP announcement, discussed in Section 5.3.
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included or not (columns 1 and 2).28 In columns 3 and 4, we re-estimate this relation in a split

sample based on whether the market as a whole is ITM or not. This allows us to test whether

prepayment risk premia change sign as a function of the market overall moneyness as predicted

by Gabaix et al. (2007) and Diep et al. (2017).29 Contrary to what is implied by these theories, but

consistent with our OAS smile evidence in Section 3.4, we do not find that the relationship between

returns and rate changes flips sign with market moneyness.

In sum, our analysis of MBS returns shows that, while model-dependent, the OAS is related

to realized returns, and that a smile pattern is also evident in the cross section of hedged returns.

In the remainder of the paper, we focus on the OAS rather than realized returns, since it is a more

direct and less noisy measure of expected excess returns. Also, as the concluding part of the anal-

ysis above illustrated, realized returns across securities are systematically affected by changes in

interest rates, which in finite sample can bias the measurement of expected returns when using

average realized returns.30

4 Pricing model: Decomposing the OAS

In this section, we propose a method to decompose the standard OAS into a prepayment risk pre-

mium component and a remaining risk premium (OASQ). We then implement this method using

a pricing model, which consists of an interest rate and a prepayment component. In contrast to

standard approaches, such as Stanton (1995) or practitioner models, we employ information from

stripped MBS to identify a market-implied prepayment function and the contribution of prepay-

ment risk to the OAS.

4.1 Identification of OASQ

As discussed in Section 3, the OAS only adjusts for interest rate uncertainty (and only interest rates

are simulated in empirical pricing models) and ignores other sources of prepayment risk, such as

28When we add month fixed effects, we can only test whether the relationship between returns and rate changes is
more positive for ITM securities; the uninteracted coefficient on the mortgage rate change is not identified.

29In Gabaix et al. (2007) the relationship of OAS with moneyness is linear and upward sloping if the market is ITM
or downward sloping if the market is OTM. This theory thus predicts that in an ITM market, the relationship between
hedged returns and mortgage rate changes should be positive for all securities, while in an OTM market, the relationship
should be negative for all securities.

30This may explain why Diep et al. (2017) find linear relationships between realized returns and moneyness that
change sign depending on whether the market as a whole is ITM or not, which contrasts with the OAS smile that is
present in both market types, as shown earlier. For instance, over the period they (and we) study, rates have tended
to fall when the market is OTM, which according to the OAS smile leads to negative returns for ITM securities as they
move further ITM and their OAS increases.
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uncertainty about house prices or lending standards. In this section we propose a method to iden-

tify a risk-neutral prepayment function obtained from market prices, then compute an OAS using

this function (OASQ) and finally obtain the contribution of prepayment risk to the OAS. Pricing

information on a standard pass-through MBS alone is insufficient to identify the risk-neutral pre-

payment probability, because a single observable (the price) can only determine one unknown (the

spread) in the pricing model, leaving the price of prepayment risk unidentified. To resolve this

identification problem, we use additional pricing information from “stripped” MBS, which sep-

arate cash flows from pass-through securities into an interest component (“interest only” or IO

strip) and a principal component (“principal only” or PO strip). That is, for a pool with remaining

principal balance θt, the IO strip receives interest payments net of fees, dXt,IO = cθtdt, as cash

flows, while the PO strip receives cash flows equal to all principal payments, dXt,PO = −dθt.

Cash flows of these strips depend on the same underlying prepayment path and therefore

face the same prepayment risk, but are exposed to it in opposite ways, as illustrated in Figure 5.

As prepayment rates increase (top to bottom panel), total interest payments shrink (since interest

payments accrue only as long as the principal is outstanding) and thus the value of the IO strip

declines. Conversely, principal cash flows (the gray areas) are received sooner, and therefore the

value of the PO strip increases.

More formally, consider first the IO strip. The yield premium ypR
t,IO under measure R on the

IO is given by

Pt,IO = ER
t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t,IO + αµt+uπR
l,t+u

)
du
)

cθt+τdτ

]
= cθtE

R
t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t,IO + αµt+uπR
l,t+u + s∗t+u

)
du
)

ec̃T − ec̃(τ+t)

ec̃T − ec̃t dτ

]
.

Thus, an increase in the prepayment path {st+u}T−t
u=0 has to be offset by a decrease in the yield

premium ypR
t,IO for the model price (the RHS of the equality) to match the market price (Pt,IO).

That is, the yield premium on the IO is decreasing in the speed of prepayment.
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Similarly, the yield premium ypR
t,PO under measure R on the PO is given by

Pt,PO = ER
t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t,PO + αµt+uπR
l,t+u

)
du
)
(−dθt+τ)

]
= θt

{
1−ER

t

[∫ T−t

0
exp

(
−
∫ τ

0

(
rt+u + ypR

t,PO + αµt+uπR
l,t+u + st+u

)
du
)
×

×
(

rt+τ + ypR
t,PO + αµt+τπR

l,t+τ

) ec̃T − ec̃(τ+t)

ec̃T − ec̃t dτ

]}
.

Thus, an increase in the prepayment path {st+u}T−t
u=0 has to be offset by an increase in the yield

premium ypR
t,PO for the model price (the RHS of the equality) to match the market price (Pt,PO).

That is, the yield premium on the PO is increasing in the speed of prepayment.31

Since the yield premium on the PO is increasing in the speed of prepayment and the yield

premium on the IO is decreasing, there is a single point of intersection between the two. In the

simple setting of Section 3.2, we have that the prepayment-risk-neutral OAS on the IO equals that

on the PO:

OASQ
t,IO = OASQ

t,PO = αµ (πl − 1) ,

so that the yield premium of the IO equals the yield premium on the PO if and only if the yield

premium is calculated under a measure that is risk-neutral with respect to both prepayment and

interest rate risks.

More generally, Proposition D.1 in Appendix D states that the risk premium on the IO equals

the risk premium on the PO if and only if the risk premium is calculated under a measure that

is risk-neutral with respect to both prepayment and interest rate risks. Since yield premia are

weighted averages of instantaneous risk premia, the OAS on the IO and the PO are equalized under

the prepayment-and-interest-rate-risk-neutral measure Qr,γ. Intuitively, since the IO and the PO

have opposite exposures to the same source of risk (prepayment on the pool), the yield premium

of the IO equals the yield premium on the PO if and only if the yield premia are calculated under

a measure that is risk-neutral with respect to this source of risk.

We now turn to the empirical implementation of this idea. Since we only have observations of

monthly physical prepayment rates, rather than instantaneous prepayment speeds, we focus on

identifying the risk-neutral monthly prepayment rate (known as “single month mortality rate”)

31This follows since
(

rt+τ + ypR
t,PO + αµt+τπR

l,t+τ

)
exp

(
−
∫ τ

0

(
rt+u + ypR

t,PO + αµt+uπR
l,t+u

)
du
)

is increasing in
ypt,PO for all τ.
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SMMQ
t . In terms of the instantaneous unscheduled prepayment rate s∗t , the SMM is given by:

SMMt = exp

(
−
∫ 1

12

0
s∗t+udu

)
.

Using the risk-neutral evolution of s∗t in the above gives the risk-neutral SMM. Let Λ̃jt be the ratio

at time t between the risk-neutral and the physical SMM on pool j:

Λ̃jt ≡
SMMQ

jt

SMMjt
.

To price a security on pool j at date t, we would then need to identify the full future path of Λ̃j,t+h

until the maturity of the security. Since we only have one pair of observations per pool on each

date t, identification requires restrictions on the shape of Λ̃j,t+h.

Instead, we approximate the period- and pool-specific multiplier Λ̃j,t+h with a pool-specific

multiplier Λj,t. This specification allows us to be flexible in how the prepayment-risk-neutral SMM

changes in the cross section but comes at the cost of being able only to identify a life-time average

Λ̃j,t+h. However, we believe that this approach captures the first-order differences between pools.

In fact, even after controlling for moneyness, prepayments are known to be driven by pool-specific

factors, such as the state in which the underlying mortgages are located. As we discuss below, our

key finding that the smile pattern in OAS is due to prepayment risk premia while OASQ is flat

with respect to moneyness is preserved in an alternative framework where the Q prepayment is

estimated from the cross section of MBS prices only.

Figure 6 illustrates our empirical approach graphically. In this example, at Λ = 1, the physical

prepayment speed, the OAS on the IO strip (shown in black) is about 200 bps and the OAS on the

PO (shown in gray) is about zero. As Λ increases, the OAS on the IO declines while the spread

on the PO increases because of their opposite sensitivities to prepayments. The sensitivity of the

OAS on the pass-through (“recombined” as the sum of IO and PO) is also negative (red line),

because in this example it is assumed to be a premium security and so its price declines with faster

prepayments.

For each IO/PO pair, we identify Λ as the crossing of the OAS schedules of IO and PO at the

point where the residual risk premium (OASQ) on the two strips is equalized.32 By the law of

one price, the residual risk premium on the pass-through will also be equalized at this point; thus,

32MBS market participants sometimes calculate “break-even multiples” similar to our Λ but, to our knowledge, do
not seem to track them systematically as measures of risk prices.
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the OAS schedule on the pass-through intersects the other two schedules at the same point. The

difference between the OAS on the pass-through at the physical prepayment speed (OAS) and at

the market-implied one (OASQ) is then equal to the prepayment risk premium.

We apply this method to each IO/PO pair in our sample, thereby identifying pool- and date-

specific Λ and OASQ. This allows us to study time-series and cross-sectional variation in the

OASQ without imposing parametric assumptions and we can thus remain agnostic as to whether

prepayment risk or other risks are the source of the OAS smile.33 Notice that while the above

discussion (and the theoretical derivations in Appendix D) has emphasized the case of prepayment

risk premia due to non-interest rate factors, our empirical setting also subsumes the possibility of

a prepayment event risk premium (which by itself would lead to date-specific Λ).

The key to this identification is the assumption that OASQ are equal across IO and PO strips on

the same pool. One could relax this assumption by imposing a parametric form linking OASQ (or

Λ) across pools. That said, the impact on the prepayment risk premium and OASQ on the pass-

through will be limited for reasonable liquidity differences between IOs and POs. For example, we

find that assuming OASQ
PO to be 50 bps higher than OASQ

IO never changes OASQ by more than 5

bps relative to the baseline specification with OASQ
IO = OASQ

PO. Intuitively, as shown in Figure 6,

the slope of the OAS schedule for the pass-through is less steep in Λ than the slopes of the IO and

PO schedules, and thus OASQ
IO −OASQ

PO differences will have a limited effect on the recombined

pass-through.

4.2 Stripped MBS data

To implement the identification described above, we start with an unbalanced panel of end-of-day

price quotes on all IO/PO pairs (“trusts”) issued by Fannie Mae, obtained from a large dealer, for

the period January 1995 to December 2010.34 We merge these with characteristics of the underlying

pools, using monthly factor tape data describing pool-level characteristics obtained from the data

provider eMBS. We use end-of-month prices, which we also subject to a variety of screens, as

described in Appendix B. Following these data-quality filters, our data include 3713 trust-month

33An alternative way to identify Λ would be to assume that the OAS reflects only prepayment risk. With this ap-
proach, Levin and Davidson (2005) obtain a Q prepayment function by equalizing the OAS (relative to agency debt) on
all pass-through coupons to zero. By construction, both the time-series and cross-sectional variation in the OAS will
then be the result of variation in prepayment risk.

34We end our sample on that date because, according to market participants, IO/PO strips became less liquid after
2010, as trading started focusing on Markit’s synthetic total return swap agency indices IOS, POS and MBX instead.
These indices mimic the cash flows of strips on a certain coupon-vintage (e.g. Fannie Mae 30-years with coupon 4.5%
originated in 2009). The methods in this paper could easily be extended to those indices.
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observations, or about 19 per month on average, from 95 trusts total. The year with the lowest

number of observations is 1999, where we have an average of 10 trusts per month, while after 2005

we have at least 20 trusts in all but one month.

The original face value of securities in our sample ranges from $200 million to about $4.5 billion,

with a median of $2 billion. The median remaining principal balance of trusts in months in our

dataset is $1.13 billion. In the cross-sectional analysis, we average spread measures to the coupon

level (weighting by market value of the trusts), resulting in 1005 coupon-month pairs that cover

most of the outstanding coupons in the Fannie Mae fixed-rate MBS universe (on average, 91% of

remaining face value).35 A potential concern is that the IO/PO strips we have are not necessarily

representative of securities traded in the TBA market, to which we are comparing our model out-

put. As we will see, however, we obtain similar spread patterns based on IO/PO prices, both in

the time series and cross section. One advantage of the stripped MBS that we are using relative

to TBAs, which trade on a forward “cheapest-to-deliver” basis, is that we do not need to make

assumptions about the characteristics of the security.

