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Introduction: 

Why We Think 

Statist ics Is Diff icult

This book is an introduction to statistics, not an introduction 

to statistical analysis. Statistical analysis is about performing 

statistical calculations and estimating probabilities. This 

book is for someone who wants to learn how to interpret the 

results of statistical analyses. Think of it like the difference 

between being able to read a book and being able to write a 

book. One doesn’t have to be an author to enjoy reading. Sim-

ilarly, one does not need to know how to perform statistical 

analysis to understand statistics. From a practical perspective, 

106656_Introduction_R2.indd   1 11/9/17   5:18 PM



2

UNDERSTA NDING STAT IST ICS: A N INTRODUCT ION

understanding statistics can be as important as being able to 

perform statistical analysis.

Statistical analysis is a mathematical endeavor. Therefore, 

the formulation of the questions, the tools used in performing 

analyses, and the results those analyses yield are all expressed 

in mathematical language. Translating the mathematical 

results into English is fraught with difficulty. Understanding 

statistics helps to mitigate the errors that arise from inexact 

translations. For example, an analyst might discover a statis-

tically positive relationship between the minimum wage and 

unemployment. But that finding doesn’t necessarily mean that 

a noticeable increase in the unemployment rate will follow 

an increase in the minimum wage. Whether the relation-

ship is noticeable depends on several factors, such as: (1) the 

magnitude of the minimum wage increase; (2) the difference 

between the proposed minimum wage and the current aver-

age hourly wage rate; (3) which sectors of the economy are 

growing and contracting; and (4) whether by “unemploy-

ment rate” we mean the unemployment rate in general, or the 

unemployment rate for hourly workers, or the unemployment 

rate for hourly entry-level workers, or the unemployment rate 

for hourly, entry-level, unskilled workers. Whereas measur-

ing the effect of a minimum wage hike on the unemployment 

rate requires knowledge of statistical analysis, understanding 
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the nuances of the results that the analysis yields requires 

knowledge of statistics.

Many children learn simple addition and subtraction by 

locating numbers on a number line. For example, to add three 

and two, you first find three on the number line and then move 

two places to the right. That puts you at five—three plus two 

is five. This is a useful way for children to begin to understand 

numbers and arithmetic. Unfortunately, most of us keep this 

model in our heads as adults—and this model is antithetical 

to understanding statistics. In statistics, things aren’t as nicely 

arranged and well-behaved as they are on a number line. In 

statistics, things move around and vibrate in random ways, 

leading to all sorts of very real but counterintuitive results. For 

example, suppose your car can travel 30 miles (on average) on 

a gallon of regular gas and 36 miles (on average) on a gallon 

of premium gas. If you put one gallon of regular gas and one 

gallon of premium gas in your tank, how many miles will you 

travel? If you answered “66,” you are suffering from the erro-

neous “number line” view of the world. The correct answer is 

“I don’t know.” You do know that you will travel 66 miles on 

average, but that’s very different from saying you will travel 

66 miles. The miles you can travel on a gallon of gas is a ran-

dom variable. On average, it is 30 miles for regular gas. And, 

on average, it is 36 miles for premium gas. But those numbers 
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are only averages. On any given trip, you may get better or 

worse gas mileage depending on how much weight is in the 

car, whether the engine is well tuned, how much air pressure 

is in the tires, and many other factors. The mileage you get 

from a gallon of gas is not a fixed point on a number line (as 

in Figure 1). It is a cloud of points that vibrate around a com-

mon center (as in Figure 2). That common center is the mean 

(which is the technical name for “average”). The degree to 

which the cloud of points is spread out is called the standard 

deviation (an alternate measure is the variance).

Figure 2

How Measurements Actually Work

30 3525

...or here. ...or here.
...or here.

Sometimes you are here...

...or here.

Figure 1

How We Imagine Measurements Work

30 3525

You are here.
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It turns out that most phenomena we deal with on a daily 

basis are more accurately represented as vibrating clouds rather 

than as points on a number line. For example, what time do 

you get up in the morning on a work day? If you answered 

something like “6:00 a.m.,” you are thinking in number-line 

mode. You might set your alarm for 6:00 a.m. But, depending 

on how tired you are, whether you happened to wake up early, 

whether your power went out, how accurate your clock is, and 

many other factors, you won’t get up at exactly 6:00:00.00 

a.m. You’ll get up a little earlier some days and a little later 

other days. The time you get up is not a point on the number 

line. It is a cloud that vibrates around 6:00 a.m. For more 

organized and punctual people, that cloud will have a smaller 

standard deviation—it will vibrate by a lesser amount around 

6:00 a.m. For less organized people, that cloud may have a 

larger standard deviation. This mistaken view of measures as 

static points on a number line contributes to a mistaken view 

of statistical relationships.

Is four greater than three? Yes, four is always greater than 

three. That’s because the relationship between four and three 

is deterministic. The fact that four and three have fixed 

locations on the number line is what makes the relationship 

between them deterministic. Deterministic relationships 

are always true. If you ever find a single example in which 
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a supposedly deterministic relationship is not true, you have 

proven that the relationship does not exist. For example, the 

relationship between air speed and air pressure is determin-

istic. Other things equal, the faster air flows, the lower the 

pressure it exerts. Every time. We call this Bernoulli’s law. 

We rely on the fact that the relationship between air speed 

and air pressure is deterministic every time we fly because 

that relationship is what keeps airplanes in the air. If you ever 

find just a single example in which increased air speed does 

not accompany decreased air pressure (other things remaining 

unchanged), then you have disproved Bernoulli’s law. To be a 

law, the relationship must apply every single time. That is, the 

relationship must be deterministic.

In contrast, economic relationships are stochastic. Sto-

chastic relationships apply on average or, “in the aggregate” 

(i.e., in total), but may or may not apply in individual cases. 

For example, domestic dogs are bigger than domestic cats in 

a stochastic sense, not a deterministic one. By this we mean 

that the average dog is bigger than the average house cat, but 

there are individual exceptions. A full grown Toy Fox Terrier 

weighs between 3 and 9 pounds, while a full-grown Maine 

Coon cat weighs between 15 and 35 pounds. Finding an 

exception to a stochastic relationship does not disprove the 

relationship because stochastic relationships hold on average 
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even if not in every particular case. The higher a person’s 

hourly wage, the more hours per day the hourly worker will be 

willing to work. We call this relationship “labor supply.” It is 

true in a stochastic sense: on average, that’s what theory pre-

dicts and it’s what we actually observe. However, you may be 

able to find a specific person who, after receiving an increase 

in his hourly wage, chooses to work fewer hours. The specific 

example doesn’t invalidate the principle because the princi-

ple is stochastic. This is why we sometimes call economic 

laws “laws” (in scare quotes). Finding a counterexample to 

a stochastic relationship does not disprove the relationship. 

To disprove the relationship, one must demonstrate that the 

relationship does not hold on average, regardless of whether it 

holds in particular examples.

What does this discussion have to do with statistics? Sta-

tistical analysis (and econometric analysis—the application 

of advanced statistical analysis to economic data) provides a 

suite of tools for analyzing stochastic relationships. The tools 

are designed to distinguish relationships from background 

“noise.” Think of the technology that characters in spy mov-

ies use to isolate a single voice from an audio recording of 

many voices in a crowd. That’s what statistics and economet-

rics help us do. But instead of isolating a voice in a crowd, 

we are attempting to isolate a specific relationship against a 
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background of other relationships and random events. For 

example, a company’s quarterly sales are influenced by many 

factors, among them the price of its product, special discounts 

it may be offering, consumers’ incomes, the prices of com-

petitors’ products, the weather, the unemployment rate, peo-

ple’s expectations, and a host of other factors. Using statistical 

analysis, we can isolate the effect of changes in the price of 

the company’s product on the company’s sales, after filtering 

out the effects of the other factors.

