Understanding Optical Glass and Color Correction

Richard Pfisterer Photon Engineering, LLC

5 September 2019

James C. Wyant College of Optical Sciences University of Arizona

Basic Basics

Refractive index varies with wavelength**

** If this is a new concept and/or you've never seen it before, the rest of this lecture is probably not going to make sense!

Copyright Photon Engineering 2019

Abbe number (dispersion)	$ u = rac{n_d-1}{n_F-n_C}$
Partial Dispersion	$P_{\lambda F} = rac{n_\lambda - n_F}{n_F - n_C}$

Dispersion depends on which wavelengths you select

	Abbe		
Lines	N-BK7	N-SF6	
F d C	64.167	25.359	
F' d C'	63.724	24.926	
g d C	41.806	15.695	
g F' F	121.362	42.445	
d D HeNe	302.003	126.677	

Chromatic Aberration Basics

- Defining the basic notation:
 - ν Abbe number
 - y marginal ray height
 - \bar{y} chief ray height
 - u marginal ray angle (reduced marginal ray angle $\omega = n u$)
 - \bar{u} chief ray angle (reduced chief ray angle $\overline{\omega} = n \bar{u}$)
 - Φ power (= 1 / f)
- For paraxial axial color we have

$$\frac{-1}{\omega_{k}'} \left(\frac{y_{1}^{2} \Phi_{1}}{v_{1}} + \frac{y_{2}^{2} \Phi_{2}}{v_{2}} + \frac{y_{3}^{2} \Phi_{3}}{v_{3}} + \dots \right) = \frac{-1}{\omega_{k}'} \sum_{i=1}^{k} \frac{y_{i}^{2} \Phi_{i}}{v_{i}} = PAC$$

· For paraxial lateral color we have

$$\frac{-1}{\omega_{k}^{'}}\left(\frac{y_{1}\overline{y}_{1}\Phi_{1}}{v_{1}}+\frac{y_{2}\overline{y}_{2}\Phi_{2}}{v_{2}}+\frac{y_{3}\overline{y}_{3}\Phi_{3}}{v_{3}}+\dots\right)=\frac{-1}{\omega_{k}^{'}}\sum_{i=1}^{k}\frac{y_{i}\overline{y}_{i}\Phi_{i}}{v_{i}}=PLC$$

ENGINEERING

"In the old days, there were lots of glasses...."

- Schott catalog circa 1978
- Over 250 glasses
 - Many had lead, arsenic and other toxic dopants
 - Some were radioactive (i.e., thorium-doped)
- If lens design software had been better, we would have been able to tweak color correction much better than we can today → more subtle glass options

25 85 75 35 30 20 2.05 2.05 • 35 n_{d 2.00} 2.00 n_d Abbe-Diagram n_d-v_d Description of Symbols 1.95 1.95 Lead and arsenic free N- or P-glass 66 . Classical crown- and flint glass 67 😐 Glass available as N-glass or classical flint glass 46 A 🔵 46B 1.90 1.90 O Glass suitable for Precision Molding 31A. LASE O HT – High transmittance glass O HTultra – Ultra high transmittance glass 1.85 1.85 * Available in step 0.5 1.80 1.80 33 56A LAF 33A • 33E 1.75 1.75 34 KZES 8* 8 LAK 64 1.70 1.70 BASE 8 12 KZFS 5* 😑 1.65 510 1.65 SSK KZFS 11* BAF 20 KZFS4 53 A* S-FPM2 52 1.60 1.60 PSK BAL KZFS2* S-FPM3 1.55 1.55 51* 😐 PK 1.50 1.50 52 A 😐 51 4* S-FPL53 N-FK58 FK Fused silica glass made of ideas 1.45 S-FPL55 1.45 ž 5 95 75 70 65 60 55 50 45 40 35 25 20

Modern Glass Map

- Fewer choices → approximately 124 glasses
- Under "green" pressure from EU, Schott has announced that it may stop producing optical glasses in 5 years. (Optical glass is only approximately 8% of Schott's market.)

Know Your Glass Families!