4.3 Interest rate and prepayment model

A standard MBS pricing model has two main components: an interest rate model and a prepay-

ment model. The two are combined to simulate interest rate paths and corresponding prepayment

flows to obtain model prices and spreads. We use a three-factor Heath et al. (1992) interest rate

model, calibrated at month-end to the term structure of swap rates and the interest rate volatility

surface implied by the swaption matrix, by minimizing the squared distance between the model-

implied and the observed volatility surface. We obtain swap zero rates from an estimated Nelson-

Siegel-Svensson curve. Details on the interest and yield curve model are provided in Appendix E.36

The academic literature has considered either structural/rational prepayment models (e.g.,

Dunn and McConnell, 1981a,b; Stanton, 1995) or reduced-form statistical prepayment models esti-

mated on historical data (e.g., Richard and Roll, 1989; Schwartz and Torous, 1989). While structural
35As in Figure 1, this means that the range of trust coupons in which the remaining face value is concentrated shifts

downward over time. For instance, in January 1995, about 90% of the face value of securities for which we have quotes
is in 7, 7.5, or 8% coupon securities. In January 2003, over 90% are in 5.5, 6, 6.5, or 7% securities. Finally, in December
2010, the last month in our data, the most prominent coupons are 4, 4.5, 5, and 5.5, which together account for 88% of
face value.

36A potential concern with using the risk-neutral evolution of interest rates inferred from the swaption matrix for
pricing MBS is limits-to-arbitrage between the interest rate swap and MBS markets. Such differences could translate
into differential OASQ across moneyness. Since we do not impose cross-moneyness restrictions on OASQ, our empirical
specification is sufficiently flexible to capture these effects. As we will see, however, the cross-section of OASQ is flat
in moneyness, both in the full sample and in the pre-crisis period, suggesting that swaptions and MBS are priced fairly
relative to each other.
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models are more appealing, MBS investors favor reduced-form models (see, e.g., Fabozzi, 2016),

for example, because in tranched CMOs, cash flows depend on prior prepayments, whereas struc-

tural models are solved by backward induction (McConnell and Buser, 2011). We follow standard

industry practice and use a reduced-form prepayment model.

The exact details of practitioner models are not publicly available, but they vary in the choice of

controls and weighting rules for historical data, and often make ad-hoc adjustments to incorporate

likely effects of expected or announced policy changes affecting prepayments (for instance, the

Home Affordable Refinance Program in 2009 or the introduction of additional agency fees on new

mortgages since 2007). Therefore, in order to better capture market participants’ expectations and

be consistent with their pricing and spreads, we do not estimate our model on historical data, but

instead extract prepayment model parameters from a survey of dealer models from Bloomberg LP.

In these surveys, major MBS dealers provide their model forecasts of long-term prepayment speeds

under different constant interest rate scenarios (with a range of +/- 300 bps relative to current

rates).37 Carlin et al. (2014) use these data to study the pricing effects of investors’ disagreement

measured from “raw” long-run prepayment projections. We, instead, extract model parameters of

a monthly prepayment function by explicitly accounting for loan amortization, the path of interest

rates, and changes in a pool’s borrower composition.

Prepayment sensitivities to interest rates and other factors differ over time and across secu-

rities, and we thus estimate model parameters specific to each security and date. We model the

date τ single-month mortality rate (SMM), which is the fraction of a pool that prepays, of security

j to match the average projected long-run survey speed for the different interest rate scenarios.

These scenarios provide information on a pool’s prepayment sensitivity to the incentive to refi-

nance (INCj
τ).38 The functional form of our prepayment model is:

sj
τ = χ

j
τsj

1,τ +
(

1− χ
j
τ

)
sj

2,τ for t < τ ≤ t + Maturityj (4.1)

37Until May 2003, dealers provided a single set of forecasts for each coupon (separately for Fannie Mae, Freddie Mac,
and Ginnie Mae pass-through securities); since then, they provide separate forecasts for different vintages (for instance,
a 5.5% coupon with average loan origination date in 2002 versus a 5.5% coupon with origination in 2005).

38A notable detail is that in our model, we define INC as the end-of-month 10-year swap rate minus the pool’s
weighted average coupon (WAC). This is different from the “true” interest rate incentive faced by a borrower, which
would be the mortgage rate minus WAC. However, our formulation has the major advantage that it does not require us
to specify a model for the gap between mortgage rate and swap rate. The average gap between 30-year FRM rate and
the 10-year swap rate over our sample period is about 1.2%.
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where

sj
i,τ = bj

1 min
(

Agej
τ/30, 1

)
+ κi ·

exp
(

bj
2 + bj

3 · INCj
τ

)
1 + exp

(
bj

2 + bj
3 · INCj

τ

) for i = 1, 2. (4.2)

This functional form allows us to capture a key feature of the time evolution of MBS prepay-

ments: the so-called burnout effect, which is the result of within-pool heterogeneity in borrowers’

sensitivity to the refinancing incentive. Because more sensitive borrowers are the first to exit the

pool when rates decline, the pool’s overall sensitivity to interest rates drops over time even if in-

terest rates are unchanged.39 To capture this effect, we assume the pool is composed of two types

of borrowers: fast refinancers (group 1) and slow refinancers (group 2), with respective shares χτ

and 1− χτ and shares s1,τ and s2,τ. This setup is a simplified version of the heterogeneous refi-

nancing cost framework of Stanton (1995). As shown in equation (4.1), total pool prepayments are

share-weighted averages of each group’s prepayment speed. Each group’s prepayment depends

on two components. The first, which is identical to both groups, is governed by b1 and accounts

for non-rate-driven prepayments, such as housing turnover. Because relocations are less likely to

occur for new loans, we assume a seasoning of this effect using the industry-standard “PSA” as-

sumption, which posits that prepayments increase for the first 30 months in the life of a security

and are constant thereafter. The second component captures the rate-driven prepayments due to

refinancing. This is modeled as a logistic function of the rate incentive (INC), with a sensitivity κi

that differs across the two groups: κ1 > κ2. Since group 1 prepays faster, χτ declines over time

in the pool. This changing composition, which we track in the estimation, captures the burnout

effect. We provide more detail on the prepayment model and parameter estimation in Appendix E.

Figure 7 shows estimated prepayment functions for different loan pool compositions and using

average parameters b1, b2, b3 across all securities in our sample. Prepayments (at an annual rate,

known as the “constant prepayment rate,” or CPR) display the standard S-shaped prepayment

pattern of practitioner models. They are not very sensitive to changes in interest rates (and thus

INC) for securities that are deeply ITM or OTM, but highly sensitive at intermediate moneyness

ranges. The black (top) line shows that a pool with χ = 1 reaches a maximum predicted CPR of

about 75% when it is deeply ITM, in contrast to only 35% when the share of fast refinancers is only

0.25 (red line). Thus, the changing borrower composition, even with a constant INC, implies a

decline in prepayments over time because of the pool’s burnout (decreasing χ).

39In the extreme case, some borrowers never refinance even when their option is substantially in the money. Possible
reasons for this non-exercise of the prepayment option include unemployment or other credit problems (Longstaff, 2005)
or a lack of financial sophistication (sometimes called “woodhead” behavior; Deng and Quigley, 2012).
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5 Model results

The pricing model produces the standard OAS measure as well as the OASQ, which is adjusted

for (or risk-neutral with respect to) not only interest rate risk but also prepayment risk. In this

section we present the output of the model in terms of spreads in the cross section and time series.

We then relate average OASQ and prepayment risk premia to fixed-income and MBS-specific risk

measures in order to help interpret model results and variation in MBS spreads. We finally discuss

the response of MBS spreads to the Fed’s first LSAP announcement in November 2008.

5.1 OAS smile

The cross-sectional results are summarized in Figure 8. Similar to our findings for the TBA spreads

(Figure 2), the OAS from our model exhibits a smile in moneyness (panel a): spreads are lowest

for securities with moneyness near zero and increase for securities that are either OTM, or espe-

cially, ITM. As shown in panel (b), the OASQ, which strips prepayment risk from the OAS, does

not appear to vary significantly with moneyness, suggesting that differences in liquidity do not

contribute to the OAS smile. Instead, as shown in panel (c), the difference between the OAS and

OASQ closely matches the smile pattern in the OAS; in other words, the differential exposure to

prepayment risk explains the cross-sectional pattern in the OAS. Additionally, panel (d) displays

the difference in implied long-run prepayment speeds between the risk-neutral (Q) and physical

(P) prepayment models. OTM securities tend to have slower risk-neutral speeds, while ITM secu-

rities tend to have faster risk-neutral speeds. Thus, in both cases the risk-neutral model tilts the

prepayment speeds in the undesirable direction from the point of view of the investor. That is,

market prices imply that prepayments are faster (slower) for securities that suffer (benefit) from

faster prepayments, which is exactly what one would expect as market-implied prepayments in-

clude compensation for risk.

In Table 5, we use regressions to study if these cross-sectional patterns in the two components

of OAS are robust to including month fixed effects (in order to focus on purely cross-sectional vari-

ation) and to ending the sample before the financial crisis period by sorting the different coupons

in bins by moneyness, as in the earlier Table 3.40 Panel (a) of Table 5 shows that there is little

systematic pattern in OASQ across bins; results in columns (2) and (4) suggest in fact that ATM

40We use fewer bins because our IO/PO strips have less coverage of very deeply OTM (moneyness< −1.75) or ITM
(moneyness> 2.75) coupons.
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coupons may have slightly higher OASQ than the surrounding coupons, but the differences are

small. There is some evidence that the most deeply ITM coupons (moneyness≥ 2.25) may com-

mand a positive premium, which could be driven by the reduced liquidity of these (generally very

seasoned) coupons. Turning to the prepayment risk premium, panel (b) of Table 5 shows that the

(slightly tilted) smile pattern shown in panel (c) of Figure 8 is robust to adding month fixed effects

and excluding the financial crisis period. The coefficients suggest that the magnitude of the pre-

payment risk premium is economically meaningful: securities that are 1.25 percentage points or

more ITM command a premium of 20 basis points (annual) or more relative to ATM securities.

In sum, while the prepayment risk premium in the cross section is strongly linked to the mon-

eyness of the securities, we find little evidence that this is also the case for the remaining risk

premium (OASQ), suggesting that differential liquidity across coupons is likely not a major driver

of cross-sectional variation in spreads (except perhaps for the most deeply ITM securities). Instead,

the smile in prepayment risk premia suggests that both ITM and OTM securities earn positive com-

pensation for prepayment risk, consistent with them not being hedges for one another. Going back

to our discussion in Section 3.4, this would arise if either a single shock drives prepayments but

with opposite effects on ITM and OTM securities (case 2), or, perhaps more realistically, if OTM

and ITM securities were subject to distinct but independent shocks (case 3). For instance, OTM pre-

payments could be primarily driven by housing-relocation shocks, such as house prices, whereas

variation in ITM prepayments could be due to shocks to refinancing activity.

Though Table 5 shows that the cross-sectional patterns in the two components of OAS are ro-

bust to including month fixed effects and to ending the sample in 2007, a potential concern is

whether these results could be due to potential misspecification of the risk-neutral prepayment

function as a multiple of the physical prepayment function. Note that the multiple Λ is security

and date specific, so that our estimate of the Q prepayment function is semi-parametric and allows

us to capture risk premia with the least restrictive prior assumptions. Nevertheless, in Appendix F

we explore an alternative identification methodology that estimates the risk-neutral prepayment

function directly from IO/PO prices only, without requiring us to start with a P prepayment func-

tion. While this alternative approach does not allow the estimation of prepayment risk premia, it

confirms this section’s finding that the OASQ does not vary systematically with moneyness.
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5.2 Time-series variation

We now turn to the variation in the average OAS in the time series. As in Section 3, we construct a

market value-weighted index of our model-implied OAS.41 Comparing the OAS in Figure 9 to the

corresponding series in panel (a) of Figure 2 confirms that our model output is close to its dealer

counterparts. The level of the average OAS is generally close to zero, but increases in periods

of market stress. Further, our pricing model finds the difference between OAS and OASQ to be

small and the two series to tightly co-move, meaning that much of the OAS variation results from

changes in OASQ (gray line). Thus, although it is an important determinant of the cross-sectional

variation in spreads, prepayment risk does not appear to be the dominant driver of the OAS time-

series variation. Indeed as shown in Figure 1, the share of deeply OTM or ITM securities, which

earn most compensation for prepayment risk, is limited; this arises because most securities are

close to ATM when issued.42 However, prepayment risk in the MBS universe can be significant

when mortgage rates move sharply, as in early 1998, the summer of 2003, and in 2009 and 2010 as

mortgage rates reached historic lows and the gap between the average OAS and OASQ widened.

We next investigate the determinants of the time-series variation in OAS, and in particular its

two components: OASQ and the prepayment risk premium. Table 6 shows results from monthly

regressions of the OAS, and its components, on mortgage-specific risk factors, such as spreads

on agency debt (or debentures) relative to swaps, agency MBS issuance (normalized by broker-

dealer book equity, and subtracting Fed MBS purchases in 2009 and 2010), the average squared

moneyness of the MBS universe, as well as dealer disagreement about future prepayment speeds,

which Carlin et al. (2014) find to be significant predictors of MBS returns.43 We construct our

disagreement measure in the same way as Carlin et al. (2014), but based on the Bloomberg surveys

on Fannie Mae prepayment speeds that we already use for the physical prepayment model (while

Carlin et al. instead use forecasts of Ginnie Mae prepayments). We also include the credit spread,

which was the main economically and statistically significant factor in the TBA analysis in Table 2.

We find that average OASQ are related to spreads on (unsecured) agency debentures. As noted

earlier, agency MBS are typically perceived as being free of credit risk, but since the government

41We do this by first averaging spreads across trusts within a coupon (weighting each trust by its market value, given
by its remaining principal balance times the sum of the prices of its IO and PO strips). Then, we average across coupons
in a given month (weighting each coupon by its market value based on TBA prices, as in Section 3.3).