People can rightly be accused of sloppy thinking when they 

inappropriately substitute anecdotes for data (or, more cor-

rectly, for statistics) because in doing so they have failed to 

recognize the difference between stochastic and determin-

istic relationships. Anecdotes are entertaining. Statistics are 

dry. Anecdotes tend to resonate better with listeners. Listen-

ers remember anecdotes and better understand the story the 

anecdotes tell. When explaining deterministic relationships, 

anecdotes can be used in place of statistics, since in a determin-

istic relationship every example conforms to the relationship. 

If I want to demonstrate the relationship between mass and 

gravity, I can tell a story about how Byron Jones, who holds 

the world record for the standing long jump (12 ft., 2 ¾ in.), 

would be able to jump more than 70 feet on the moon because 

the moon’s mass is much less than Earth’s.
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But, where stochastic relationships are concerned, anec-

dotes can’t substitute for statistics because individual examples 

may confirm or may contradict the stochastic relationship. A 

story about a person who lost his job the day after the mini-

mum wage rose is not evidence for the relationship between 

unemployment and wage controls. Conversely, a story about 

a person who never lost his job despite several increases in 

the minimum wage is not evidence against the relationship 

between unemployment and wage controls. The anecdotes 

are irrelevant because the relationship they are attempting 

to describe is stochastic. What matters is the aggregation of 

all the stories into statistics. When the minimum wage rises, 

some people will be hired, some will keep their jobs, and some 

will lose their jobs. To determine whether there is a relation-

ship between unemployment and wage controls, we need to 

compare the total number who gained jobs with the total 

number who lost jobs, and then we need to control for fac-

tors other than the minimum wage that may have influenced 

employment. Examples of individual people who gained or 

lost jobs are irrelevant. That doesn’t mean anecdotes have no 

role to play in explaining stochastic relationships. Rather, it 

shows that the appropriate role for anecdotes is in illustrating 

facts that the statistics present, not in discerning what those 

facts might be.
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Before we delve into understanding what statistics are, let 

us begin with some common errors to avoid when dealing 

with statistics.
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Common Errors

Be Careful When Translating Statistics into English

An oft-repeated criticism is that one can make statistics say 

anything. That’s not correct. Statistics don’t “say” anything at 

all. The person interpreting the statistics is doing the saying. 

The problem is that statistics exist in the language of mathe-

matics. When we translate the mathematics into English, we 

introduce the possibility of error and misinterpretation—and 

the error can be the listener’s fault as readily as the speaker’s. 

For example, consider the following statistics (the dollar fig-

ures are adjusted for differences in cost of living and are con-

verted to U.S. dollars):

Average per capita income in Eastern Europe  

one generation ago 5 $3,400
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Average per capita income in Asia  

one generation ago 5 $1,600

These are statistical statements, and many people would 

accept the following sentence as an accurate translation of the 

statistics:

“A generation ago, Eastern Europeans’ incomes 

exceeded Asians’ incomes.”

But that interpretation isn’t correct. The population of 

Eastern Europe is around 100 million, whereas the popula-

tion of Asia is around 4 billion. At an average of $3,400 each, 

Eastern Europeans earned a total of around $340 billion in 

income while, at an average of $1,600 each, Asians received a 

total of around $7 trillion in income—or about 20 times what 

the Eastern Europeans earned.1

A more refined translation might be:

“A generation ago, individual Eastern Europeans 

earned higher incomes than did individual Asians.”

This interpretation isn’t correct either because we only know 

average incomes. It is possible that some Eastern Europeans’ 

incomes were much less than the $3,400 average for East-

ern Europe, and it is possible that some Asians’ incomes were 
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much greater than the $1,600 average for Asia. Unless every 

Eastern European were earning exactly $3,400 and every 

Asian were earning exactly $1,600, we could not say that 

individual Eastern Europeans earned more than did individ-

ual Asians.

The statistics we have tell us only the average per capita 

income. We have no idea how typical this average was for 

individual people. For example, it’s possible that all Eastern 

Europeans earned approximately $3,400 plus or minus a few 

hundred dollars. Or, it is possible that most people earned 

nothing at all while a small number earned billions of dollars. 

In short, we don’t know how much individual people’s incomes 

are dispersed around the average. We know the random vari-

able’s average, but we don’t know its standard deviation.

The media are quick to report averages, but they rarely 

report standard deviations. Yet the average alone doesn’t 

tell us nearly as much as the average and standard deviation 

together. Roughly speaking, a standard deviation measures 

the average amount by which individual observations differ 

from the average. For example: Randomly select 100 high 

school students and weigh each one. Examine by how much 

the weights of the individual students differ from the aver-

age weight for the set of 100 students. Then randomly select 

100 professional jockeys and weigh each one. Examine by 
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how much the weights of the individual jockeys differ from 

the average weight for the set of 100 jockeys. The weights 

of the individual jockeys will all likely be rather close to the 

average weight for all the jockeys. In contrast, the weights of 

the individual students will likely vary from the average for 

all the students by a larger amount. In technical language, we 

say that the standard deviation of the jockeys’ weights is lower 

and the standard deviation of the students’ weights is higher.

Depending on the circumstances, the standard deviation of 

a random variable can be just as important as the random 

variable’s average. For example, the mean temperature on the 

moon is around 5 degrees (Fahrenheit). The mean tempera-

ture in Fairbanks, Alaska, in February is about 22 degrees. 

Based on those means, it would appear that the moon’s 

temperature is more hospitable than that of Fairbanks in 

winter. But we’re ignoring the standard deviation. Fairbanks’s 

February temperatures vary from a typical high of 10 degrees 

to a typical low of 213 degrees, putting the standard deviation 

somewhere around 12 degrees. In other words, Fairbanks’s 

daily temperature fluctuates around its mean of 22 degrees 

by about 12 degrees up or down, on average. But the standard 

deviation of temperatures on the moon is around 250 degrees, 

meaning that a typical high on the moon is 255 degrees and 

a typical low is 2245 degrees. It turns out that the standard 
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deviation is incredibly important. If we compare mean tem-

peratures, surviving on the moon seems a little easier than 

surviving a Fairbanks winter. But when we look at the stan-

dard deviations, we see that we wouldn’t survive even a single 

day under the moon’s temperatures. In this case, it’s the tem-

perature extremes, not the means, that are deadly.

Beware of Correlation

Even people not schooled in statistical analysis know that 

correlation is not causation. Just because two things move 

together doesn’t mean that one causes the other. But it’s 

more complicated than the simple phrase, “correlation isn’t 

causation.”

Figure 3 shows the number of sunspots (darker line) in each 

year from 1960 through 1980, and the number of Republicans 

in the U.S. Senate one year later (lighter line). Notice that the 

two data sets are correlated (i.e., they move together). When 

the number of sunspots declines, the number of Republi-

cans in the Senate one year later falls. When the number of 

sunspots increases, the number of Republicans in the Senate 

one year later rises. Of course, it’s unlikely that sunspots affect 

elections, so what we’re seeing is an example of correlation 

without causation. Two things can be correlated because one 

causes the other, but they can also be correlated because, by 
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random chance, they happen to move in the same direction. 

Since you were born, you’ve gotten taller. Also, since you were 

born, the stock market has gone up in value. Changes in your 

height don’t cause changes in the stock market, and changes 

in the stock market don’t cause changes in your height. The 

two phenomena are correlated but not causally related.