"The Far Side" by Gary Larson

Glass Families: "Old Glass Line" or "Normal Glass Line"

- "Generic" optical glass
- Restriction to these glasses gives little opportunity to correct color over any appreciable bandwidth
- Useful to "tweak" color but won't give great color correction if used exclusively in a design
- Generally these are the least expensive glasses

8

Glass Families: Fused Silica

- Boring!
- Looks very much like one of the glasses on the "old glass line" → rarely a better choice than higher index N-BK7
- Principal advantages:
 - Radiation hard
 - Environmentally stable
 - Low cost
 - Transmission into deep UV (<160 nm, depends on specific type/grade)
- Principal disadvantages:
 - Low refractive index
 - Low index can make AR coating a challenge
 - (Yawn!) Unexciting partial dispersion
 - Some grades fluoresce in UV

Glass Families: Phosphate Crowns

- Occupy northwest corner of the glass map → highest refractive indices and lowest dispersions
- Partial dispersions are relatively close to the "normal glass line" and so they can't do "kick butt" color correction on their own, but they are better than generic crowns
- N-PSK53A is a "secret weapon" useful glass to tweak color correction

Glass Families: Dense Crowns

- Higher index "generic glass"
- Opportunity to mate with flint glasses to make a "buried surface"
- Why do we use these glasses? Monochromatic aberrations need love and correction as well! And they can tweak chromatic correction.

Glass Families: Extra Dense Crowns

- Higher index "generic glass" ٠
- Opportunity to mate with flint glasses to • make a "buried surface"
- Why do we use these glasses? Monochromatic aberrations need love and correction as well! And they can tweak chromatic correction.

Glass Families: Barium Crowns/Flints

- Occupy middle of the glass map → higher index "generic glass"
- Why do we use these glasses? Monochromatic aberrations need love and correction as well! And they can tweak chromatic correction.

13

Glass Families: Lanthanum Crowns/Flints

- Occupy north frontier of the glass map → highest index "generic glass"
- Opportunity to mate with flint glasses to make a "buried surface"
- Why do we use these glasses? Monochromatic aberrations need love and correction as well! And they can tweak chromatic correction.

14

Glass Families: Short Flints

- Super color correcting glasses!
- "Off the glass line" anomalous partial dispersions
- Simple dispersion models used in CODEV and ZEMAX during optimization won't find these glasses → almost always these glasses have to be added in to the design "by hand"
- Virtually all superachromatic (or apochromat or "apo") systems uses these glasses

ENGINEERING

Glass Families: Fluorophosphate Crowns

- Super color correcting glasses! ٠
- Very low dispersion and (unfortunately) very low refractive index glasses
- Can be combined with short flints for apo ٠ doublets
- S-FPL53 is almost perfect match for CaF₂** • (Glass code for CaF₂ is 433952, glass code for S-FPL53 is 439950)
- N-FK58 is a bit farther away from CaF₂ with ٠ a glass code of 456908
- S-FPL53 et al are not available in large sizes. ٠
- Low refractive index makes AR coating a ٠ problem

** Otherwise known as "fluorite"

Glass Families: Partial Dispersions of Fluorophosphate Crowns

Glass Families: "No Man's Land"

- Nature (i.e., physics and chemistry) doesn't seem to allow glasses in these areas
- Problem in lens design/optimization software → how do you keep the optimizer from going into these areas?

Glass Families: Radiation Hardened Glasses

- Cerium-doped glass → absorption at short wavelengths
- No really great glasses for color correction
 → most of the glasses are on the "old glass line"

19

Glass Families: Previously Available Radiation Hardened Glasses

- Circa 1978, lots of choices across the glass map
- Rad hard short flint → KzFS4G20 (In principal, great for color correction. But since most rad hard glasses absorb in the short wavelengths, color correction is/was less of an issue.)

Glass Families: Transmission of Radiation Hardened Glasses

• High absorption at the shorter wavelengths

So Many Glasses, So Little Time!

We Know the Problem... What is our Strategy?

- Lots of glasses to pick from
 - 124 Schott glasses
 - 118 Ohara glasses
 - 179 Hoya glasses
 - 177 Chengdu glasses
- Hope that the optical design software will find the solution?
 - Deadline looming? Try every possible combination of glasses... That could take quite a bit of time!
- How do we determine that a color-corrected solution exists? Some lenses simply cannot be corrected for color
- Fortunately the solutions are not hiding! We just need to look in the right place →

Ref: Kingslake, R., Lens Design Fundamentals, Academic Press, 1978.