42After issuance, the moneyness of securities fluctuates as a function of interest rates and the remaining balance
declines with prepayments, lowering the importance of older issues on a value-weighted basis.

43Agency debenture yields and swap yields come from Barclays; agency MBS issuance is from eMBS; Fed MBS pur-
chases from the https://www.federalreserve.gov/regreform/reform-mbs.htm; and broker-dealer equity from Table
L.130 in the Flow of Funds (interpolated linearly between quarter-ends).
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guarantee on securities issued by Fannie Mae is only implicit, investors’ perceptions of this guar-

antee (along with the perceived credit risk of agencies) may change over time and thus affect both

spreads on agency debt and MBS. In particular, both OASQ and agency debt spreads increased in

the fall of 2008, when Fannie Mae and Freddie Mac were placed in conservatorship by the U.S.

Treasury. The spreads on MBS and agency debt do, however, also co-move earlier in the sample,

pointing to other common factors such as liquidity and funding costs of these securities.44

Credit spreads (Baa-Aaa) continue to be significantly related to OAS, mostly through OASQ

rather than the prepayment risk component. The sensitivity of OASQ to credit spreads suggests

common pricing factors in the MBS and credit markets, such as limited risk-bearing capacity of

financial intermediaries (see, for example, Shleifer and Vishny, 1997; Duffie, 2010b; Gabaix et al.,

2007; He and Krishnamurthy, 2013). In these models, financial intermediaries are marginal in-

vestors in risky assets; when their financial constraints bind, their effective risk aversion increases,

raising risk premia in all markets. Thus, when the supply of risky assets relative to intermedi-

aries’ capital decreases, financial constraints are relaxed, lowering required risk compensation. In

line with these predictions, we find that higher supply of MBS, measured by issuance relative to

mark-to-market equity of brokers and dealers, also positively correlates with average OASQ.45 We

explore this channel further in the next section, where we study the effects of Fed MBS purchases,

which absorb supply in the hands of investors, on the OAS and its components.

Disagreement about future prepayments (for given rates) is positively related to the prepay-

ment risk premium, in line with the findings of Carlin et al. (2014); however, the economic magni-

tude of the coefficient is relatively small. Finally, as previously discussed, the OAS smile implies

that spreads, and in particular their prepayment risk component, are largest for deeply OTM and

ITM securities. This suggests that when the market-value weighted moneyness is either very pos-

itive or very negative, the average OAS and prepayment risk premium should be large. In line

with this prediction, we find average squared moneyness to be positively related to the average

prepayment risk premium.

44The spread between Fannie Mae debentures and Treasury bonds of equal maturity fell following the conservatorship
announcement, but then substantially increased through the end of 2008. Since there should have been essentially no
difference in the strength of the debt guarantee between debentures and Treasuries at that point, and since the spread
widening was stronger for shorter maturity bonds, Krishnamurthy (2010) argues that this reflects a flight to liquidity.
In line with this interpretation, our OASQ also reaches substantially higher levels in October compared to August 2008,
despite the reduction in credit risk to investors.

45As noted above, we net out monthly Fed purchases by settlement month over 2009-10 from new issuance to more
properly measure fluctuations in net supply that is absorbed by investors. Relatedly, GSEs’ conservatorship agreements
have required them to divest their portfolios since 2010, a process that would affect net supply in the hands of other
investors. However, during the first round of LSAPs, which we focus on, changes in GSE holdings of agency MBS were
quite small relative to Fed purchases and issuance.
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5.3 Interpreting the OAS response to the Fed’s LSAPs

As discussed above, MBS spreads are positively related to MBS supply, a finding that is consis-

tent with intermediary asset pricing models with limited risk-bearing capacity. In this section we

provide additional evidence on this channel by focusing on the Fed’s large-scale asset purchase

(LSAP) program. The program has entailed an unprecedented shift in the composition of the MBS

investor base as the Fed now holds more than a quarter of the total agency MBS universe—up

from nothing prior to the financial crisis. We decompose spreads using our pricing model and

show how our model can explain the divergence in OAS across different coupons following the

initial announcement of the program.

We focus on spread movements after November 25, 2008, when the Fed announced its first

round of purchases of up to $500 billion in agency MBS.46 Based on the current coupon MBS, which

is the focus of much of the research on this topic—with the important exception of Krishnamurthy

and Vissing-Jorgensen (2013) which we discuss below—the announcement had a substantial effect

on the MBS market (see, e.g., Gagnon et al. 2011 or Hancock and Passmore 2011; Stroebel and

Taylor 2012 are more skeptical). According to different dealer models, the current coupon OAS,

which had been at record levels of 75–100 basis points over October and November 2008, fell 30–

40 basis points on the day of the announcement, and stayed around the lower level afterwards.

Consistent with the decline in secondary MBS spreads and yields, headline 30-year FRM rates

dropped nearly a full percentage point between mid-November and year-end 2008.

Spread movements on the current coupon MBS alone hide significant heterogeneity across the

coupon stack, as evidenced by the series in Figure 10, which are median spreads across dealer

models (the same as used in Section 3) for the four main coupons traded at that time. OAS that were

all at similarly elevated levels in the fall of 2008 diverged following the announcement: spreads

on low coupons (4.5 and 5) fell, while those on higher coupons were little changed and then even

widened through year-end. Since high coupons represent the majority of outstanding MBS, this

implies that, for specialized investors in this market, the recapitalization effect of monetary policy

described in Brunnermeier and Sannikov (2012) was limited.

The earlier findings from our model suggest two potentially countervailing effects of Fed MBS

purchases on OAS. On the one hand, Fed purchases reduce MBS supply to be absorbed by risk-

46The Fed also announced that it would purchase up to $100 billion in agency debt. The purchases began in early
January 2009. The program was then extended in March 2009, when it was announced that an additional $750bn in
agency MBS, $100bn in agency debt, and $300bn in long-term Treasuries would be purchased over the following year.
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sensitive investors, thereby reducing the required risk premium on all MBS (through OASQ).47

On the other hand, movements in mortgage rates associated with such purchases alter securities’

moneynesses, shifting the OAS along the smile and changing the prepayment risk premium.

The results from our model are shown in the bottom panel of Figure 11. First, OAS movements

(in black) for IO/PO pass-throughs are similar to the TBA ones.48 In terms of the MBS supply

effect, we discussed above how the OASQ component is flat across coupons and declines with a

reduction in supply. Consistent with this, we find that the OASQ evolves similarly for the 4.5, 5,

and 5.5 coupons. For the 6 coupon, OASQ increases in November and December, before converg-

ing toward the other coupons in January as actual LSAP purchases begin. The OASQ effect thus

suggests that the LSAP program lowered non-prepayment risk premia across the coupon stack.49

The cross-coupon “homogeneous” OASQ impact of the Fed’s policy is, however, masked by

changes in the prepayment risk premia that vary with MBS moneyness, shown in the top panel of

Figure 11. The 4.5 starts out OTM and moves ATM as mortgage rates drop, while the 5.5 and 6,

which are around ATM in October, move quite deeply ITM. Based on the OAS smile, the 4.5 should

command a prepayment risk premium prior to November and the 5.5 and 6 coupons afterward.

The bottom panel shows that this is indeed the case: the narrowing in the gap between the black

and gray lines means that the decrease in the OAS of the 4.5 coupon is in part due to the decrease in

its prepayment risk exposure following the drop in rates. In contrast, the prepayment risk premia

on the 5.5 and 6 coupons are high from December onward as they move deeply ITM and are more

sensitive to prepayment risk.

In sum, increases in the moneyness of high coupons following the November 2008 LSAP an-

nouncement led to an increase in their prepayment risk premium, which explains why their OAS

did not fall, even though OASQ declines across the coupon stack as the Fed started absorbing MBS

supply. Differential OAS responses are not specific to the 2008 LSAP announcement. For example,

Krishnamurthy and Vissing-Jorgensen (2013) discuss how during the “taper tantrum” around the

June 19, 2013 FOMC meeting, the OAS increased substantially for low coupons, while the OAS

on higher coupons stayed almost unchanged. These authors interpret this latter fact as evidence

that capital constraints (or limited risk-bearing capacity) are unimportant at that time and argue

47Over several months in early 2009, monthly Fed MBS purchases were absorbing essentially all new MBS issuance.
48The strips we have available do not necessarily have the same characteristics as what the dealers assume to be

cheapest-to-deliver in TBA trades; therefore, our OAS levels do not exactly line up with theirs for all coupons in all
months. Nevertheless, patterns are very similar, especially in changes.

49In addition to the supply effect, the Fed announcement may also have strengthened the perceived government
backing of Fannie Mae and Freddie Mac and improved the liquidity of agency securities (Hancock and Passmore, 2011;
Stroebel and Taylor, 2012).
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for a “scarcity effect” for low coupons, which implies large price responses for coupons directly

targeted by Fed purchases.50

Our model, which does not rely on cross-coupon segmentation, suggests that the increase in the

quantity of securities that non-Fed investors had to hold because of the anticipated taper increases

the required risk premium (through OASQ) on all MBS. However, because rates increase at that

point, the prepayment risk premium on high coupons (that were previously deeply ITM) falls as

they become ATM, so that their overall OAS remains roughly constant. Because of the differential

prepayment risk exposure across MBS, the stability in high-coupon OAS around this event is thus

not evidence of a lack of capital constraints for MBS investors, implying that potential sales of high

coupons might still increase OAS on lower coupons and increase mortgage rates.

6 Conclusions

Our pricing model has two main implications. In the cross section, risk premia associated with

non-interest-rate prepayment factors explain the OAS smile, which is the fact that OAS tend to be

lower for at-the-money MBS than for others. In the time series, the model implies that the average

OAS is primarily driven by non-prepayment risk factors linked to credit spreads, MBS supply, and

spreads on other agency debt. These results suggest that risk-bearing capacity of MBS investors,

and the liquidity and default risk of agency securities, drive aggregate spread variation and are

important determinants of homebuyers’ funding costs.

From a broader perspective, this paper provides further evidence for intermediary asset pricing

in fixed income markets. Recent literature (such as He and Krishnamurthy, 2013; Brunnermeier

and Sannikov, 2014) has proposed that intermediaries’ risk-bearing capacity impacts risk premia

during periods of market stress. While much of our discussion has focused on the response of

the OASQ to Fed purchases in the wake of the crisis, the OASQ reacts to changes in the supply

of MBS and credit spreads even during normal market conditions, consistent with theories (e.g.

Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2009; Adrian and Boyarchenko, 2012) that

link risk premia to intermediary balance sheet constraints even in periods when intermediaries are

well capitalized.

50According to this channel, as demand for a specific coupon increases, the quality of pools delivered in the TBA
contract (as measured by their prepayment characteristics) improves, so that the equilibrium price increases to elicit
pool delivery. Because this scarcity channel works at the level of each coupon, it predicts that Fed purchases do not
affect risk premia on non-targeted MBS, such as higher coupon TBAs or MBS not deliverable in the TBA market.
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Figure 1: Share of total MBS remaining balance by coupon against the current coupon rate. The
shaded gray areas are the share (left axis) of the total remaining principal balance (RPB) in each
30-year fixed-rate Fannie Mae MBS coupon relative to the total RPB of all coupons. RPBs are from
eMBS. The red line is the current coupon (the interpolated coupon that trades at par) in the TBA
market (right axis), obtained from dealer data.
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Figure 2: Time-series and cross-sectional variation of the OAS based on dealer TBA data. The
top panel displays the time series at monthly frequency of the option-adjusted spread (to swaps)
on a value-weighted index based on TBA quotes from six dealers. The bottom panel displays a
scatterplot and a local smoother of the cross-sectional variation in the OAS across MBS coupons as
a function of their moneyness. Moneyness is calculated as the coupon rate plus 50 basis points (to
account for servicing and the guarantee fee) minus the 30-year fixed-rate mortgage rate obtained
from Freddie Mac. The figure only includes coupons with remaining principal balance of at least
100 million in 2009 dollars. All data is as of month-end and covers the period 1996-2010. Further
details on the construction of the value-weighted series is reported in Section 3. Appendix B.1
discusses the sample in more detail.
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Figure 3: Cross-sectional variation in hedged returns. The figure shows monthly t → t + 1
hedged returns on MBS in the Bloomberg Barclays index by coupon against securities’ moneyness
as of the end of month t. Moneyness is calculated as the coupon rate plus 50 basis points (to
account for servicing and the guarantee fee) minus the 30-year fixed-rate mortgage rate obtained
from Freddie Mac. Each dot represents mean returns for one of twenty equally sized moneyness
bins. The gray line represents a local smoother fitted to the underlying data, that is, each coupon’s
return. The sample period is January 1994 to June 2016.
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Figure 4: OAS under different assumptions on the prepayment function. The lines represent
the OAS as function of moneyness for a hypothetical pass-through MBS with zero exposure to
liquidity shocks (α = 0) and 29 years of maturity left. In Case 1 (blue solid line), prepayments are
independent of the moneyness of the security (st = γ1). In Case 2 (dashed red line), prepayments
are linear in the moneyness of the security (st = s̄ + γ1 (c− r)). In Case 3 (crossed green line),
prepayments for OTM and ITM securities are driven by different shocks (st = γ11c<r + γ21c≥r).
In all three cases, the parameters of the prepayment function are log-normally distributed, γi ∼
logN

(
µi, σ2

i
)
, with (µi, σi) calibrated to historical prepayments. The top (bottom) panel shows