Now, you might argue that, even though there is no causal 

relationship between sunspots and Republican senators, had 

Figure 3

Sunspots and Republicans in the Senate, 1960–1980

Source: National Geophysical Data Center (http://www.sws.bom.gov.au/Educational 
/2/3/6); U.S. Senate, “Party Division” (www.senate.gov/pagelayout/history/one_item 
_and_teasers/partydiv.htm).
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you known about this correlation, you could have used it to 

predict election results. After all, if your goal is to predict an 

election, all you care about is that sunspots predict Republi-

cans in the Senate—the why doesn’t matter. The problem is 

that you’re seeing the data in hindsight. In 1960, no one could 

make use of the correlation shown in Figure 3 because the 

data shown on the chart didn’t exist. Now, by 1970, the data 

in the left half of the chart existed. But, if you were an election 

analyst in 1970 and saw the left half of this chart, you might 

have said something like, “Well, sunspots and Republicans 

do appear to move together, but we’re only seeing 10 years 

here. And even then, it’s a single down followed by a single 

up. Who knows whether this pattern is going to continue?” 

In short, in 1970, if you saw the left half of this chart, you 

probably would not have been sufficiently convinced to actu-

ally start using sunspots as an election predictor.

But, by 1980, you would have had the whole chart in front 

of you. You would have seen that sunspots correctly predicted 

elections for the past 20 years. Not only that, they predicted 

elections through a period of Republican losses (1960–1964), 

then Republican gains (1964–1969), then losses (1969–1976), 

then gains again (1976–1980). So, by 1980, you would 

probably have felt more confident about using sunspots to 

predict elections. You would have known that there couldn’t 
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be a causal relationship, but nonetheless, if you had been using 

sunspots as predictors over the previous 20 years, you would 

have been able to predict election results very well.

And here’s the problem with correlation in the absence of 

causation. Without causation, the correlation is simply due 

to random chance. Because the correlation is due to random 

chance, you never know when the correlation will disappear. 

It turns out that the correlation between sunspots and Repub-

lican victories disappeared around 1980—about the same 

time you would have started becoming comfortable with rely-

ing on sunspots as a predictor.

Figure 4 shows sunspots and Republicans in the Senate 

from 1981 through 2005. Notice that the correlation has van-

ished. In fact, from 1987 through 1999, sunspots moved in 

the opposite direction of the number of Republicans in the 

Senate.

Random correlation is the basis for a well-known stock 

scam.2 An investment adviser emails 200,000 people (group A) 

telling them that the stock market will rise the next day, and 

another 200,000 people (group B) telling them that the stock 

market will fall the next day. The stock market actually rises, 

so the investment adviser takes group A and splits it in half. To 

100,000 people (group C) he emails a prediction that the stock 

market will rise the next day. To the other 100,000 (group D) 

106656_Ch01_R2.indd   18 11/9/17   7:25 PM



19

Common Errors

Figure 4

Sunspots and Republicans in the Senate, 1981–2005

Source: National Geophysical Data Center (http://www.sws.bom.gov.au/Educational 
/2/3/6); U.S. Senate, “Party Division” (www.senate.gov/pagelayout/history/one_item 
_and_teasers/partydiv.htm).
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he emails a prediction that the stock market will fall the next 

day. The stock market actually falls, so the investment adviser 

takes group D and splits it in half. To 50,000 people (group E) 

he emails a prediction that the stock market will rise the next 

day. To the other 50,000 (group F) he emails a prediction that 

the stock market will fall the next day. The stock market actu-

ally falls. Now the investor emails the people in group F and 

says that he correctly predicted stock market movements in 
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each of the past three days. If they’d like to continue receiving 

his predictions, they can pay him $20 each.

For those 50,000 people, the investor did correctly predict 

stock market movements three days in a row. But, he did so 

by random chance. His predictions were correlated with the 

stock market but, since there is no causality, there is no reason 

to believe that his predictions will continue to be correlated 

with the stock market.

Beware of Causation

Even if we correctly identify two phenomena as causal, we can 

mischaracterize the nature of causality. Every morning, you set 

your alarm. And every morning, the sun rises. The two events 

are causally related. But, it isn’t your alarm clock causing the sun 

to rise. Rather, your anticipation of the sun rising causes you to 

set your alarm. Mischaracterizing causality in the wrong direc-

tion is called reverse causality. States with clean air and little 

pollen tend to have more asthma sufferers. The cleanliness of the 

air and the asthma rate are causally related. But it’s not because 

clean air causes asthma. The causality runs in the other direc-

tion: asthma sufferers tend to move to states that have cleaner air.

Another mischaracterization of causality is the third variable 

effect. The third variable effect (also called a confound) occurs 

when two phenomena are causally related, yet neither causes 
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the other. Instead, both are caused by a third phenomenon. 

For example, communities with more churches, on average, 

also experience more crimes. But crimes do not cause churches 

and churches do not cause crimes. Rather, both the number of 

churches and the number of crimes are caused by population size.

Although correlation is not causation, with rare exceptions, 

the absence of correlation is the absence of causation.3 Figure 5 

shows the most recent data for 113 reporting countries on 

Source: Global Peace Index, Institute for Economics and Peace (http://visionof 
humanity.org/app/uploads/2017/06/GPI17-Report.pdf); Economic Freedom of the 
World, Fraser Institute (https://www.fraserinstitute.org/economic-freedom/dataset).

Figure 5

Economic Freedom Index and Global Peace Index  

for 113 Countries, 2014 and 2017
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the economic freedom index (a measure of how free people 

are to make economic choices for themselves—a higher score 

means the country is more free) compared with the global 

peace index (a measure of the extent to which a country’s gov-

ernment employs violence—a lower score means the country 

is more peaceful). The data are correlated: on average, coun-

tries that are more economically free are also more peaceful. 

Correlation isn’t causation, so the data do not tell us that more 

economic freedom causes more peace. However, the absence 

of correlation is the absence of causation, so the data do tell us 

that more economic freedom does not cause less peace.

Beware of Aggregation Bias

Aggregation is the combining of many data points into a sin-

gle measure. It’s often necessary to aggregate data to reduce 

noise, or randomness in the data. For example, if I ask you 

how much the typical American worker earns today, picking 

a worker at random is likely not going to yield a good answer. 

You might, by random chance, pick someone who earns noth-

ing because he is unemployed, or someone who earns a lot 

because he is a successful entrepreneur, or someone who earns 

little because he’s a full-time student. Noise in the data makes 

it possible that the person you randomly select will not be 

typical. The right way to answer the question is to randomly 
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select many workers and then combine their earnings. The 

combining causes the randomly higher wages to cancel out 

with the randomly lower wages. What’s left we can consider a 

“typical” worker’s earnings.

Note that, when data are aggregated, the observations must 

be selected randomly. If the data are not selected randomly, 

rather than the noise being smoothed out, the aggregated 

result becomes biased. In the extremely close 2000 presiden-

tial election, a problem arose because many Florida voters did 

not mark their ballots correctly. Florida used voting machines 

to count the ballots. If a voter didn’t punch the holes on the 

ballot correctly, the voting machine couldn’t read the ballot 

and so the voter’s vote was declared “invalid.” But, in many 

cases, manual inspection of the ballot would clearly reveal for 

whom the ballot was cast. So, if the ballots were recounted 

manually, many of the formerly invalid ballots would no lon-

ger be invalid. If the invalid ballots were randomly distrib-

uted among Republican and Democratic voters, the invalid 

ballots would simply be noise and it likely would not have 

mattered whether they were counted. So long as many valid 

ballots were counted, the noise of the invalid ballots would get 

drowned out. Nevertheless, both candidates called for man-

ual recounts. Why? Because each hoped to obtain a nonran-

dom set of ballots. The Democratic candidate wanted manual 
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recounts, but only in voting districts that were heavily Dem-

ocratic. Similarly, the Republican candidate wanted manual 

recounts but only in districts that were heavily Republican. 

What the candidates were trying to do was obtain a nonran-

dom vote count that was biased in their favor.