Photon A

Correct Primary Axial Color in a Doublet

• Optical designers have long been aware of the basic rule for reconciling optical power and dispersion to correct primary color using thin lenses:

Apochromatic Doublet

- Kingslake noted that a simple doublet can be made apochromatic if glasses are chosen that have matching partial dispersions
- There is no magic here! We need a large difference in Abbe numbers to get reasonable individual element powers but now we add the additional constraint that the partial dispersions match

Conrady, Herzberger and Apochromats

- Conrady, and later Herzberger, described the process of designed an apochromatic triplet by recognizing that one of the glasses has to be off the "normal" glass line
 - Starting with 3 conditions: $\sum_{n=0}^{\infty} V c \Delta n = \Phi \quad \text{power}$ $\sum_{n=0}^{\infty} C \Delta n = 0 \quad \text{achromatism}$ $\sum_{n=0}^{\infty} P c \Delta n = 0 \quad \text{secondary color}$
- Solving for the three thin-lens curvatures c_a, c_b, and c_c

$$c_{a} = \frac{\Phi}{E(\nu_{a} - \nu_{c})} \left(\frac{P_{b} - P_{c}}{\Delta n_{a}}\right)$$
$$c_{b} = \frac{\Phi}{E(\nu_{a} - \nu_{c})} \left(\frac{P_{c} - P_{a}}{\Delta n_{b}}\right)$$
$$c_{c} = \frac{\Phi}{E(\nu_{a} - \nu_{c})} \left(\frac{P_{a} - P_{b}}{\Delta n_{c}}\right)$$

where Φ = overall focal length and $E = \frac{V_a (P_b - P_c) + V_b (P_c - P_a) + V_c (P_a - P_b)}{V_a - V_c}$

Ref: Conrady, A. E., "Photo visual objectives", *Applied Optics and Optical Design*, 159, 166, Dover (1957)

Ref: Herzberger, M., "Color Correction in Optical System and a New Dispersion Formula", *Opt. Acta* 6, 197 (1959).

Ref: Herzberger, M., McClure, N., "The Design of Superachromatic Lenses", *Applied Optics*, Vol. 2, 553 (1963).

Geometrical Interpretation of E

Hertzberger and Apochromats (Con't)

- If E were large, then the lens powers would be small → find large E!
- Kingslake's solution:

Lens	Glass	n _e	$\Delta n = n_g - n_C$	$n_g - n_c$	P_{ge}	" <i>V</i> "
а	FK-6	1.4478604	0.0101615	0.0065470	0.6442946	44.07424
ь	KzFS-1	1.6163841	0.0215499	0.0140995	0.6542721	28.60264
с	SF-15	1.7044410	0.0371905	0.0249596	0.6711283	18.94142

Ref: Kingslake, R., Lens Design Fundamentals, Academic Press, 1978.

Robb and Glass Selection

- At the 1985 IODC in Cherry Hill, NJ, Paul Robb presented a paper describing a new take on selecting optical glasses for doublets and triplets based upon Buchdahl's chromatic coordinate rather than the traditional Abbe number-partial dispersion approach
- · Buchdahl's chromatic coordinate is given by

$$\omega(\lambda) = \frac{\lambda - \lambda_0}{1 + \alpha(\lambda - \lambda_0)} \quad \text{where } \alpha \text{ is a constant} = 2.5 \ \forall \text{ glasses}$$

• The index of refraction is given by

$$N(\omega) = N_0 + v_1 \omega + v_2 \omega^2 + v_3 \omega^3 + \dots$$

• The power of a single thin lens is given by

$$\Phi = (c_1 - c_2)(N - 1) = K(N - 1)$$

$$\Phi(\lambda) = K(N_0 + v_1\omega + v_2\omega^2 + \dots - 1) = \Phi(\lambda_0) + K(v_1\omega + v_2\omega^2 + \dots)$$

Ref: Robb, P., "Selection of optical glasses", Proc. SPIE, Vol. 554 (1985).

• Robb then defines a dispersion function given by

$$D(\lambda) = \frac{\delta N(\lambda)}{N_0 - 1}$$

$$\delta N(\lambda) = \sum_{i=1}^{\infty} v_i \,\omega^i$$

$$D(\lambda) = \sum_{i=1}^{\infty} \eta_i \,\omega^i(\lambda) \text{ where } \eta_i = \frac{v_i}{N_0 - 1}$$