OAS with positive (negative) prepayment risk premium. Calculations are based on the formulas
in Section 3.2.
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Figure 5: MBS cash flows for different prepayment speeds. The colored areas represent (undis-
counted) monthly cash flows for a hypothetical MBS with original principal of $100, loan rate of
4.5% and coupon of 4%. The 50 basis point difference between the loan and coupon rate is earned
by the servicer and guaranteeing agency (blue area). Scheduled (amortization) and unscheduled
(prepayment) principal payments are shown as gray areas. The sum of the two areas in each chart
adds up to $100. As a result PO strips benefit from faster prepayments (early repayment). The
IO strip receives the monthly interest payment (coupon rate at monthly rate) on the principal bal-
ance outstanding. The top (bottom) panel shows a slow (fast) constant prepayment rate scenarios.
With fast prepayments, interest payments (red area) are much smaller, thus IOs suffer from fast
prepayments. Calculations are based on the formulas in Appendix E.4.
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Figure 6: Visualization of the identification assumption for OASQ. The figure shows the OAS
on a IO, PO and pass-through for the same underlying collateral as a function of the prepayment
multiple (Λ) on the physical prepayment speed. Higher Λ increases the market-implied prepay-
ment speed relative to the physical one. The OAS on the IO (PO) declines (increases) in Λ. This
follows from the relation between the value of each strip and prepayments shown in Figure 5. The
OAS on the pass-through in this example also declines in Λ because the pass-through is a premium
security (PIO + PPO > $100). The three OAS differ at the physical speed (Λ = 1) but are equalized
at the risk-neutral speed. This value of Λ defines the market implied prepayment speed and the
OASQ.
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Figure 7: Survey-implied average prepayment rates at different levels of burnout. The figure
shows the prepayment function in equation (4.2) with parameters b1, b2 and b3 set at their sample
means. Differences in χ parametrize the burnout effect. Fast refinancers (group 1) and slow refi-
nancers (group 2) are present in the pool with shares χ and 1− χ. As the share of more sensitive
borrowers χ falls, the pool’s overall sensitivity to interest rates is reduced. The vertical axis is the
“conditional prepayment rate” (CPR, or annualized prepayment rate) and the horizontal axis is a
measure of the incentive to prepay the mortgage.
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Figure 8: Cross-sectional variation in model-implied OAS and prepayment speeds. The pan-
els show scatterplots and local smoothers of the cross-sectional variation in the model-implied
OAS, OASQ , the prepayment risk premium (OAS−OASQ) and the difference between the market-
implied and physical lifetime prepayment speed. All measures are for the recombined pass-
throughs obtained as the sum of the value of the IO and PO components. Refer to Figure 6 for
a summary of the relation between physical and market-implied spreads and prepayment speeds.
The horizontal axis measures moneyness, which is calculated as the coupon rate plus 50 basis
points (to account for servicing and the guarantee fee) minus the 30-year fixed-rate mortgage rate
obtained from Freddie Mac. Additional details on the pricing model are given in Section 4.
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Figure 9: Time series of the OAS on the pass-through index from IO/PO strips. This figure
shows time-series variation in OAS and OASQ on a value-weighted index computed from IO/PO
prices. To construct the index, we first average spreads across trusts for each coupon using market
weights. Then, for each month we average across coupons using each market value from TBA
prices. For each trust, the value of the pass-through is the sum of the value of the IO and PO. Refer
to Figure 6 for a summary of the relation between OAS and OASQ and to Section 4 for more details
on the pricing model.
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Figure 10: Variation in OAS around the November 25, 2008 LSAP announcement by the Federal
Reserve. This figure shows the evolution of the OAS for Fannie Mae MBS with coupons 4.5, 5.0,
5.5, and 6.0%, which were the most heavily traded at that time. OAS data is based on median TBA
quotes from six dealers and reported as of month-end. The vertical line indicates November 25,
2008, which is the announcement date.
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Figure 11: OAS decomposition around the November 25, 2008 LSAP announcement by the Fed-
eral Reserve. This figure shows the MBS moneyness by coupon (upper panels) and movements
in OAS and OASQ (bottom panels) based on IO/PO prices and our pricing model. Moneyness is
calculated as coupon plus 50 basis points minus the 30-year fixed-rate mortgage rate (from Fred-
die Mac). Data is as of month-end. Vertical lines indicate November 25, 2008, when the Federal
Reserve announced its large-scale asset purchase program.
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Table 1: Equivalent probability measures of interest. This table shows the three equivalent
probability measures considered in this paper, the associated yield premium notation, and the
necessary conditions for the discounted gains process of a security with cash flows: dχt =
µχtdt + σχr,tdZrt + σχγ,tdZγt under the physical measure that loses a fraction αχ in a liquidity event
to be a martingale under each measure.

Measure name Measure notation Yield premium Necessary condition for martin-
gale discounted gains process

Interest-rate-risk neutral Qr OASt σχγ,t = 0, αχ = 0; ∀σχr,t

Interest-rate-and-
prepayment-risk neutral

Qr,γ OASQ
t αχ = 0; ∀σχr,t, ∀σχγ,t

Risk-neutral Q 0 ∀σχr,t, ∀σχγ,t, ∀αχ

Table 2: Time-series regressions of OAS on the TBA index from dealer data. Coefficient estimates
from OLS regression of the TBA index OAS (shown in the upper panel of Figure 2) on the Aaa-
Treasury spread, the Baa-Aaa spread, the slope of the Treasury yield curve (difference between the
10-year and 3-month Treasury yield) and the 2-year into 10-year swaption implied volatility. The
Aaa and Baa corporate bond yields are from Moody’s, while swaption volatility is from a dealer.
Data is at monthly frequency and measured as of month-end. All regressors are standardized
to have zero mean and unit standard deviation. Newey-West standard errors (6 lags) shown in
brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2)
OAS OAS

Aaa - Treas 3.2∗∗ [1.5] 2.3∗ [1.2]
Baa - Aaa 19.6∗∗∗ [3.4] 9.7∗∗ [3.8]
Treas Slope -0.5 [2.4] 2.0 [1.3]
Swaption Vol. 2.7 [4.2] -0.8 [2.4]
Const 8.8∗∗∗ [1.8] 3.6∗∗∗ [1.3]

Adj. R2 0.76 0.31
Obs. 180 139
Dates 199601.201012 199601.200707
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Table 3: Cross section of OAS on TBA securities from dealer data by moneyness. Coefficient
estimates from OLS regressions of the OAS (annualized, in basis points) on different moneyness
bin dummies, either including or excluding calendar month fixed effects. Moneyness of a coupon
j at time t is defined as Moneynessj,t = Couponj + 0.5− FRMratet. The dummy for the moneyness
bin surrounding zero, [−.25, .25), is the omitted category. Columns 1 and 2 in panel (a) show
estimates for full sample 1996–2010; columns 3 and 4 exclude the period August 2007–December
2010 (thus excluding the financial crisis). In panel (b) the sample is split based on the moneyness
of the MBS market: “Market ITM (OTM)” indicates that the balance-weighted average moneyness
of all outstanding Fannie Mae MBS is > 0 (< 0). In columns 1 and 2 of panel (b), the first two bins
are merged since there are only 7 observations with moneyness<-1.75 when the market is ITM;
similarly in columns 3 and 4 the last two bins are merged since there are only 5 observations with
moneyness≥2.75 when the market is OTM. Robust standard errors (clustered at the month level)
shown in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(a) Full sample and pre-crisis sample
Full sample Pre-crisis sample

(1) (2) (3) (4)

Moneyness bin:
< −1.75 18.7∗∗∗ [4.5] 18.0∗∗∗ [2.3] 14.9∗∗∗ [2.0] 14.1∗∗∗ [2.4]
[−1.75,−1.25) 8.9∗∗∗ [1.9] 10.4∗∗∗ [1.6] 7.7∗∗∗ [1.2] 8.3∗∗∗ [1.4]
[−1.25,−.75) 4.0∗∗∗ [1.0] 5.3∗∗∗ [1.1] 4.3∗∗∗ [0.9] 4.8∗∗∗ [0.9]
[−.75,−.25) -0.0 [0.4] -0.1 [0.4] 0.8∗ [0.4] 0.8∗∗ [0.4]
[.25, .75) 1.5∗∗∗ [0.5] 1.5∗∗∗ [0.5] -0.1 [0.4] -0.1 [0.4]
[.75, 1.25) 6.4∗∗∗ [1.2] 6.4∗∗∗ [1.2] 2.6∗∗∗ [0.9] 2.5∗∗∗ [0.9]
[1.25, 1.75) 15.6∗∗∗ [2.2] 15.0∗∗∗ [2.1] 7.2∗∗∗ [1.8] 7.2∗∗∗ [1.7]
[1.75, 2.25) 27.2∗∗∗ [3.7] 24.6∗∗∗ [3.3] 11.9∗∗∗ [3.0] 11.4∗∗∗ [3.0]
[2.25, 2.75) 41.3∗∗∗ [6.4] 33.9∗∗∗ [5.5] 26.0∗∗∗ [5.3] 23.2∗∗∗ [5.2]
≥ 2.75 93.4∗∗∗ [13.3] 85.4∗∗∗ [10.9] 50.5∗∗∗ [7.2] 47.1∗∗∗ [7.2]
Const 7.5∗∗∗ [1.5] 0.5 [0.8]

Month FEs? No Yes No Yes
Adj. R2 0.22 0.61 0.24 0.38
Adj. R2 (within) 0.31 0.25
Obs. 1532 1532 1151 1151
Dates 199601.201012 199601.201012 199601.200707 199601.200707

(b) Subsamples based on moneyness of MBS market
Market ITM Market OTM

(1) (2) (3) (4)

Moneyness bin:
< −1.75 20.3∗∗∗ [3.6] 18.5∗∗∗ [2.5]
[−1.75,−1.25) 13.6∗∗∗ [2.6] 18.1∗∗∗ [2.4] 7.8∗∗∗ [1.1] 7.8∗∗∗ [1.1]
[−1.25,−.75) 5.7∗∗∗ [1.5] 7.9∗∗∗ [1.6] 1.2∗ [0.7] 1.2∗ [0.7]
[−.75,−.25) 0.3 [0.5] 0.2 [0.6] -0.7 [0.5] -0.7 [0.5]
[.25, .75) 0.7 [0.7] 0.7 [0.7] 3.4∗∗∗ [0.8] 3.4∗∗∗ [0.8]
[.75, 1.25) 4.3∗∗∗ [1.6] 4.2∗∗∗ [1.6] 11.3∗∗∗ [1.4] 11.3∗∗∗ [1.4]
[1.25, 1.75) 8.9∗∗∗ [2.5] 8.6∗∗∗ [2.4] 31.8∗∗∗ [3.6] 30.8∗∗∗ [3.2]
[1.75, 2.25) 17.4∗∗∗ [3.8] 15.6∗∗∗ [3.5] 55.4∗∗∗ [7.9] 50.7∗∗∗ [6.5]
[2.25, 2.75) 44.0∗∗∗ [7.6] 36.6∗∗∗ [6.4] 27.1∗∗ [11.8] 23.4∗∗ [10.7]
≥ 2.75 98.5∗∗∗ [13.4] 89.6∗∗∗ [11.2]
Const 8.5∗∗∗ [1.6] 5.2 [3.3]

Month FEs? No Yes No Yes
Adj. R2 0.27 0.61 0.13 0.75
Adj. R2 (within) 0.35 0.34
Obs. 1039 1039 493 493
Dates 199601.201012 199601.201012 199606.200810 199606.200810
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Table 4: Regressions of MBS returns on OAS and mortgage rates. Panels (a) and (b) show coeffi-
cient estimates from OLS regressions of 12-month (t→ t + 12, meaning from the end of month t to
the end of month t+ 12 and reported as “1-year”) MBS returns and annualized 1-month (t→ t+ 1,
reported as “1-month”) MBS returns from the Bloomberg Barclays index on the Barclays OAS to
Treasuries as of the end of month t. In panel (a), returns are hedged, while in panel (b), returns are
unhedged and net of the risk free rate. Panel (c) shows coefficient estimates from regressions of
hedged returns in month t+ 1 on changes in the Freddie Mac 30-year fixed mortgage rate, denoted
“FRM”, from the end of month t to t + 1. “ITM” is an indicator for an MBS being in-the-money
(i.e. moneyness> 0) as of the end of month t. “Market ITM (OTM)” indicates that the balance-
weighted average moneyness of all outstanding Fannie Mae MBS is > 0 (< 0). Moneyness is
calculated as coupon plus 50 basis points minus the 30-year fixed-rate mortgage rate (from Fred-
die Mac). Newey-West standard errors (18 lags) in brackets for 1-year returns; robust standard
errors (clustered at the month level) for 1-month returns. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

(a) Hedged returns and OAS

(1) (2) (3) (4) (5) (6)
1-year 1-year 1-month 1-month 1-month 1-month

OAS 1.36∗∗∗ 1.41∗∗∗ 1.75∗∗∗ 1.95∗∗∗ 0.50∗ 1.15∗∗∗

[0.21] [0.13] [0.63] [0.61] [0.28] [0.27]
∆OAS -2.37∗∗∗ -2.33∗∗∗

[0.30] [0.25]

Month FEs? No Yes No Yes No Yes
Adj. R2 0.19 0.70 0.02 0.53 0.56 0.78
Obs. 1990 1990 2076 2076 2064 2064