When data are selected randomly, aggregation can drown 

out random noise in the data. But aggregation comes at a cost 

in that it can hide important information. For example, the 

lighter line in Figure 6 shows the median worker’s (annu-

alized) weekly wage and salary from 1979 through 2016 

(adjusted for inflation).4 The line fluctuates a little but is 

basically horizontal. This result is the basis for the argument 

that middle-class wages have stagnated. We obtain the line 

by finding the median (or “middle”) worker’s income in each 

year. This is a type of aggregation. So, in 1979, the middle 

worker earned about $42,000 in compensation (wages plus 

employer-paid benefits). And in 2016, the middle worker 

earned about $44,000.

Aggregation hides an important fact: the middle worker in 

each year is not the same worker. As the years go by, work-

ers’ wages rise as those workers obtain more skills, experi-

ence, and education. And new workers enter the workforce 

at starting-level wages. What we really want to know is what 

has happened to the same workers over time.
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Figure 6

Median Worker Compensation Compared with  

Compensation over Median Career,  

1979–2016, in 2017 Dollars

Source: Current Population Survey, Bureau of Labor Statistics (https://www.bls 
.gov/cps/cpswktabs.htm, https://www.bls.gov/webapps/legacy/cpswktab3.htm).

The problem is clearer if we think of ages instead of wages. 

Consider a thought experiment: Suppose that in 2000, the 

median American was 37 years old, and that in 2010, the 

median American was 37 years old. Should we conclude that 

Americans didn’t age from 2000 to 2010? Of course not. All 

Americans aged over this period. What did happen was that 

each year old people died (and so we stopped counting their 
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high ages in our age calculations) and new people were born 

(each of whom starts with an age of zero). Although everyone 

got older, the makeup of the group we were looking at shifted 

such that the median age remained unchanged. The same is 

true with wages.

The darker line in Figure 6 shows the wage and salary for the 

median worker who was 16 years old in 1979.5 It rises with each 

passing year because the median person in the age cohort earns 

more money because of increased education and job experience 

over time. The darker line is like tracking the median age of 

people born in a single year. Over time, those people will age. 

The lighter line is like tracking the median age of all people. 

That can remain constant even though each person is aging, 

because new young people are born and existing old people die. 

In this case, people at the end of their careers who are earning 

more money retire and so are no longer counted. Meanwhile, 

new people enter the workforce at starting-level wages.

Where the question of wage stagnation is concerned, it 

is the darker line we should be examining. What matters is 

how workers’ incomes change over their careers, not what the 

median income of all workers over time is. What we see is that 

the median worker’s compensation rose steadily from 1979 

through 2016. Over that 38-year span, the median worker’s 

purchasing power doubled.
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Data showing income inequality in the United States are 

also subject to aggregation bias. For example, Figure 7 shows 

that, from 1995 to 2015, the poorest 20 percent of Americans 

went from earning 3.7 percent of all household income earned 

in the country to 3.1 percent. The data appear to show that 

the poor are getting poorer. But to arrive at these numbers, 

we’ve aggregated the poor in 1995 into a single number and 

then compared that with another aggregation of the poor in 

2015.

Figure 7

Shares of Incomes Going to the Lowest and  

Highest Income Quintiles

Source: Tax Policy Center (http://www.taxpolicycenter.org/statistics/household 
-income-quintiles)
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Aggregation hides the fact that “the poor” in 2015 are not 

necessarily the same people who were “the poor” in 1995. In 

fact, if we apply the exact same calculations that produced 

this chart to age instead of income, we get Figure 8.

Figure 8 shows that, in 1990, the youngest 20 percent of 

Americans had an average age of 6.5 years. But in 2010, the 

youngest 20 percent of Americans had an average age of 

7.2 years. Applying the same reasoning here that we applied 

Figure 8

Average Ages of the Youngest and  

Oldest Age Quintiles

Source: Census 2000 Brief, U.S. Census Bureau (https://www.census.gov/prod 
/2001pubs/c2kbr01-12.pdf), Census 2010 Brief, U.S. Census Bureau (https://
www.census.gov/prod/cen2010/briefs/c2010br-03.pdf).
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to incomes, we would have to conclude that, over the 20 years 

from 1990 to 2010, the youngest people aged less than a year.

But clearly, that’s not right. Although every single young per-

son aged 20 years from 1990 to 2010, the average age of young 

people increased by only 8 months. How is this possible? The 

people who comprised the youngest 20 percent in 1990 were 

not necessarily the same people who comprised the youngest 

20 percent in 2010. Over those decades, most of the people 

in the youngest 20 percent grew old enough to no longer be 

among the youngest 20 percent. And, over those decades, 

new people were born. In short, the “youngest 20 percent” in 

2010 were not the same people as the “youngest 20 percent” 

in 1990, and so the two groups can’t be directly compared.

One might be tempted to say that none of this matters. If 

the poorest 20 percent of Americans earn only 3.1 percent of 

the income, then we have a problem. The unspoken assump-

tion is that, by “income,” we mean income earned over the 

course of the past calendar year. But there is nothing spe-

cial about a calendar year. Suppose we redefined “income” to 

mean “income earned over the course of the past week.” Most 

people are paid biweekly, which means that over the course 

of a single week about half of us get paid and the other half 

don’t. So, over the course of a single week, 100 percent of the 

income goes to 50 percent of the workers while zero percent 
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of the income goes to the other 50 percent of the workers. 

The example is silly in that measuring income over only a 

week is too restrictive. But measuring income over the course 

of a calendar year can also be too restrictive. For example, a 

year is far too short a span to measure adequately the income 

of a college student who currently earns less than a poverty-

line income but who is training to be a petrochemical engi-

neer with a starting salary of over $100,000. Altering the 

time span we are examining dramatically alters the inequality 

measure we obtain.

The most accurate way to measure income inequality 

is across the span of a person’s career. The Pew Economic 

Mobility Project did this, though with families rather than 

individuals. Researchers measured the average incomes of 

families in each income quintile and then went back a gener-

ation later and measured the incomes of those families’ chil-

dren.6 Their results are shown in Figure 9.

The researchers found that, one generation later, the chil-

dren born into the poorest families were earning twice (in 

inflation-adjusted terms) what their parents had been earn-

ing, while the children born into the richest families were 

earning the same as what their parents had earned. These 

data suggest that, when we look across generations, the poor 

are getting richer faster than the rich are getting richer.
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Incomes of Families, by Quintile

Source: Economic Mobility Project, “Economic Mobility of the States,” Pew 
Center on the States, Washington, 2012.
Note: Figures are in 2006 dollars.

Be Careful That You’re Measuring What You Think 
You’re Measuring

Something odd happened in labor markets in 2013. From the 

third quarter to the fourth quarter, the unemployment rate 

fell from 7.2 percent to 7.0 percent. That was good news, of 

course, because it meant that more Americans were work-

ing. Except that it didn’t. There were 82,000 fewer Ameri-

cans working in the fourth quarter of 2013 than in the third 

quarter. How could the unemployment rate fall yet fewer 
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Americans be working? The answer lies in the definition 

of “unemployment”—it doesn’t measure what many people 

think it measures.

Most people equate the unemployment rate with jobs. 

When unemployment is up, jobs are down, and vice versa. 

But that isn’t necessarily true, and it wasn’t true at the end of 

2013. The reason is that a person can be categorized not only 

as “employed” or “unemployed,” but also as nonemployed. A 

nonemployed person is one who doesn’t have a job and isn’t 

looking for one.7 For example, full-time students, retired peo-

ple, and homemakers are all classified as nonemployed. The 

labor force is the sum of employed and unemployed people. 

The nonemployed are not part of the labor force. When econ-

omists talk about the unemployment rate, what they mean 

is the number of unemployed people as a fraction of the 

labor force.