• Finally the wavelength-dependent thin lens power is given by

$$\Phi(\lambda) = \Phi(\lambda_0) \left(1 + \eta_1 \omega + \eta_2 \omega^2 + \eta_3 \omega^3 + \dots \right)$$

$$\Phi(\lambda) = \Phi(\lambda_0) \left(1 + D(\lambda) \right)$$

• Robb writes the total optical power of a thin doublet as

$$\Phi(\lambda) = \Phi_1(\lambda) + \Phi_2(\lambda)$$

• For color correction at three wavelengths

$$\Phi(\lambda_1) - \Phi(\lambda_2) = 0$$

$$\Phi(\lambda_2) - \Phi(\lambda_3) = 0$$

• Assuming a quadratic dispersion model

$$D(\lambda) = \eta_1 \omega + \eta_2 \omega^2$$

• Robb could then write the system of equations as $\overline{\Omega} \,\overline{\eta} \,\overline{\Phi} = \overline{0}$ where

$$\overline{\Omega} = \begin{vmatrix} \omega_1 - \omega_2 & \omega_1^2 - \omega_2^2 \\ \omega_2 - \omega_3 & \omega_2^2 - \omega_3^2 \end{vmatrix} \quad \overline{\eta} = \begin{vmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{vmatrix} \quad \overline{\Phi} = \begin{vmatrix} \Phi_1 \\ \Phi_2 \end{vmatrix} \quad \overline{0} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

- This system of equations has a nontrivial solution when the determinant of $\,\overline{\eta}\,$ is equal to zero, which occurs when

$$\frac{\eta_1}{\eta_2}\Big|_{\text{Glass 1}} = \frac{\eta_1}{\eta_2}\Big|_{\text{Glass 2}}$$

• Robb further solves for the thin-lens element powers, viz.

$$\Phi_1 = \frac{\eta_{12}}{\eta_{12} - \eta_{11}}$$
$$\Phi_2 = \frac{\eta_{11}}{\eta_{12} - \eta_{11}}$$

• By extension, Robb describes the procedure for color correction at 4 wavelengths with three materials

$$\Phi(\lambda_1) - \Phi(\lambda_2) = 0$$

$$\Phi(\lambda_2) - \Phi(\lambda_3) = 0$$

$$\Phi(\lambda_3) - \Phi(\lambda_4) = 0$$

that occurs when

$$\frac{\eta_1}{\eta_2}\Big|_{\text{Glass 1}} = \frac{\eta_1}{\eta_2}\Big|_{\text{Glass 2}} = \frac{\eta_1}{\eta_2}\Big|_{\text{Glass 3}}$$

- Robb makes several observations about his technique
 - 1. While it might appear desirable from a monochromatic aberration standpoint to select solutions where the element powers are minimized, Robb found several instances (particularly with triplets) where this was not the case
 - 2. Obtaining color correction in the blue portion of the spectrum (λ < 0.44 microns) was virtually impossible with doublets and required careful glass selection with triplets
 - 3. The best solutions involved glass selection from various vendors
- While Robb's approach was certainly innovative, it still required the designer to search over numerous solutions looking for the optimum one
- We didn't learn anything new about the use of glasses whose partial dispersions are off the "normal" glass line

Conventional glass doublet

Robb-selected glass doublet

Robb-selected glass triplet

Element	Kingslake		Robb	
а	Schott FK 6	446674	Schott FK 51	487845
b	Schott KzFS 1	551497	Schott KzFS 1	551497
С	Schott SF 15	699301	Ohara KF 8	511510
$v_a - v_c$		37.3		33.5

Color Correction With Airspaced Elements?

- Robb assumes that the thin-lens elements are in contact
- If we instead assume that the elements are airspaced with the object at infinity, then the overall system power Φ is given by

$$y_1 \Phi = y_1 \Phi_1 + y_2 \Phi_2 + y_3 \Phi_3 + \dots = \sum_{i=1}^k y_i \Phi_i$$

• Following Robb's derivation, we can write the solution again as $\overline{\Omega} \,\overline{\eta} \,\overline{\Phi} = \overline{0}$ but we find that the power vector contains the axial ray heights as well as the element powers

$$\overline{\Phi} = \begin{vmatrix} y_1 \Phi_1 \\ y_2 \Phi_2 \\ \dots \end{vmatrix}$$

This creates a complex dependency problem because Φ₁ now influences y₂, y₃, ...;
 Φ₂ now influences y₃, y₄, ...; etc → no easy solution!