(b) Unhedged returns and OAS

(1) (2) (3) (4) (5) (6)
1-year 1-year 1-month 1-month 1-month 1-month

OAS 1.48∗∗∗ 0.80∗∗∗ 1.90∗∗ 1.58∗ 1.04 0.44
[0.35] [0.22] [0.76] [0.87] [0.74] [0.44]

∆OAS -1.85∗∗∗ -3.32∗∗∗

[0.31] [0.38]

Month FEs? No Yes No Yes No Yes
Adj. R2 0.02 0.78 0.01 0.60 0.11 0.76
Obs. 1990 1990 2076 2076 2064 2064

(c) 1-month hedged returns and mortgage rates

(1) (2) (3) (4)
Full Full Market ITM Market OTM

∆FRM -0.58∗∗∗ -0.74∗∗∗ -0.39∗

[0.18] [0.26] [0.21]
∆FRM× ITM 0.92∗∗∗ 1.14∗∗∗ 0.91∗∗∗ 1.57∗∗∗

[0.23] [0.25] [0.23] [0.50]

Month FEs? No Yes No No
Adj. R2 0.03 0.55 0.02 0.16
Obs. 2076 2076 1622 454
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Table 5: Cross sectional variation of OASQ and prepayment risk premia (OAS − OASQ) on
pass-throughs from IO/PO strips. The table shows coefficient estimates from OLS regressions of
the OASQ (panel a) and the prepayment-risk component in the OAS (panel b) on dummies for
different moneyness levels either including or excluding time fixed effects. For each trust, the OAS
is computed from the value of the pass-through obtained as the sum of the value of the IO and
PO. Refer to Figure 6 for a summary of the relation between OAS and OASQ and to Section 4 for
more details on the pricing model. Moneyness of a coupon j at time t is defined as Moneynessj,t =

Couponj + 0.5 − FRMratet. Moneyness bin [−.25, .25) is the omitted category. Robust standard
errors (clustered at the month level) in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(a) Cross section of OASQ

(1) (2) (3) (4)

< −1.25 1.5 [3.8] -1.3 [1.5] -1.8 [1.5] -1.5 [1.7]
[−1.25,−.75) -0.2 [2.1] -2.7∗∗ [1.2] -2.9∗∗ [1.3] -3.3∗∗ [1.3]
[−.75,−.25) -1.4 [1.3] -2.3∗∗ [0.9] -1.2 [1.0] -2.5∗∗∗ [0.9]
[.25, .75) -2.3∗∗∗ [0.7] -2.5∗∗∗ [0.8] -1.0 [0.8] -1.5∗∗ [0.8]
[.75, 1.25) -5.2∗∗∗ [1.6] -4.0∗∗∗ [1.5] -3.6∗∗ [1.4] -4.1∗∗∗ [1.5]
[1.25, 1.75) -3.3 [2.5] -1.4 [2.4] -4.6∗ [2.3] -4.9∗ [2.6]
[1.75, 2.25) -3.1 [4.6] 2.0 [3.8] -9.7∗∗ [4.4] -4.4 [4.1]
≥ 2.25 6.1 [6.9] 16.5∗∗∗ [6.3] 9.1 [8.6] 15.5∗ [8.1]
Const 13.8∗∗∗ [1.6] 13.1∗∗∗ [0.9] 7.9∗∗∗ [1.1] 7.9∗∗∗ [0.8]

Month FEs? No Yes No Yes
Adj. R2 -0.00 0.73 0.02 0.52
Obs. 1005 1005 796 796
Dates 199501.201012 199501.201012 199501.200707 199501.200707

(b) Cross section of OAS - OASQ

(1) (2) (3) (4)

< −1.25 5.4∗∗∗ [1.9] 6.8∗∗∗ [2.2] 2.3 [1.7] 3.3∗ [2.0]
[−1.25,−.75) 2.9∗∗∗ [0.9] 5.2∗∗∗ [1.2] 0.9 [0.8] 3.2∗∗∗ [1.1]
[−.75,−.25) -1.0∗∗∗ [0.4] 0.7 [0.7] -1.8∗∗∗ [0.3] -0.0 [0.7]
[.25, .75) 4.9∗∗∗ [0.4] 4.1∗∗∗ [0.5] 5.1∗∗∗ [0.4] 4.5∗∗∗ [0.5]
[.75, 1.25) 13.3∗∗∗ [1.0] 12.4∗∗∗ [1.1] 13.5∗∗∗ [1.1] 12.8∗∗∗ [1.3]
[1.25, 1.75) 22.1∗∗∗ [1.5] 20.7∗∗∗ [1.7] 22.3∗∗∗ [1.7] 21.2∗∗∗ [1.9]
[1.75, 2.25) 26.6∗∗∗ [2.7] 23.1∗∗∗ [2.7] 26.5∗∗∗ [3.5] 23.3∗∗∗ [3.5]
≥ 2.25 34.2∗∗∗ [5.0] 27.5∗∗∗ [4.3] 30.2∗∗∗ [6.1] 25.6∗∗∗ [5.1]
Const -1.4∗∗∗ [0.2] -1.0 [0.7] -1.5∗∗∗ [0.3] -1.2∗ [0.7]

Month FEs? No Yes No Yes
Adj. R2 0.42 0.59 0.42 0.58
Obs. 1005 1005 796 796
Dates 199501.201012 199501.201012 199501.200707 199501.200707
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Internet Appendix: Not for publication

A Proofs of Results in Section 3

Evolution of principal balance. Consider a mortgage pool with coupon rate c, remaining prin-
cipal balance θt at time t and maturity date T. Let θ̃t be the remaining loan balance absent un-
scheduled prepayment at date t and c̃ is the fixed interest rate paid by the mortgagor (usually
c̃ = c + 50bps). Let the initial loan balance be θ0 = 1. In continuous time, the loan balance evolves
as

∂θ̃t

∂t
= c̃θ̃t − k,

where k is the fixed payment from the borrower to the servicer. Solving for θ̃T = 0, we obtain
that the fixed payment k = c̃

(
ec̃T − 1

)−1 and that the date t loan balance excluding unscheduled
prepayment is

θ̃t =
ec̃T − ec̃t

ec̃T − 1
.

Combining the scheduled and unscheduled prepayments, the remaining principal balance at date
t is thus given by

θt = e−
∫ t

0 s∗udu ec̃T − ec̃t

ec̃T − 1
.

Thus, the overall principal balance evolves as

dθt =

(
−s∗t θt − c̃e−

∫ t
0 s∗udu ec̃t

ec̃T − 1

)
dt ≡ −µθtdt,

where µθt is known at time t, and dθt is locally deterministic.

Proof of Result 3.1. Consider the first-order Taylor series approximation to the price of the secu-
rity around zero ypR:

Pt ≈ Pt|ypR
t =0 +

∂Pt

∂ypR
t

∣∣∣∣
ypR

t =0
ypR

t .

Using the definition of the yield premium in (3.7), we have

∂Pt

∂ypR
t

∣∣∣∣
ypR

t =0
= −ER

t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)
s (1− α)

∫ s
0 dJt+u µX,t+sds

]
.
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Thus,

Pt ≈ ER
t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)(
1− sypR

t

)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
.

Solving for the yield premium, we obtain

ypR
t ER

t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)
s (1− α)

∫ s
0 dJt+u µX,t+sds

]
= ER

t

[∫ T−t

0
exp

(
−
∫ s

0
rt+udu

)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
− Pt.

We can now use (3.6) to substitute for Pt and express the yield premium in terms of future returns

ypR
t = ER

t

[∫ T−t

0

(
1− exp

(
−
∫ s

0
drxR

t+u

))
wt,sds

]
,

where the weights wt,s are given by

wt,s =
exp

(
−
∫ s

0 rt+udu
)
(1− α)

∫ s
0 dJt+u µX,t+s

ER
t

[∫ T−t
0 exp

(
−
∫ s

0 rt+udu
)

s (1− α)
∫ s

0 dJt+u µX,t+sds
] ,

decline in horizon s. That is, the yield premium under R is a weighted average of expected excess
returns over the lifetime of the security under the measure R.

Proof of Result 3.2. Notice first that, at time t + ∆, the price of the pass-through security in terms
of the time t + ∆ yield premium is given by

Pt+∆ = ER
t+∆

[∫ T−t−∆

0
exp

(
−
∫ s

0

(
rt+∆+u + ypR

t+∆

)
du
)
(1− α)

∫ s
0 dJt+∆+u µX,t+∆+sds

]
= ER

t+∆

[∫ T−t−∆

0
exp

(
−
∫ s

0

(
rt+∆+u + ypR

t + ∆ypR
t

)
du
)
(1− α)

∫ s
0 dJt+∆+u µX,t+∆+sds

]
,

where ∆ypR
t = ypR

t+∆ − ypR
t . Expanding around ∆ypR

t = 0, we can thus represent the time t + ∆
price of the pass-through security as

Pt+∆ ≈ ER
t+∆

[∫ T−t−∆

0
exp

(
−
∫ s

0

(
rt+∆+u + ypR

t

)
du
)
(1− α)

∫ s
0 dJt+∆+u µX,t+∆+sds

]
− Dt+∆Pt+∆∆ypR

t ,

where Dt+∆ is the modified duration of the security:

Dt+∆ = − 1
Pt+∆

∂Pt+∆

∂∆ypR
t

.
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Thus,

drxR
t =

dPR
t + dXR

t
Pt−

− rtdt = lim
∆→0

Pt+∆ − Pt− + dXt

Pt−
− rtdt

≈ lim
∆→0

e(rt+∆+ypR
t )∆ (1− α)−dJt+∆ ER

t+∆

[∫ T−t−∆
0 exp

(
−
∫ s

0

(
rt+u + ypR

t
)

du
)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
Pt

−
ER

t

[∫ T−t
0 exp

(
−
∫ s

0

(
rt+u + ypR

t
)

du
)
(1− α)

∫ s
0 dJt+u µX,t+sds

]
Pt

− lim
∆→0

Dt+∆Pt+∆∆ypR
t

Pt
− rtdt

= ypR
t dt− DtdypR

t ,

where the last equality follows from evaluating the limit as ∆ approaches 0.

Proof of Result 3.3. Using the fund separation theorem (see e.g. Merton, 1972), we can represent
the return on the pass-through security as

drxt =
Nr

∑
j=1

βrj,tdϕjt + dr̃xt, (A.1)

where
{

dϕjt
}Nr

j=1 are the instantaneous excess returns on a set of portfolios that spans the interest
rate uncertainty in the economy, and dr̃xt is the excess return on the pass-through that is earned as
compensation for non-interest rate factors:

dr̃xt ≡ drxt −
Nr

∑
j=1

βrj,tdϕjt; E [dr̃xtdρt] = 0.

That is, (A.1) decomposed the excess return on the pass-through into a beta-weighted sum of
interest-rate-uncertainty-spanning portfolios and compensation for other sources of risk priced
in the pass-through security.

Since
{

dϕjt
}Nr

j=1 span the interest rate uncertainty, we can also represent the pricing kernel Mt

as

dMt

Mt
= m0tdt +

Nr

∑
j=1

mjtdϕjt +
dMQr

t

MQr
t

,

with

rtdt = −m0tdt−
Nr

∑
j=1

mjtEt
[
dϕjt

]
−Et

[
dMQr

t

MQr
t

]
.
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Thus,

Et [dr̃xt] = −Et

[
dMt

Mt
dr̃xt

]
= −Et

[(
Nr

∑
j=1

mjtdϕjt +
dMQr

t

MQr
t

)
dr̃xt

]

= −Et

[
dMQr

t

MQr
t

dr̃xt

]
= −E

Qr
t [dr̃xt] ,

where the third equality follows from dr̃xt being orthogonal to the interest-rate-risk-spanning port-
folios

{
dϕjt

}Nr

j=1 and the fourth equality follows from the definition of the pricing kernel under Qr.

B Data

B.1 TBA sample and data-quality filters

The sample used for the analysis in Sections 3.3 and 3.4 spans 1996 to 2010, reflecting limited
availability of data on MBS in the TBA market prior to 1996, and a limited liquidity in IO/PO
strips, which we use later in the paper to decompose the OAS, post 2010. The OAS we use are the
average (within each coupon/month) across six dealers from which we collect data. We do not
necessarily have spreads for all dealers on the same coupons on each day. In addition, some of the
dealers enter our data only after 1996. We clean each dealer’s data to prevent spreads from being
influenced by stale prices. To do so, we check whether a price for a coupon is unchanged relative
to the previous day. If it is, and if the 10-year Treasury yield changed by 3 basis points or more
on the same day (so we expect MBS prices to change), we drop the price and the corresponding
spread. If the price is not constant, but had been constant more than twice in the same calendar
month on days when the Treasury yield moves, we similarly drop it.

Descriptive statistics of the monthly coupon-level sample used for the analysis in Sections 3.3
and 3.4 are provided in Table A-1. The coupons in the sample change over time (as illustrated in
Figure 1 in the main text), so that the data form an unbalanced panel.

B.2 Stripped MBS data-quality filters

We start with daily price quotes from a large dealer for the period 1995 to 2010, and then clean
these data using the following steps:

1. Remove/correct obvious outliers (such as prices of 0 or a few instances where IO and PO
prices were inverted).

2. Remove prices that are stale (defined as a price that does not change from previous day
despite a change in the 10-year yield of more than 3 basis points). In case of smaller yield
changes, we check the previous 10 days and remove a price if there were more than two
instances of stale prices on that security over that period.