So what? Consider a simple case. Suppose we have a 

society composed of 5 million people, with 4.7 million of 

those employed and 0.3 million unemployed. The labor 

force is 5 million, and the unemployment rate is 6 percent 

(0.3 million/5 million).8 Now, suppose 0.1 million of these 

people have been unemployed for so long that they give up 

hope of finding a job. We call these people discouraged 

workers. If jobs came along, they’d take them. But they’ve 
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been fruitlessly searching for so long that they don’t see the 

sense in actively looking anymore. Discouraged workers are 

not counted as part of the labor force.

What happens when these 0.1 million people drop out of 

the labor force? We are left with 4.7 million employed people, 

0.2 million unemployed people, and 0.1 million nonemployed 

people. The labor force is 4.9 million (4.7 million employed 

plus 0.2 million unemployed), and the unemployment rate is 

4.1 percent (0.2 million/4.9 million). Here’s the interesting 

thing: the unemployment rate has fallen from 6 percent to 

4.1 percent, yet the same number of people are working now 

as before (4.7 million). The disconnect between the unem-

ployment rate and the number of jobs is due to the people 

moving from the unemployed to the nonemployed category.

And this is what happened in the latter part of 2013. 

Enough workers had been unemployed long enough to jump 

from the unemployed to the nonemployed category. As a 

result, the unemployment rate fell and the number of jobs 

declined.

An alternate measure is the employment rate. This is not 

simply 100 percent minus the unemployment rate. Whereas 

the unemployment rate is the number of unemployed people 

divided by the labor force, the employment rate is the num-

ber of employed divided by the population of working-age 
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adults. That one measure relies on the definition of “labor 

force” and the other doesn’t presents pros and cons for each 

measure. The benefit of the employment rate is that, because 

it doesn’t rely on defining who is and is not in the labor force, 

it is not affected by unemployed workers becoming discour-

aged. The benefit of the unemployment rate is that, because it 

does rely on defining who is and is not in the labor force, it 

ignores people who shouldn’t be counted at all—such as retir-

ees, full-time students, and people in prison.

Figure 10 shows the U.S. unemployment and employ-

ment rates for the four years following the start of the Great 

Recession. Notice the period from the fourth quarter of 

2009 through the fourth quarter of 2011. The employment 

rate (the fraction of the working-age population that has a 

job) is flat, while the unemployment rate (the fraction of the 

labor force that does not have a job) is declining. For exam-

ple, in the fourth quarter of 2009, the employment rate was 

54.7 percent and the unemployment rate was 9.9 percent. 

By the fourth quarter of 2011, the unemployment rate had 

fallen to 8.6 percent, but the employment rate was the same 

54.7 percent. The apparent improvement in the unemploy-

ment rate over these years was due to unemployed workers 

who became discouraged and dropped out of the labor force. 

The number of jobs (relative to the working-age population) 

106656_Ch01_R2.indd   34 11/9/17   7:25 PM



35

Common Errors

did not change. This is a possible explanation for why, over 

this period, polls showed that Americans’ confidence in the 

economy was not improving even though unemployment was 

falling.9 The assessment of the “person on the street” was 

correct: the economy was not improving. The improvement 

in the unemployment numbers was not due to more peo-

ple being employed but to fewer unemployed people being 

counted.
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Inflation is another statistic that measures something 

different from what some people believe it measures. For 

example, some people point to a rise in the price of gas as 

an example of inflation. The price of gas is perhaps the 

most obvious of all prices because it changes frequently, it is 

prominently advertised, and gas is something many people 

buy often. But a rise in the price of gas is not an example of 

inflation. Inflation is the rise in the average price of goods 

consumers typically buy, not the rise in the price of a specific 

good. The Bureau of Labor Statistics (BLS) surveys urban 

consumers to determine what goods and services they typi-

cally buy, and in what quantities.10 BLS calls this the “urban 

basket.” Data collectors then visit or call thousands of stores 

to find what prices businesses are charging for the individ-

ual goods and services in the urban basket. Analysts combine 

those prices into a single index number, called the Consumer 

Price Index for All Urban Consumers, or CPI-U. BLS also 

calculates other average price measures on the basis of dif-

ferent baskets and prices. For example, the CPI-W is based 

on the basket and prices relevant to urban wage earners and 

clerical workers; the CPI-E is based on the basket and prices 

relevant to the elderly. Economists use the generic term “CPI” 

when referring to the CPI-U because this is the most general 

measure of consumer prices.
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Consumer inflation is the growth rate in the CPI-U. For 

example, the CPI-U was 232.96 in 2013 and 236.71 in 2014.11 

From those figures, we can calculate that consumer inflation 

averaged 1.6 percent from 2013 to 2014.12 Because this inflation 

measure is based on the average urban consumer’s basket, it 

will be less meaningful for people whose consumptions differ 

markedly from the average urban consumer’s consumption. 

For example, the elderly tend to spend a larger portion of their 

incomes on prescription drugs and a lesser portion on smart 

phones compared with the average urban consumer. Conse-

quently, increases in the prices of prescription drugs will be 

more meaningful and increases in the prices of smart phones 

will be less meaningful to the elderly than to the general pop-

ulation. Similarly, the CPI measure that puts more emphasis 

on prescription drugs and less on smart phones (CPI-E) will 

better capture the prices that are relevant to the elderly.

Because the CPI represents the average of prices, some 

prices can be falling even though we are experiencing infla-

tion. For example, the annual consumer inflation rate in 2014 

was 0.8 percent.13 Yet, over the same year, the price of gasoline 

fell 3.9 percent, and the price of computers fell 10 percent.14 

Conversely, the price of housing rose more than 5 percent.15

Another misleading statistic is debt per GDP. This is the 

size of a country’s government’s debt (also called the public 
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debt) relative to the size of the country’s economy (measured 

by its gross domestic product). A government’s debt is the 

amount of money a country’s government has borrowed. Peo-

ple sometimes refer to this as the “country’s” debt, as in “the 

United States’ debt was almost $20 trillion in 2016.” This 

short-hand way of referring to the public debt is technically 

incorrect. A country—which is composed of people, busi-

nesses, and the government—is not the same as the country’s 

government. The public debt is money a country’s govern-

ment has borrowed, not money that the country’s people or 

businesses have borrowed.

Debt per GDP is useful for comparing public debt across 

different governments. For example, as of 2016, Greece’s 

public debt exceeded $350 billion (converted to U.S. dollars). 

That is an extremely small number compared with the United 

States’ public debt. Comparing just the debts of the two coun-

tries’ governments ($350 billion versus $20 trillion), Greece’s 

public debt appears much lower. However, a comparison of 

the debts ignores the fact that the Greek government collects 

taxes from a $200 billion economy, whereas the U.S. govern-

ment collects taxes from a $19 trillion economy. Relative to 

the sizes of their economies, Greece’s public debt (175 percent 

of GDP) is much larger than the United States’ public debt 

(105 percent of GDP).
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Although debt per GDP is useful for comparing the mag-

nitude of public debts across governments, it is less useful for 

measuring a government’s ability to service its debt because 

the GDP doesn’t belong to the government. GDP is (largely) 

the total income earned by businesses and people in a country 

and so belongs to those businesses and people. The GDP is 

not available to the government for paying its debts. A better 

measure of the government’s ability to service its debt is debt 

per government receipts—public debt divided by the amount 

of money the government collects in a year from all sources 

combined. Federal debt per receipts in the United States is 

around 600 percent. That is, the federal government owes 

an amount of money that is about six times the amount of 

money it collects in taxes annually. For comparison, this is 

like a household with a $60,000 income being $360,000 in 

debt. Note that this is not like a $60,000 household having a 

$360,000 mortgage. A mortgage is a debt that is balanced by 

an asset—the value of the house. In 2016, the total value of 

all of the federal government’s assets was around $3.3 trillion 

and the federal government’s annual receipts totaled about the 

same $3.3 trillion.16 Accounting for the government’s assets, 

the government’s financial situation is like that of a $60,000 

household having a $60,000 mortgage on a $60,000 house 

and another $300,000 on its credit card.
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These terms—unemployment rate, inflation rate, and debt 

per GDP—are just three examples of the importance of being 

extremely clear as to the definition of a statistic. Without this 

clarity, we can inadvertently say things that are not true. In 

addition to understanding a statistic’s definition, one must 

also know how the data that feed into the statistic are col-

lected. For example, BLS produces two employment esti-

mates. One comes from a BLS survey of employers that asks 

how many workers those employers hired or let go. The other 

comes from a BLS survey of people that asks whether they 

found or lost jobs. In April 2012, the first survey indicated 

that employers added a net 115,000 jobs, while the second 

indicated that 169,000 Americans lost their jobs. Clearly, the 

two numbers are contradictory. Yet, both figures are esti-

mates, so the correct statement is that the economy experi-

enced something between 169,000 job losses and 115,000 job 

gains.17

Having been warned of common errors to avoid when deal-

ing with statistics, we can now delve into statistics themselves. 