Rayces and Aguilar Glass Selection

- Rayces and Aguilar realized that the whole picture was important: we needed to consider monochromatic aberrations as well as chromatic aberrations (spherochromatism and fifth-order spherical aberration) in our glass selection process.
- Rayces-Aguilar perform a *search over all combinations of glasses*
 - Pass #1: compute powers of elements that yield achromatic solutions and then eliminate unreasonable solutions (i.e., those with steep curves)
 - Pass #2: compute radii to yield an aplanatic solution (to third-order) using aberration coefficients and then eliminate solutions with high residual spherochromatism and fifth-order spherical aberration
 - Pass #3: Sort remaining solutions according to amount of secondary spectrum
- Probably doable for doublet, but inefficient for multi-element systems!

Ref: Rayces, J., Rosete-Aguilar, M., "Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Toleranced conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberration", *Applied Optics*, Vol. 40, No. 31, pp. 5663-5676 (2001).

C. de Albuquerque et al Glass Selection

 C. de Albuquerque *et al* merged Robb's and Rayces' approaches into a "multi-objective approach" where different metrics are imposed at various stages in the calculation

•
$$F_1 = \sum_{i \text{ elements}} |\Phi_i(\lambda_0)|$$
 min. power

• $F_2 = \left| \overline{\Omega} \ \overline{\eta} \ \overline{\Phi} \right|$

min. chromatic residual

- $F_3 = \overline{W}_{040CL} + \overline{W}_{060}$ min. wave aberration
- Whew! Lots of work!

Ref: Carneiro de Albuquerque, B., Sasian, J., Luis de Sousa, F., Montes, A., "Method of glass selection for color correction in optical system design", *Optics Express,* Vol. 20, Issue 13, pp. 13592-13611 (2012).

C. de Albuquerque et al Triplet Solutions

Note that each of the glass selections in the above table looks very much like a Herzberger triplet solution: a special short flint in combination with a crown and a dense flint

What Have We Learned?

- Glass pairs from "normal glass line" have limited ability to correct color of large wavelength bands
- Doublet achromatization equation suggests that the crown will be the positive element and the flint will be the negative element
- Most successful doublets use a fluorophosphate crown and a short flint
- Most successful triplets use a short flint sandwiched between a crown (or fluorophosphate crown) and a dense flint

Next Lecture

- Doublets are great but people don't hire us to design doublets very often!
- How do we apply the knowledge of glasses to practical lens design of more complex systems?

Stay Tuned!

Planewave Instruments (<u>www.planewave.com</u>) sells extremely wellcorrected field-corrected Dall-Kirkham (elliptical primary/spherical secondary) telescopes. The field corrector is a two element, zero power group.

Which glass(es) do you think are used in the field correctors?

- (1) S-FPL53/N-KzFS4 (fluorophosphate crown/short flint)
- (2) N-PSK53A/N-SF6 (high index, low dispersion crown/high index, high dispersion flint)
- (3) N-BK7
- (4) Cincinnati, OH

A consulting customer has asked you to design a 180 deg fisheye lens that covers from 350-1200 nm spectral band. Color correction will be critical!

Which glass(es) would you consider using for the front elements?

- (1) N-SF6 (high index, high dispersion flint)
- (2) F2 (mid index, high dispersion flint)
- (3) S-FPL53 (fluorophosphate crown)
- (4) N-KzFS8 (short flint)
- (5) Fused silica
- (6) S-FPM2 (high index, low dispersion)
- (7) Portland, OR

For good stray light control^{**}, you want to put a relay group into the design. But you're also thinking about color correction.

Which glass would you consider using for the relay lens?

- (1) S-FPL53 (fluorophosphate crown)
- (2) N-SF4 (relatively high index, high dispersion flint)
- (3) Fused silica
- (4) S-FPM2 (medium index, low dispersion crown)
- (5) Sydney, New South Wales, Australia

** Actually a refractive system is a poor choice for reducing stray light!

You are designing a classic Cooke triplet with no vignetting (As Shafer has stated "Vignetting is for wimps!") You've picked N-SK16 (620603) for the positive elements.

Which glass would you consider using for the negative element?

- (1) N-LaK10 (720506)
- (2) N-LaF2 (744449)
- (3) F2 (620364)
- (4) Timbuktu, Mali

You are designing a complicated lens system for a particularly demanding customer. (Aren't they all?)

You've picked a fluorocrown and short flint for a doublet located in the middle of the system, but now for monochromatic correction, you need to add a singlet just behind it.

Which glass would you consider using for the newly inserted element?

- (1) N-LaK21 (640601)
- (2) N-BaF52 (608466)
- (3) N-PK51 (529770)
- (4) Beijing, China