4



Table A-1: Descriptive statistics of TBA sample. Based on Fannie Mae pass-through coupons
from 1996-2010 for which we have OAS quotes from at least one dealer, subject to the data quality
filters described in Section B.1. Data frequency is monthly; spreads and moneyness (= coupon
plus 0.5 minus current FRM rate) are as of month-end. RPB stands for the total remaining principal
balance in a coupon. Factor means current face value divided by issuance amount. Data on RPBs,
factors, and weighted average loan ages are from eMBS.

Mean Std. Dev. p5 p25 p50 p75 p95 Obs.
OAS (basis points, annual) 23.12 50.66 -16.45 -2.27 9.05 28.03 120.00 1532
Coupon (percent) 6.53 1.49 4.00 5.50 6.50 7.50 9.00 1532
Moneyness (percent) 0.56 1.40 -1.64 -0.58 0.51 1.60 2.93 1532
RPB (2009 USD, million) 126928.83 151009.18 590.43 9091.44 66862.53 194624.09 443893.38 1532
Factor of most recent vintage 0.89 0.21 0.26 0.91 0.98 0.99 1.00 1530
Weighted average loan age (months) 47.44 33.51 8.67 25.37 38.36 58.93 128.27 1532

3. For a subsample of trusts and months (starting in June 1999), we also have price quotes from
two additional dealers. When available, we compare these prices (their average if both are
available) to the price quoted by our dealer. When they are more than 5% apart, or if the
overall range of price quotes is larger than 0.1 times the average price, we do not use our
price quote in the analysis. This applies to about 10% of our price quotes.

4. Only retain trusts for which we have both the IO and PO strips, and which we can link to
data on the underlying pool of mortgages (from eMBS). This restriction eliminates IO strips
backed by excess servicing rights, for instance.

5. Only retain trusts for which the price on the recombined pass-through (= PPO + PIO) is within
$2 of the TBA price of the corresponding coupon. (We also drop trusts if on that day we do
not have a clean TBA price for the corresponding coupon.)

6. Only retain trusts with a factor (= current face value divided by issuance amount) of more
than 5%.

7. Only retain trusts that we can match to a Bloomberg prepayment survey with the same
coupon and absolute differences in WAC and WAM smaller than 0.3 percentage points and
60 months, respectively. (This affects almost exclusively observations before 2003, as we do
not have individual vintages in the survey in the early years.)

Following these steps, the sample includes 3713 trust-month observations, or about 19 per month.
The year with the lowest number of observations is 1999, where we have an average of 10 trusts
per month, while after 2005 we have at least 20 trusts in all but one month.

C OAS smile: Robustness

This Appendix provides additional evidence on the smile-shaped pattern of the OAS in the cross
section of TBA coupons, which is a key empirical result as discussed in Section 3.4. We show
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robustness to dropping periods of financial stress, stability across sub-periods, and regression esti-
mates when excluding outlier observations, MBS coupons with relatively low balances, or coupons
that may be “burned out” (as indicated by a low remaining factor).

One potential concern about the OAS pattern shown in panel (b) of Figure 2 is that it may
be unduly influenced by periods of financial stress. Panel (a) of Figure A-1 replicates Figure 2
when excluding the post-July 2007 period, and the period from September 1998 to January 1999,
when liquidity in many U.S. fixed income markets dried up following the failure of Long-Term
Capital Management (LTCM). The figure shows that the distinctive smile pattern remains present
even without these periods. Panel (b) of Figure A-1 provides evidence on sub-sample stability by
providing “binned” scatter plots for three equally sized periods covering five years each. While
the smile pattern is most distinctive during the last five years of the sample, it is also clearly visible
in the earlier time periods.

We next present additional robustness checks of the regression evidence shown in Table 3 of
the main text, focusing on the specifications that explore within-month variation in OAS across
coupons. Table 3 showed that the smile pattern is robust to restricting the sample to certain time
periods, either based on dates or based on the moneyness of the market as a whole. We now
instead drop observations based on the characteristics of the underlying coupons, or if their OAS is
an outlier. Column (1) of Table A-2 displays, for reference, the results of our baseline specification
with month fixed effects (column 2 in Table 3(a)). In column (2), we drop from the sample all
observations where the absolute level of moneyness exceeds 2, or where the OAS exceeds 100
basis points. The resulting coefficients confirm that the smile pattern is not driven by extreme
observations. The final two columns instead restrict the sample based on characteristics of the
pools underlying each coupon, to ensure that the smile pattern is not due just to small pools. In
column (3), we restrict the included coupons to be those from the original sample with above-
median remaining principal balance (in 2009 dollars); this cutoff is $67 billion. We see that the
coefficients on the most extreme bins are slightly reduced relative to column (1), but otherwise the
smile pattern remains very similar. Finally, in column (4) we restrict the sample to include only
those coupons where the most recently issued origination vintage (by year) has a remaining factor
of at least 0.8 (meaning at most 20% of the original pool has prepaid). This excludes the coupons
with the most "burned out" pools. This restriction has little effect on the estimated coefficients.
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Figure A-1: OAS smile: robustness and subsamples. Panel (a) displays a scatterplot and a lo-
cal smoother of the cross-sectional variation in OAS for MBS coupons with remaining principal
balance (in 2009 dollars) of $100 million or more, excluding from the sample the months Septem-
ber 1998 to January 1999 (LTCM turmoil) and August 2007 to December 2010 (financial crisis and
aftermath). Panel (b) displays “binned” scatterplots for three five-year subsamples, where each
dot represents mean OAS for one of ten equal-sized moneyness bins. The lines represent a lo-
cal smoother fitted to the underlying data (i.e., each coupon’s OAS, not just the moneyness bin
averages).
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Table A-2: Cross section of OAS on TBA coupons: Robustness. Coefficient estimates from OLS
regression of the OAS on different moneyness level bins, with calendar month fixed effects. Robust
standard errors (clustered at the month level) in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

(1) (2) (3) (4)
Full |Moneyn.| <2, RPB> med. Factor>0.8

OAS<100

< −1.75 18.0∗∗∗ [2.3] 16.5∗∗∗ [2.6] 5.9∗∗∗ [2.3] 17.9∗∗∗ [2.2]
[−1.75,−1.25) 10.4∗∗∗ [1.6] 9.8∗∗∗ [1.3] 3.7∗∗∗ [1.1] 9.5∗∗∗ [1.5]
[−1.25,−.75) 5.3∗∗∗ [1.1] 4.9∗∗∗ [0.8] -0.4 [0.9] 5.8∗∗∗ [1.0]
[−.75,−.25) -0.1 [0.4] 0.1 [0.4] -1.1 [0.7] -0.1 [0.4]
[.25, .75) 1.5∗∗∗ [0.5] 1.2∗∗ [0.5] 1.2∗ [0.7] 1.5∗∗∗ [0.5]
[.75, 1.25) 6.4∗∗∗ [1.2] 5.1∗∗∗ [1.0] 4.7∗∗∗ [1.4] 6.3∗∗∗ [1.2]
[1.25, 1.75) 15.0∗∗∗ [2.1] 11.0∗∗∗ [1.7] 12.8∗∗∗ [2.8] 15.7∗∗∗ [2.2]
[1.75, 2.25) 24.6∗∗∗ [3.3] 14.6∗∗∗ [3.2] 29.9∗∗∗ [4.7] 26.2∗∗∗ [4.1]
[2.25, 2.75) 33.9∗∗∗ [5.5] 38.9∗∗∗ [7.5] 48.6∗∗∗ [9.4]
≥ 2.75 85.4∗∗∗ [10.9] 51.8∗∗∗ [2.6] 91.6∗∗∗ [15.2]

Month FEs? Yes Yes Yes Yes
Adj. R2 0.61 0.68 0.88 0.76
Adj. R2 (within) 0.31 0.15 0.31 0.32
Obs. 1532 1215 766 1314
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D Additional details on model

In this Appendix, we provide additional details and derivations for the simple framework de-
scribed in the main text. We show that the simple intuitions for the sources of risk premia reflected
in the OAS that we developed in Section 3 carry through under more general assumptions on the
evolution of risk factors in the economy.

D.1 Cash flows

In this paper, we are interested in pricing three types of MBS securities: the interest-only (IO) strip,
the principal-only (PO) strip and the pass-through security (the combination, denoted “PT,” of IO
and PO). For a pool with θt remaining principal balance, the cash flows received by investors in an
IO strip are dXt,IO = cθtdt, by investors in a PO strip are dXt,PO = −dθt, and by investors in the
pass-through are dXt,PT = cθtdt− dθt.

Recall that the remaining principal balance evolves as

θt = e−
∫ t

0 s∗udu ec̃T − ec̃t

ec̃T − 1
,

so that

dθt =

(
−s∗t θt − c̃e−

∫ t
0 s∗udu ec̃t

ec̃T − 1

)
dt.

Thus, the evolution of the remaining principal balance is locally deterministic, which implies that
the cash flows to our three securities of interest are locally deterministic as well.

D.2 Pricing kernels and changes of measure

Under the assumption of no arbitrage, there exists a stochastic discount factor that prices all the
assets in the economy, given by

dMt

Mt
= −rtdt− π′rtdZrt − π′γtdZγt − log πltdNt,

where rt is the equilibrium risk-free rate, πrt is the vector of the prices of risk associated with
innovations affecting the term structure of interest rates in the economy (including ρt), πγt is the
vector of the prices of risk associated with the innovations to the non-interest rate factors, πlt is
the price of risk associated with the liquidity shocks dJt, and dNt = dJt − µtdt is the compensated
liquidity jump process. Associated with the stochastic discount factor is the risk-neutral measure1

Q. The risk-neutral measure Q is defined by its Radon-Nikodym derivative with respect to the

1The risk-neutral measure is also sometimes called the equivalent martingale measure (EMM)
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physical measure P:

dQ

dP
= exp

(
−1

2

∫ t

0

(
|πrs|2 + |πγs|2

)
ds−

∫ t

0
π′rsdZrs −

∫ t

0
π′γsdZγs −

∫ t

0
log πlsdNs

)
.

As described in Section 3, in addition to the risk-neutral measure, we consider two intermediate
changes of measure: one that is risk-neutral with respect to the interest rate shocks only, Qr, and
one that is risk-neutral with respect to all Brownian shocks, Qr,γ. These two measures are also
defined by their respective Radon-Nikodym derivatives with respect to the physical measure P:

dQr

dP
= exp

(
−1

2

∫ t

0
|πrs|2 ds−

∫ t

0
π′rsdZrs

)
dQr,γ

dP
= exp

(
−1

2

∫ t

0

(
|πrs|2 + |πγs|2

)
ds−

∫ t

0
π′stdZrs −

∫ t

0
π′γsdZγs

)
.

The pricing kernel under Qr is thus given by

dMQr
t

MQr
t

= −rtdt− π′γtdZγt − log πltdNt,

and under Qr,γ by

dMQr,γ
t

MQr,γ
t

= −rtdt− log πltdNt.

D.3 Expected excess returns

To simplify the exposition (and reduce repetition), let R be a generic measure, defined through its
Radon-Nikodym derivative with respect to the physical probability measure P:

dR

dP
= exp

(
−1

2

∫ t

0

(
|ψrs|2 + |ψγs|2

)
ds−

∫ t

0
ψ′rsdZrs −

∫ t

0
ψ′γsdZγs −

∫ t

0
log ψls (dJs − µsds)

)
.

Under R, the vector of interest rate shocks ρt evolves as

dρR
t = (µrt − σrtψrt) dt + σrtdZR

rt ,

and the vector of prepayment shocks γt evolves as

dγR
t = (µγt − σγtψγt) dt + σγtdZR

γt,

where dZR
rt and dZR

γt are, respectively, an Nr- and an Nγ-dimensional Brownian motion under R.
The liquidity factor lt follows a Poisson jump process with arrival rate ψltµt under R.
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Let MR
t be the pricing kernel under R, given by

dMR
t

MR
t

= −rtdt− (πrt − ψrt) dZR
rt − (πγt − ψγt) dZR

γt − log
πlt

ψlt
dNR

t ,

where dNR
t is the compensated Poisson jump process under R. With this notation, given an excess

return process drxR
t , expected excess returns satisfy

ER
t

[
drxR

t

]
= −ER

t

[
dMR

t

MR
t

drxR
t

]
.

Next, recall that, the excess return process under R is defined as

drxR
t =

dPR
t

Pt
+

dXt

Pt
− rtdt,

where dPR
t is the capital gains process on the security under R. For our securities of interest, the

cash flows dXt are locally-deterministic. For securities with locally-deterministic cash flows, the
expected excess return under R thus satisfies

ER
t

[
drxR

t

]
= −ER

t

[
dMR

t

MR
t

dPR
t

Pt

]
. (D.1)

Thus, to compute the expected excess return, we need to know the evolution of the gains process
under R.