The place to begin is with probabilities. A probability—the 

likelihood of something happening—is the building block of 

statistics. Probabilities are what make things stochastic rather 

than deterministic.
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What Are Probabilit ies?

A probability is the likelihood of an event occurring. Because 

it is simpler, we almost always talk in terms of certainties. We 

may say, “It will rain today,” or “I will meet you at noon.” But 

very few things are certain—our lives are composed almost 

entirely of probabilities. No matter how dark the sky, it is 

impossible to know for certain that it will rain. You may be so 

sure it will rain that you wear a raincoat and carry an umbrella. 

But you do not know for certain that it will rain. There is a 

probability, perhaps very small but definitely nonzero, that it 

will not rain. You may intend to meet someone at noon, but you 

cannot guarantee that you definitely will meet at noon. There 

is a nonzero probability that you’ll have a flat tire on the way, 

or unexpected traffic will delay you, or your boss will suddenly 

give you an assignment that absolutely must be completed by 
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the end of the day. Almost all the things we talk about as if they 

were certainties are actually probabilities. Statistics acknowl-

edges the reality that almost all of life is probabilistic.

But although almost everything around us is probabilistic, 

we tend to think in terms of absolutes because absolutes are 

easier. It’s easier to say, “We’re going to need another gallon 

of milk before tomorrow,” than to say, “There is a 95 percent 

chance that we will need another gallon of milk before tomor-

row.” Consequently, when we do turn our attention to proba-

bilities, we are often mistaken about what we are seeing.

Observation Bias Leads to Misestimation of 
Probabilities

We commit observation bias when we erroneously believe 

that simply because we have personally observed something, 

that thing has a higher probability of occurring than does 

something we haven’t observed.

For example, many people are afraid of flying. Our loved 

ones often admonish us to “call when the plane lands” so 

they will know we have arrived safely. But the most danger-

ous part of a plane trip (by far) is the drive to and from the 

airport. In 2013, almost 34,000 people died in automobile 

accidents in the United States.18 According to the National 

Transportation Safety Board, the number of people killed 
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in commercial flights in the United States in that same year 

was 5.19 In other words, the average person who travels by car 

is almost 7,000 times more likely to die in a crash than is the 

average person who travels by plane. Of course, the probabil-

ities are influenced by the length of the trip—the probability 

of death increases significantly with the length of a car trip, 

but hardly at all with the length of a plane trip (the bulk of the 

risk is in the takeoff and landing). But, someone who drives 

30 miles every day is seven times more likely to die traveling 

than is someone who flies 500 miles every day.20

Similarly, some people spend a tremendous amount of 

energy worrying about so-called “assault rifles,” yet the 

number of Americans killed annually by punches and kicks 

is twice the number killed by all types of rifles combined.21

So why do we worry about plane travel and rifles? The 

answer is observation bias. Our natural tendency is to think 

of ourselves and the things we encounter as “typical.” Conse-

quently, when we hear a news story about a plane crash, our 

natural tendency is to think that plane crashes are typical. 

But, typical events don’t typically make the news. Car crashes 

occur in every city every day, so they don’t appear on the news 

unless they are untypically horrific. Extraordinary events 

make the news. That means, on average, you can regard the 

news as a litany of things that are unlikely to harm you.
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Repetition Can Cause (Indirect) Observation Bias

A form of observation bias comes from hearing something 

repeated over and over. For example, both the media and 

many people repeatedly say that the rich need to “pay their 

fair share of taxes.” The phrase is repeated so often that many 

people (and sometimes even economists), absent any data, 

assume that the poor and middle class pay more taxes (or at 

least a greater percentage of their income in taxes) than do the 

rich. This is an “indirect” observation bias because the bias 

comes not from one’s own observations but from what one 

perceives that others are observing. The cure for such biases is 

a look at the data. The Congressional Budget Office (CBO) 

tracks federal taxes received from and transfers paid to peo-

ple in each of various income categories. The CBO breaks 

the population down into quintiles, and the top quintile into 

smaller gradations. For each income group, the CBO asks the 

following questions:

•	 How much income (from all sources—wages, interest, 

dividends, capital gains, etc.) did the average person 

earn?

•	 How much money did the average person pay in federal 

taxes (all taxes combined—income tax, payroll tax, cor-

porate tax, capital gains tax, estate tax, etc.)?
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The second number divided by the first number is the aver-

age effective tax rate for that income category. An effective 

tax rate is the tax rate a person actually pays, as opposed to 

a statutory tax rate, which—depending on deductions, tax 

credits, and other adjustments—the person may or may not 

actually pay. The average effective tax rate answers a simple 

question: when all the accounting and legal gymnastics are 

over, what fraction of all the money you received from all 

sources combined did you actually end up handing over to the 

Internal Revenue Service? (See Table 1.)

The data in Table 1 come from the CBO and are for 2011 

(the latest year available; earlier years show roughly similar 

numbers). What’s remarkable is the discrepancy between 

Table 1. Effective Income Tax Rates, by Income Level

Income Category Average Effective Income Tax Rate

Poorest 20% 1.9%

Next 20% 7.0%

Middle 20% 11.2%

Next 20% 15.2%

Richest 10% to 20% 18.6%

Richest 5% to 9% 21.1%

Richest 2% to 4% 24.3%

Richest 1% 29.0%

Source: Congressional Budget Office, “The Distribution of Household 
Income and Federal Taxes, 2011,” November 2014 (Table 4).
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the claim that the rich aren’t paying their fair share and 

the numbers. The average person in the top 1 percent paid 

29 percent of his income in taxes versus less than 2 percent 

for the average person in the bottom 20 percent. The ques-

tion of whether those amounts are fair is left open because 

we haven’t defined what “fair” is. However, the results fly 

in the face of the common claim that somehow the rich are 

paying less in taxes than are the poor. Not only are the rich 

paying more dollars than the poor (which we would expect), 

they are paying a greater fraction of their incomes than are 

the poor.22

Given Enough Opportunities, Even the Most 
Unlikely Event Is Guaranteed to Happen

The probability that a randomly selected person shares your 

birthday is 1 out of 365, or three-tenths of 1 percent. Phrased 

differently, the probability that a randomly selected person 

does not share your birthday is 99.7 percent. Put yourself in 

a room with two other people and the probability that nei-

ther of the other people will share your birthday is 99.7% 3 

99.7% 5 99.5%. With a total of 11 people in the room, the 

probability that none of the other 10 people shares your birth-

day is 99.7% 3 99.7% 3 99.7% 3 . . . (10 times), or 97.3%. 

Even with 10 other people in the room, it’s still almost certain 
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that no one in the room shares your birthday. But, put 100 

other people in the room and the probability of no one shar-

ing your birthday is 76 percent. That’s still rather high but no 

longer a near certainty. There’s a 24 percent chance that at 

least one of the other 100 people shares your birthday.