Applying Ito’s lemma (see e.g. Cont and Tankov, 2003, Proposition 8.14 for Ito’s lemma for
jump-diffusion processes), we can represent the capital gains process under R as

dPR
t =

∂P
∂t

dt +
∂P
∂ρ′t

dρR
t +

∂P
∂γ′t

dγR
t +

1
2

tr
(

∂2P
∂ρ′t∂ρt

dρR
t dρ′,Rt

)
+

1
2

tr
(

∂2P
∂γ′t∂γt

dγR
t dγ′,Rt

)
+ [Pt − Pt− ]

=
∂P
∂t

dt +
∂P
∂ρ′t

(
(µrt − σrtψrt) dt + σrtdZR

rt

)
+

∂P
∂γ′t

(
(µγt − σγtψγt) dt + σγtdZR

γt

)
+

1
2

tr
(

∂2P
∂ρ′t∂ρt

σrtσ
′
rt

)
dt +

1
2

tr
(

∂2P
∂γ′t∂γt

σγtσ
′
γt

)
dt + [Pt − Pt− ] .

Substituting into (D.1), we can thus express the expected excess return under R as

ER
t

[
drxR

t

]
=

1
Pt−

∂Pt

∂ρ′t
σrt (πrt − ψrt) dt +

1
Pt−

∂Pt

∂γ′t
σγt (πγt − ψγt) dt + αµt

(
πlt

ψlt
− 1
)

dt,

so that the risk premium on the security under R, rpR
t is given by

rpR
t =

1
Pt−

∂Pt

∂ρ′t
σrt (πrt − ψrt) +

1
Pt−

∂Pt

∂γ′t
σγt (πγt − ψγt) + αµt

(
πlt

ψlt
− 1
)

. (D.2)
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D.4 Identifying prepayment risk premia

Proposition D.1. Assume that the economy is as described in Section 3 and let πrt, πγt and πlt be the
prices of interest rate, prepayment and liquidity risk, respectively. Then:

a) Under the interest-and-prepayment-risk-neutral measure, Qr,γ, the risk premia on the IO, the PO, and
the pass-through are all equalized and are equal to

rpQr,γ
t,IO = rpQr,γ

t,PO = rpQr,γ
t,PT = α (πlt − 1) µt,

where α is the fraction of market value lost in case of the liquidity shock being realized.

b) Let R be a measure defined through its Radon-Nikodym derivative with respect to the physical probability
measure P as

dR

dP
= exp

(
−1

2

∫ t

0

(
|ψrs|2 + |ψγs|2

)
ds−

∫ t

0
ψ′rsdZrs −

∫ t

0
ψ′γsdZγs −

∫ t

0
log ψls (dJs − µsds)

)
.

Then, the expected excess returns on the IO, the PO and the pass-through under R are equalized only if
R fully compensates for interest rate and prepayment risk:

ψrt = πrt; ψγt = πγt.

Proof. Consider first part (a). In this case, R = Qr,γ so that

ψrt = πrt; ψγt = πγt; ψlt = 1.

Substituting into (D.2), we thus obtain that, under the interest-rate-and-prepayment-risk-neutral
measure Qr,γ, the risk premium on the IO strip, the risk premium on the PO strip, and the risk
premium on the pass-through are all given by

rpQr,γ
IO,t = rpQr,γ

PO,t = rpQr,γ
PT,t = αµt (πlt − 1) .

That is, under the interest-rate-and-prepayment-risk-neutral measure Qr,γ, holders of MBS securi-
ties earn an expected excess return as compensation for liquidity risk. Since every security written
on the same pool are equally exposed to the liquidity shock, the risk premia under Qr,γ are equal-
ized on all three securities.

Turn now to part (b). From (D.2), the risk premium under R on the IO strip is

rpR
IO,t =

1
PIO,t−

∂PIO,t

∂ρ′t
σrt (πrt − ψrt) +

1
PIO,t−

∂PIO,t

∂γ′t
σγt (πγt − ψγt) + αµt

(
πlt

ψlt
− 1
)

,
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and the risk premium under R on the PO strip is

rpR
PO,t =

1
PPO,t−

∂PPO,t

∂ρ′t
σrt (πrt − ψrt) +

1
PPO,t−

∂PPO,t

∂γ′t
σγt (πγt − ψγt) + αµt

(
πlt

ψlt
− 1
)

.

Since, in general, the IO and the PO strip have different exposures to interest rate and prepayment
risk, so that

1
PIO,t−

∂PIO,t

∂ρ′t
6= 1

PPO,t−

∂PPO,t

∂ρ′t
and

1
PIO,t−

∂PIO,t

∂γ′t
6= 1

PPO,t−

∂PPO,t

∂γ′t
,

the risk premia on the IO and the PO are equalized only if

πrt − ψrt = 0 and πγt − ψγt = 0.

Thus, the risk premia on the IO and the PO are equalized under measure R if and only if R is
risk-neutral with respect to interest rate and prepayment risk.

E Pricing model details

E.1 Interest rate model

We assume that swap rates follow a three-factor Heath, Jarrow, and Morton (1992) (HJM) model.
Let f (t, T) denote the time t instantaneous forward interest rate for risk-free borrowing and lend-
ing at time T. We model the forward rate dynamics under the (interest rate) risk-neutral measure
as

d f (t, T) = µ f (t, T) dt +
3

∑
i=1

σf ,i (t, T) dWQ
i,t ,

where WQ
it are independent standard Weiner processes under the risk-neutral measure Q, and,

under no arbitrage, the expected change in the forward rate is given by

µ f (t, T) =
3

∑
i=1

σf ,i (t, T)
∫ T

t
σf ,i (t, u) du.

Thus, the risk-neutral dynamics of the instantaneous forward rate are completely determined by
the initial forward rate curve and the forward rate volatility functions, σf ,i (t, T). Similarly to Trolle
and Schwartz (2009), we assume that the volatility function of each factor σf ,i (t, T) is

σf ,i (t, T) = (α0,i + α1,i (T − t)) e−γi(T−t). (E.1)

This specification has the advantage of allowing for a wide range of shocks to the forward rate
curve while ensuring that the forward rate model above is Markovian.
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Trolle and Schwartz (2009) show that, setting the volatility of the forward rates to be as in (E.1),
the time t price of a zero-coupon bond maturing at time T, P (t, T), is given by

P (t, T) ≡ exp
{
−
∫ T

t
f (t, u) du

}
=

P (0, T)
P (0, t)

exp

{
3

∑
i=1

Bxi (T − t) xit +
3

∑
i=1

6

∑
j=1

Bφji (T − t) φji,t

}
,

where the state variables
{

xit, φji,t
}

follow

dxit = −γixitdt + dWQ
it

dφ1i,t = (xit − γiφ1i,t) dt

dφ2i,t = (1− γiφ2i,t) dt

dφ3i,t = (1− 2γiφ3i,t) dt

dφ4i,t = (φ2i,t − γiφ4i,t) dt

dφ5i,t = (φ3i,t − 2γiφ5i,t) dt

dφ6i,t = (2φ5i,t − 2γiφ6i,t) dt.

The coefficients
{

Bxi , Bφji

}
are functions of the parameters of the volatility function and the time

to maturity τ = T − t, and are given by

Bxi (τ) =
α1i

γi

((
1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
+ τe−γiτ

)
Bφ1i (τ) =

α1i

γi

(
e−γiτ − 1

)
Bφ2i (τ) =

(
α1i

γi

)2 ( 1
γi

+
α0i

α1i

)((
1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
+ τe−γiτ

)
Bφ3i (τ) = −

α1i

γ2
i

((
α1i

2γ2
i
+

α0i

γi
+

α2
0i

2α1i

) (
e−2γiτ − 1

)
+

(
α1i

γi
+ α0i

)
τe−2γiτ +

α1i

2
τ2e−2γiτ

)

Bφ4i (τ) =

(
α1i

γi

)2 ( 1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
Bφ5i (τ) = −

α1i

γ2
i

((
α1i

γi
+ α0i

) (
e−2γiτ − 1

)
+ α1iτe−2γiτ

)
Bφ6i (τ) = −

1
2

(
α1i

γi

)2 (
e−2γiτ − 1

)
.

Consider now a period of length ν and a set of dates Tj = t + νj, j = 1, . . . n. The time t swap
rate for the period t to Tn, with fixed-leg payments at dates T1, . . . , Tn is given by

S (t, Tn) =
1− P (t, Tn)

ν ∑n
j=1 P

(
t, Tj

) , (E.2)

and the time t forward swap rate for the period Tm to Tn, and fixed-leg payments at dates Tm+1, . . . , Tn
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by

S (t, Tn) =
P (t, Tm)− P (t, Tn)

ν ∑n
j=m+1 P

(
t, Tj

) .

Applying Ito’s lemma to the time u forward swap rate between Tm and Tn, and switching to the
forward measure QTm,Tn under which forward swap rates are martingales (see e.g. Jamshidian,
1997), we obtain

dS (u, Tm, Tn) =
3

∑
i=1

n

∑
j=m

ζ j (u) Bxi

(
Tj − u

)
dWQTm ,Tn

iu ,

where

ζ j (u) =



P(u,Tm)

ν ∑n
j=m+1 P(u,Tj)

if j = m;

−νS (u, Tm, Tn)
P(u,Tj)

ν ∑n
j=m+1 P(u,Tj)

if j = m + 1, . . . n− 1

− (1 + νS (u, Tm, Tn))
P(u,Tn)

ν ∑n
j=m+1 P(u,Tj)

if j = n.

Notice that, since the ζ j (u) terms are stochastic, the forward swap rates are not normally dis-
tributed. We can, however, approximate ζ j (u) by their time t expected values, which are their
time t values since these terms are martingales under the forward-swap measure. Thus, given
date t information, the swap rate between dates Tm and Tn is (approximately) normally distributed

S (Tm, Tn) ∼ N
(

S (t, Tm, Tn) , σN (t, Tm, Tn)
√

Tm − t
)

,

where the volatility σN is given by

σN (t, Tm, Tn) =

 1
Tm − t

∫ Tm

t

N

∑
i=1

(
n

∑
j=m

ζ j (t) Bxi

(
Tj − u

))2

du

 1
2

.

E.2 Yield curve model

We closely follow the estimation of Gürkaynak et al. (2007) on Treasury yields using quotes on par
swap yields with maturities between 1 and 40 years. We assume that instantaneous forward rates
n-years hence are a function of six parameters:

ft (n, 0) = β0 + β1 exp (−n/τ1) + β2 (n/τ1) exp (−n/τ1) + β3 (n/τ2) exp (−n/τ2) . (E.3)

We fit these parameters at month end by minimizing the sum of squared deviations between actual
and predicted swap prices weighted by their inverse duration, which is approximately equal to
minimizing the sum of squared yield deviations.
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E.3 Prepayment model

As described in the main text, we begin by constructing a panel of monthly dealer prepayment
forecasts by coupon-vintage using data from eMBS and Bloomberg LP. Specifically, we match
pool characteristics from eMBS (WAC, WALA, WAM) to corresponding prepayment forecasts from
Bloomberg. For each coupon until May 2003, and for each coupon-vintage from May 2003 onward,
dealers report a prepayment forecast for each of the nine interest rate scenarios, as well as a WAC
and WAM. To obtain additional pool characteristics, for the later sample, each survey is matched to
its corresponding pool in eMBS. For the earlier sample, we match the survey to the vintage of the
same coupon in eMBS with the minimum Mahalanobis distance based on WAC and WAM from
the dealer’s response. We only use securities that have a remaining principal balance in eMBS of
more than $1 million.

Dealers update their forecasts on different dates, so we use the most recent response as of the
end of the month for each dealer (excluding dealers who did not update their response during
that month), keeping only those securities in a month for which at least two dealers responded.
Because we are interested in extracting prepayment model parameters that capture, for instance,
the expectations of the rate-sensitivity of a security, we match each dealer’s response to the swap
rate of the day before that dealer’s survey response was updated.

The prepayment forecasts in Bloomberg are reported in “PSA” terms, which can be translated
into monthly CPRs using the following formula:

CPRτ = PSA/100 ∗min(.2 ∗Ageτ, 6) for t ≤ τ ≤WAM (E.4)

Thus, two securities with the same PSA forecast but of different ages (WALAs) will have different
“average” CPRs if at least one of the securities is unseasoned. Because we would like to capture
the prepayment speed forecast of the dealers with a single number for ease of estimation, we use
the PSA forecast and the WALA2 to compute the WAL (weighted average life), and thus the WAL-
implied long-run CPR, defined as the constant monthly CPR that generates the WAL.

Specifically, we convert the monthly CPRs generated using equation E.4 to SMMs and compute
the implied cash flows as in Section 3. The WAL is then defined as:

WALt =
∑WAM

j=t j CFj

∑WAM
j=t CFj

. (E.5)

This gives us one long-run CPR forecast for each scenario per vintage per dealer. The nine dif-
ferent scenarios give us information about the expected rate sensitivity of the security. A common
way to model this rate-sensitivity is through the use of an “S curve” as mentioned in the main
text. Such a curve captures the observed behavior that prepayments are low for securities that are
“out-of-the-money,” i.e., the incentive to refinance is negative, and are mostly due to turnover and,

2Since dealers don’t actually report WALAs, we infer the WALA for a particular dealer’s response by subtracting
that dealer’s surveyed WAM from the average sum of the WAM and WALA in eMBS.
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to a lesser extent, cash-out refinancing or defaults. As a pool moves in-the-money (the refinancing
incentive becomes positive) the refinancing component becomes a more important driver of pre-
payments, but at a declining rate: there is an incentive region in which prepayments are highly
sensitive to changes in the interest rate (typically somewhere in the incentive region of 50-150 basis
points) while beyond that, there is little sensitivity to further decreases in the available rate.

We convert our nine long-run CPRs into SMMs and fit the following S curve for each dealer for
a vintage using nonlinear least squares:

SMMLR
i = b1 + b4

exp (b2 + b3 ∗ INCi)

1 + exp (b2 + b3INCi)
for i = 1, 2, . . . , 9 (E.6)

where b1, b4 ∈ [0, 1] and b1 + b4 ≤ 1 (these constraints ensure that the function is bounded by 0 and
1). Here, INCi is defined as the difference between the dealer’s observed swap rate and WAC in
scenario i.

Estimating an S curve for each dealer allows us to “average” these dealer responses despite
the fact that often the surveys were updated on different days and thus refer to slightly different
interest rate scenarios. We take this average by averaging fitted dealer SMMs at 50 basis point
intervals between -300 and 300 basis points, with the 0-scenario corresponding to the average 0-
scenario across dealers.

Finally, because cash flows, and thus the OAS, depend on not just the average long-run pre-
payment rate, but also the time pattern of prepayments, we fit a series of monthly SMMs in the
form of equations (4.1) and (4.2) to the dealer-averaged long-run CPR forecasts. As discussed in
the main text, this functional form creates the “burnout effect” of prepayments. However, because
the Bloomberg data provide no additional information as to the time pattern of prepayments, it
is impossible to jointly identify χt, κ1, κ2 for each security. We therefore assume that κ1 and κ2 are
universal parameters and let χt vary across securities and time. To calibrate κ1 and κ2, we exploit
the fact that as INC → ∞, SMM → b1 + χκ1 + (1− χ) κ2 (for WALA> 30). Thus, b1 + κ1 and
b1 + κ2 represent the speeds that a seasoned pool would prepay at if it were deeply in the money
and composed of only fast or only slow borrowers, respectively. We therefore estimate κ̂1 = κ1 and
κ̂2 = κ2 by taking the 99th and 1st%iles of survey SMMs (less an average b1, which is negligible)
for the -300 basis point interest rate scenario among seasoned ITM securities in our sample. This
yields κ̂1 = 0.11 and κ̂2 = 0.014. 3

Given κ1 and κ2, there are then four coefficients to be estimated for each security on each date:
χt, b1, b2, and b3. We fit these four coefficients using nonlinear least squares with the thirteen dealer-
averaged long-run fitted CPRs. Because of its flexibility, this model is able to fit the long-run CPRs
quite well; the MAE across securities is less than 0.2.

Figure A-2 illustrates that the prepayment model that results from the previous procedure fits
subsequently realized prepayment behavior well. We first divide the trusts in our sample into
three groups based on their moneyness as of month t: OTM (moneyness<0; 1199 observations);

3We have experimented with alternative calibrations, and obtained qualitatively similar results.

17



weakly ITM (moneyness ∈ [0, 1); 1573 obs.) and strongly ITM (moneyness>1; 941 obs.). Within
each group, we then form deciles based on predicted three-month CPRs, and plot the average re-
alized CPR (over months t + 1 to t + 3) against the average predicted CPR. The figure illustrates
a few important points. First, as discussed in Section 4.3, moneyness (the refinance incentive) is
the main determinant of predicted and realized CPRs. Second, however, it is not the only determi-
nant: there is overlap between the three groups, meaning that predicted (and realized) CPRs are
not always monotonic in moneyness. This reflects the factors emphasized in our specification in
equations (4.1) and (4.2)—seasoning and burnout—as well as variation over time in turnover or
refinancing sensitivity. Third, there is a lot less variation in the prepayment speeds of OTM secu-
rities than for ITM securities. Last, the model based on the dealer surveys fits actual prepayment
behavior well: the dots are aligned along the 45 degree line.

Figure A-2: Prepayments: Model projections vs. realized. Figure shows binned scatterplot of
realized three-month constant prepayment rate (CPR) over months t + 1 to t + 3 versus model-
predicted three-month CPR at the end of month t. Within each of three moneyness groups (defined
as of month t), ten deciles are formed by predicted CPR, and for each of the resulting 30 groups we
plot average predicted and realized CPRs.
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E.4 MBS cash flows

This section provides detail on the calculation of cash flows given a sequence of SMMs. Consider
a fixed-rate MBS with an original balance of $1, and let θt be the “factor,” or remaining balance
relative to origination, at date t. In level-payment fixed-rate mortgages, the principal is repaid
gradually rather than with a bullet payment at maturity and the borrower makes fixed payments
every month. Denote the loan maturity measured in months by T (at the pool level, this is referred
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to as weighted average maturity, or WAM). Let k be the monthly installment from the borrower to
the servicer, w the interest rate on the loan (or weighted average coupon, WAC, at the pool level),
and c the coupon paid to investors. The difference between the loan and coupon rates is earned
by servicers or by the guaranteeing agency. To compute the fixed payment k note that, net of this
payment, the loan balance absent any prepayment, denoted θ̃t grows at rate (1 + w), or:

θ̃t = (1 + w) θ̃t−1 − k. (E.7)

Solving for θ̃T = 0, it then follows that k =
(

w(1+w)T

(1+w)T−1

)
. The evolution of the loan balance θt

allowing for early prepayment generalizes equation (E.7). After accounting for loan amortization
and unscheduled principal payments, the factor evolves according to:

θt = (1− SMMt−1)(1 + w)θt−1 − k θ̂t, (E.8)

where w is the interest rate on the loan (or weighted average coupon, WAC) and k is the con-
stant monthly payment composed of the scheduled principal and interest payments. SMMt is the
“single month mortality,” or the fraction of the remaining balance that was prepaid in month t
due to unscheduled principal payments, and θ̂t is the cumulated fraction of unit principal that
has not prepaid since the inception of the mortgage, which is also known as the survival factor,
θ̂t = ∏t−1

s=0(1 − SMMs). It then follows that θt = θ̂t × θ̃t.4 Given prepayment rates, cash flows
passed through to investors per unit of principal are:

Xt = (θt−1 − θt) + c θt−1, (E.9)

where the principal payment is equal to the decline in principal (θt−1 − θt) and the coupon pay-
ment from the borrower to the investor net of the servicing and agency guarantee fees is c θt−1.

E.5 Monte Carlo simulations

As discussed in Section 3, computing the OAS requires Monte Carlo simulations of swaps and
discount rates. Along each simulation, we use the prepayment model to compute MBS cash flows.
We take the OAS to be the constant spread to swaps that sets the average discounted value of cash
flows along these paths equal to the market price. To construct these paths, we first simulate 1,000
paths of the three factors of the interest rate model using draws of the state variables described in
Appendix E.1. We use antithetic variables as a variance reduction technique, giving us 2,000 paths
in total.

4The prepayment speed is often reported in annualized terms, known as the “conditional prepayment rate” or
CPRt = 1− (1− SMMt)

12.
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F Identifying OASQ from the cross-section

In this Appendix, we relax the assumption that the risk-neutral prepayment function is a multiple
of the physical prepayment function and explore identification of OASQ from the cross section
of MBS. This alternative identification strategy relies on the cross section of stripped securities
being priced fairly relative to each other at any given point in time, without requiring us to make
assumptions about the physical prepayment function.

In particular, we model the date τ risk-neutral single-monthly mortality (Q-SMM) rate of secu-
rity j as

sQ
j,τ = bQ

1 min
(

Agej
τ/30, 1

)
+ κQ · f j

τ ·
exp

(
bQ

2 + bQ
3 · INCj

τ

)
1 + exp

(
bQ

2 + bQ
3 · INCj

τ

) ,

where INCj
τ is the interest rate incentive to refinance and f j

τ is the “factor” (a pool’s remaining
balance relative to origination), at date τ. In this prepayment function we use the factor as a
proxy for the “burnout” effect; this is a simplified version of the specification in the main text.
Mortgage rates have mostly trended lower in our sample and, absent the large volume of data from
prepayment surveys, one cannot separately identify empirically the effect of “burnout” (remaining
borrowers are largely rate insensitive) from the effect of a lower sensitivity of all borrowers to rates
(that would lead to the upper-flatness in the “S-shaped” prepayment function). In the simplified
version we assume that securities that exhibited more prepayments in the past (low f j

τ) tend to
prepay more slowly, implying fewer parameters to be estimated than in the main text (χ and κ in
equations (4.1) and (4.2) in Section 4.3).

For each pool j ∈ Jτ that trades at date τ, we compute the OAS implied by a set of parameters(
bQ

1 , bQ
2 , bQ

3 , κQ
)

for the IO and the PO strip on that pool, denoted, respectively, by OASj,IO

(
bQ

1 , bQ
2 , bQ

3 , κQ
)

and OASj,PO

(
bQ

1 , bQ
2 , bQ

3 , κQ
)

. At each date τ, we then minimize the remaining-principal-balance-
weighted sum of the squared difference between OAS on the IO and the PO strips written on the
same pool:

arg min ∑
j∈Jτ

θjτ

∑j∈Jτ
θjτ

(
OASj,IO

(
bQ

1 , bQ
2 , bQ

3 , κQ
)
−OASj,PO

(
bQ

1 , bQ
2 , bQ

3 , κQ
))2

, (F.1)

where θjτ is the remaining principal balance in pool j at date τ. The risk-neutral OAS on the
pass-through security on pool j (the combination, denoted “PT,” of IO and PO) at date τ is then
computed as the OAS implied by the set of parameters

(
bQ

1 , bQ
2 , bQ

3 , κQ
)∗

that solves equation (F.1)
at date τ:

OASQ
j ≡ OASj,PT

((
bQ

1 , bQ
2 , bQ

3 , κQ
)∗)

.

This identification strategy relies on the assumption that the cross section of securities at a given
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date are priced fairly relative to each other, thus relaxing both the assumption that the risk-neutral
SMM rate is a (pool- and date-specific) multiple of the physical SMM rate and that the IO and the
PO on a given pool are equally exposed to non-interest and non-prepayment shocks. In addition,
this strategy does not rely on any P-measure prepayment function.

Figure A-3 shows the cross-sectional scatterplot of the resulting OASQ on the passthrough se-
curity, together with the local smoother. Though the level of the OASQ that is identified from the
cross-section is somewhat higher than in the estimation that relies on both pricing and physical
prepayment information, the overall conclusion remains the same: the OASQ does not vary signif-
icantly with moneyness, suggesting that differences in pool-level liquidity do not drive the OAS
smile. This is confirmed in Table A-3, which shows the equivalent regressions to those in Table 5 in
the main paper. As was the case there, the only bin that exhibits significantly higher OASQ than for
ATM pools is the deeply ITM bin (moneyness≥2.25). The coefficient on that bin becomes larger if
we add month fixed effects or if we end the sample in July 2007. However, the magnitude remains
quite similar to the one in Table 5.

Despite these similarities, this identification strategy has a number of limitations relative to the
one used in the main text. The method in this appendix only recovers the risk-neutral prepayment
speed but does not allow the estimation of the prepayment risk premium (OAS-OASQ), which is
central to our analysis. One can only back out the prepayment risk premium from physical prepay-
ment speeds. In our main analysis, we are fitting a parsimonious functional form to market par-
ticipants’ forecasts of future prepayment speeds under different rate scenarios; this helps against
misspecification of the prepayment function relative to the real-time P-expectations of market par-
ticipants. The fact that the “standard” OAS (under P-prepayments) look similar as in the dealer
data further assuages fears that misspecification is driving our findings about the OAS smile.

Table A-3: Cross section of OASQ on pass-throughs, based on alternative identification from
prices only. Coefficient estimates from OLS regression of the OASQ resulting from the cross section
of IO and PO prices each month on different moneyness level bins either including or excluding
time fixed effects. Robust standard errors (clustered at the month level) in brackets. Significance: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4)

< −1.25 5.0 [3.7] -0.1 [2.0] 2.5 [1.9] 1.8 [1.8]
[−1.25,−.75) 2.2 [2.2] -2.0 [1.8] 0.8 [1.7] -0.7 [1.8]
[−.75,−.25) 0.8 [1.5] -0.3 [1.4] 2.6∗∗ [1.2] 0.9 [1.3]
[.25, .75) -4.6∗∗∗ [1.2] -4.9∗∗∗ [1.3] -4.4∗∗∗ [1.3] -5.4∗∗∗ [1.2]
[.75, 1.25) -7.8∗∗∗ [2.2] -6.3∗∗∗ [2.2] -6.6∗∗∗ [2.0] -7.6∗∗∗ [2.1]
[1.25, 1.75) -5.6∗ [3.2] -3.5 [3.3] -5.4∗ [3.1] -6.6∗ [3.5]
[1.75, 2.25) -0.5 [5.1] 4.0 [4.2] -0.5 [4.4] 2.8 [4.7]
≥ 2.25 6.3 [8.9] 16.2∗ [9.2] 21.1∗∗ [10.2] 20.3∗ [11.2]
Const 11.1∗∗∗ [2.1] 10.7∗∗∗ [1.2] 4.2∗∗∗ [1.6] 4.9∗∗∗ [1.2]

Month FEs? No Yes No Yes
Adj. R2 0.01 0.66 0.04 0.44
Obs. 1005 1005 796 796
Dates 199501.201012 199501.201012 199501.200707 199501.200707
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Figure A-3: Cross-sectional variation in OASQ, based on alternative identification from prices
only. This figure shows the scatterplot and local smoother of the cross-sectional variation in OASQ

on pass-through securities, estimated using the cross section of IO and PO prices each month.
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