Now, you might think that, because there are 365 days in 

the year, if there are 365 other people in a room with you, one 

of them is guaranteed to share your birthday. But that’s not 

the way probabilities work. It is possible (though extremely 

unlikely) that the other 365 people all have the same birthday 

and that it isn’t yours. It is possible (and somewhat more likely) 

that none of the other 365 people have birthdays in the same 

month as yours. Because of random chance, having 365 people 

in a room does not mean that each of the days of the year is rep-

resented. In fact, with 365 other people in the room, the proba-

bility that at least one of them shares your birthday is just over 

60 percent. In other words, even if there are 365 other people 

in the room, there’s still about a 40 percent chance that none of 

them share your birthday. You’ve got to pack about 1,700 other 

people in the room before you get a 99 percent chance that at 

least one of the other people shares your birthday.

The probability that a dangerously large asteroid will 

strike the Earth within the next year is 0.0003 percent, 

or, equivalently, the probability of not being struck is 
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99.9997 percent. A probability that high is a virtual certainty. 

You are safe assuming that it simply won’t happen. This year. 

But allow enough years to pass, and the probability goes from 

nearly zero to nearly one. The probability that at least one 

dangerously large asteroid will hit the Earth within the next 

10,000 years is 3 percent—still small enough to ignore. But 

the probability of such an asteroid hitting the Earth within 

the next 100,000 years is almost 30 percent, and within the 

next million years, 96 percent.

The moral of the story is this: even though the probability 

of an event is extremely small, if you try enough times, the 

event will happen.

On July 25, 2000, a Concorde supersonic jet crashed in 

France. It was the first time in its history that a Concorde had 

crashed. Prior to this single event, Concorde could claim a per-

fect safety record. By the same date, a total of 10 Boeing 737s 

had crashed. Yet officials grounded the entire fleet of Concordes 

while allowing Boeings to continue to fly. Why? Looking at the 

raw numbers, the 737s appear to be more dangerous planes.

But we’re forgetting that even low-probability events—

given enough opportunities—are guaranteed to happen. 

By July 25, 2000, Boeing 737s had accumulated a total of 

31 million flights worldwide.23 Concordes had accumulated 

a total of 80,000 flights. Considering the historical record, 
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that single crash took the estimated probability of a given 

Concorde crashing from 0 percent (0 out of 80,000) to 

0.001 percent (1 out of 80,000). That seems like an extremely 

small crash probability. But compare it to the Boeing 737s. At 

10 crashes out of 31 million flights, the estimated probability 

of a given Boeing 737 crashing was 0.00003 percent. That 

single crash made Concorde’s probability of crashing 33 times 

that of Boeing. The reason Boeing had 10 crashes, despite 

the probability of a given crash being incredibly low, is that 

Boeings had flown (literally) millions of times. No matter 

how small the probability of an event is, as long as the prob-

ability isn’t zero, the event is guaranteed to occur if you try 

enough times.

Common Misconceptions about Probabilities

In no particular order, and largely skipping proofs, here are 

some commonly misunderstood facts about probabilities:

1.	 The number of options doesn’t determine the probability of 

each option occurring.

Just because there are two options doesn’t mean that 

the probability of each of them occurring is 50 percent. 

Tell someone that a bowling ball rolling down a lane 

will either break left or break right, then ask the person 
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what is the probability that the ball will break left. Most 

people will answer, “50 percent,” and when you ask 

them to defend their answer, they’ll say, “because there 

are two options.” Regardless of whether the answer is 

correct, the reasoning is flawed. To demonstrate, tell 

the person that he is either alive or dead, and ask what is 

the probability that he is alive. Although there are two 

options, the probability is not 50 percent. Many people 

acquire this misconception because of how probabili-

ties are taught. One of the first examples that statistics 

students encounter is a coin toss. There are two sides to 

the coin, and the probability of one of the sides landing 

up is one-half. In this example, it’s easy to take away the 

erroneous conclusion that the probability is one-half 

because there are two sides. In fact, the number of sides 

has nothing to do with the probability. The probability 

is not determined by the number of sides but by the fact 

that the coin is evenly weighted.

2.	 The probability of one improbable thing and many probable 

things occurring together is less than the probability of the 

improbable thing occurring alone.

“Linda is 31 years old, single, outspoken, and very bright. 

She majored in philosophy. As a student, she was deeply 
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concerned with issues of discrimination and social jus-

tice and participated in antiwar demonstrations.”24

Which is more likely: (a) Linda is a bank clerk, or 

(b) Linda is a bank clerk and is active in the feminist 

movement? Many people answer (b), though the cor-

rect answer is (a). The probability that (a) is correct is 

the probability that Linda is a clerk. The probability 

that (b) is correct is the probability that Linda is a clerk 

and is a feminist—we call this a joint probability. By 

definition, joint probabilities can’t be greater than the 

simple probabilities of which they are composed. For 

example, if the probability of Linda’s being a clerk is 

50 percent and the probability of Linda’s being a femi-

nist is 90 percent, then the probability of Linda’s being 

a clerk and a feminist is 50% 3 90% 5 45%. That 

result is less than the probability of her being a clerk.

3.	 A percentage change and a percentage point change are very 

different things.

On January 1, 2013, a popular payroll tax cut expired. 

For the prior two years, the Social Security tax rate had 

been 4.2 percent. On this date, the tax rate returned 

to its earlier level of 6.2 percent. Politicians tried to 

make light of the increase by saying that it was “only 
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a 2 percent increase.” That is incorrect. An increase 

from 4.2 percent to 6.2 percent is a two percentage point 

increase. The difference in words is small, but the dif-

ference in dollars is quite large. Consider this example: 

Increasing a tax rate from 1 percent to 2 percent dou-

bles the rate. That’s a one percentage point increase, 

but a 100 percent increase. Increasing a tax rate from 10 

percent to 11 percent is a one percentage point increase, 

but a 10 percent increase. The increase in the Social 

Security tax rate from 4.2 percent to 6.2 percent was 

a 48 percent increase.25 Now this may all sound like 

semantics, but notice the difference when we use the 

tax rates to calculate your tax bill. Suppose you earned 

$50,000 in wages. At a tax rate of 4.2 percent, you 

would owe 4.2% 3 $50,000 5 $2,100 in Social Secu-

rity taxes. But, at a tax rate of 6.2 percent, you owe 

6.2% 3 $50,000 5 $3,100 in taxes. The $3,100 tax bill 

is 48 percent greater than the $2,100 tax bill.

What’s true of these tax rates is also true of proba-

bilities. Suppose policymakers want to invest taxpayer 

dollars in the development of a new cancer treatment 

that promises to reduce deaths from a particular form 

of cancer by 50 percent. That sounds like a tremen-

dous improvement, and politicians would find it easy 
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to get voter support for such an investment. But sup-

pose deaths from this particular form of cancer are 

rare—2 in 10,000. A 50 percent improvement would 

reduce deaths to 1 in 10,000. That is a one-tenth of one 

percentage point decline. Stating the improvement as 

a percentage point change rather than as a percentage 

change reveals that the absolute number of lives saved 

will be far fewer than the politician implied.

4.	 When translated into English, conditional and joint proba-

bilities sound similar, but they are not.

The following is loosely based on an actual gen-

der discrimination case involving officers of the New 

York Police Department (NYPD). Suppose the police 

department employs 1,200 officers, of whom 960 are 

men and 240 women. This year, the department pro-

motes 288 men but only 72 women. Looking at the 

department as a whole, the probability of being a pro-

moted female is 6 percent,26 but the probability of being 

a promoted male is 24 percent.27

Conclusion: the department discriminates against 

women because the probability of being a promoted 

male is four times the probability of being a promoted 

female. Nothing is incorrect in the calculations or the 
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translation of the calculations into English. Yet, the 

conclusion is incorrect.

The conclusion is incorrect because we are comparing 

the wrong measures. We are comparing the probability of 

being a promoted male to the probability of being a pro-

moted female. We call these joint probabilities because 

each is the probability of more than one event—either 

the probability of being both a male and promoted, or 

the probability of being both a female and promoted. But 

joint probabilities aren’t relevant here. What we want to 

know are conditional probabilities. Specifically: If I am 

a female, what is the probability of my being promoted? 

If I am a male, what is the probability of my being pro-

moted? The confusing thing is that, when translated into 

English, the two types of probabilities sound similar:

•	 Joint probability: The probability of a randomly selected 

officer’s being a promoted female.

•	 Conditional probability: The probability of a ran-

domly selected female officer’s being promoted.

Consider the hypothetical data in Table 2.

The probability of an officer being promoted given 

that the officer is a male is 30 percent.28 The probabil-

ity of an officer being promoted given that the officer 
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is a female is 30 percent.29 Despite the fact that there 

are four times the number of promoted males as pro-

moted females, there is no obvious gender discrimina-

tion because the conditional probabilities are the same 

for the two genders. In other words, the reason there 

are more promoted males than promoted females is not 

that males are more likely to be promoted. It is simply 

that there are more males than females on the force.

5.	 The heart is a good tool for alerting us to potential concerns 

but a horrible tool for making decisions.

In an apparent suicide in 2001, a teenage pilot flew a 

private airplane into a building in Florida. The teenager 

was one of 3 million teenagers taking Accutane, a pop-

ular drug for treating severe acne. That year, 37 teenage 

Accutane users committed suicide. Concluding that the 

drug was linked to the suicides, concerned parents and 

doctors called for the Food and Drug Administration 

(FDA) to ban the drug.

Table 2. NYPD Promotion of Males and Females

NYPD Officers Promoted Not Promoted Total

Males 288 672    960

Females   72 168    240

Total 360 840 1,200
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Out of 20 million teenagers in the United States that 

year, 2,000 committed suicide and only 37 of those 

were taking Accutane. Thirty-seven suicides might not 

seem like many, and it isn’t clear that the Accutane was 

responsible for the suicides. However, there is a com-

pelling argument that the ban is worthwhile even if it 

saves just one life. And this argument almost cost many 

other teenagers their lives.

The appropriate question here is not how many teen-

agers who committed suicide were taking Accutane, but 

what is the probability of a teenager committing suicide 

given that he is taking Accutane versus the probability 

of committing suicide given that he is not taking Accu-

tane. The rough numbers are shown in Table 3.

Table 3. Suicide and Use of Accutane, 1982–2000

U.S. Population  
(ages 13 to 32)30

Used  
Accutane

Not Taking  
Accutane Total

Committed suicide 37 34,337 34,374

Did not commit suicide 4,999,963 13,665,663 18,665,626

Total 5,000,000 13,700,000 18,700,00031

Source: “Estimating Accutane Use,” Food and Drug Administration 
(https://www.fda.gov/ohrms/dockets/ac/00/backgrd/3639b1c_05.pdf); 
“Depression and Suicide in Patients Treated with Isotretinoin,” New 
England Journal of Medicine (http://www.nejm.org/doi/full/10.1056 
/NEJM200102083440616); Fatal Injury Reports, Centers for Disease 
Control (https://webappa.cdc.gov/sasweb/ncipc/mortrate.html).
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According to the numbers, the probability of a person 

committing suicide given that he was taking Accutane 

was 0.0007 percent.32 The probability of a person 

committing suicide given that he was not taking Accu-

tane was 0.251 percent.33

In layman’s terms, people who did not take Accu-

tane experienced a greater probability of committing 

suicide than did people who did take Accutane.34 Our 

well-meaning hearts went out to the 37 Accutane users 

who committed suicide but didn’t see the 34,337 who 

also committed suicide but were not taking the drug. 

Fortunately, science and statistics prevailed and the 

FDA did not ban the drug. But it could easily have 

done so and, in our satisfaction about saving the 37, we 

might have overlooked the 34,337.

6.	 Simpson’s Paradox: What is true for the parts is not neces-

sarily true for the whole.35

Suppose you want to know whether a university hires 

males as readily as females. You start by looking at 

the individual departments within the university. The 

sociology department had five male applicants and 

eight female applicants. Of those, it hired one male and 

two females. (See Figure 11.)
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You would conclude that there is no evidence that 

the sociology department favored men over women 

because it hired only 20 percent of the male applicants 

but 25 percent of the female applicants. That is, the 

probability of a sociology candidate’s being hired given 

that the candidate is male is 20 percent, while the prob-

ability of a sociology candidate’s being hired given that 

the candidate is female is 25 percent.

You move on to the math department and also find 

that the department favored women over men. Of eight 

male applicants, the department hired six, and of five 

female applicants, the department hired four. The 

probability of a math candidate’s being hired given that 

the candidate is male is 75 percent, and the probability 

Sociology Department
Probability of male applicant being hired = 1 / 5 = 20%

Probability of female applicant being hired = 2 / 8 = 25%

Figure 11

Sociology Department Hiring
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of a math candidate’s being hired given that the candi-

date is female is 80 percent. (See Figure 12.)

You are prepared to report that you have found no evi-

dence of gender discrimination until it occurs to you to 

look at the total numbers for the two departments com-

bined. And there, something fascinating emerges. The 

two departments together interviewed a total of 13 male 

candidates and hired seven. The two departments 

together interviewed a total of 13 female candidates 

and hired six. When you combine the two departments, 

you find that the probability of a candidate’s being hired 

given that the candidate is male is 54 percent, whereas 

the probability of a candidate’s being hired given that 

the candidate is female is only 46 percent.

Figure 12

Math Department Hiring
Math Department

Probability of male applicant being hired = 6 / 8 = 75%
Probability of female applicant being hired = 4 / 5 = 80%
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Paradoxically, you have found evidence that the depart-

ments, when combined as a whole, favored male candidates, 

even though each department separately favored female can-

didates. (See Figure 13.)

What is confusing here is that both statements are correct:

1.	 Each department is more likely to hire women than men.

2.	 The two departments combined are more likely to hire 

men than women.

The source of the paradox is that the sociology department 

hired very few applicants of either gender (3 out of 13, or 

Figure 13

Hiring in Both Departments Combined
Both Departments Combined

Probability of male applicant being hired = 7 / 13 = 54%
Probability of female applicant being hired = 6 / 13 = 46%
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23 percent), whereas the math department hired most of its 

applicants (10 out of 13, or 77 percent). Because many women 

applied for the sociology positions but fewer applied for the 

math positions, the majority of the female applicants applied 

to the department that hired few of either gender. Conversely, 

the majority of the male applicants applied to the department 

that hired many of both genders. The result is that, in total, 

more men were hired than women.

The following three statements are all correct:

1.	 The probability of the sociology department hiring a 

female is greater than the probability of the sociology 

department hiring a male.

2.	 The probability of the math department hiring a female 

is greater than the probability of the math department 

hiring a male.

3.	 The probability of the two departments together hiring 

a female is less than the probability of the two depart-

ments together hiring a male.

What do we conclude? Is the university guilty of gender dis-

crimination in hiring or not? The answer depends on whether 

you are concerned with discrimination in process or discrimina-

tion in outcome. Assuming that the male and female candidates 

were all equally well qualified, there is no discrimination in 
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the hiring process. The sociology department hired a greater 

proportion of female applicants. The math department also 

hired a greater proportion of female applicants. In this exam-

ple, the discrimination in outcome occurred not because of 

the employer’s choices but because of the applicants’ choices. 

A greater proportion of females chose to become sociologists 

while a lesser proportion chose to become mathematicians.
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How Do We Know 

When Two Things Are 

Different?

You have two sticks. What do you do if you want to know 

which is longer? You measure each of them. The one with the 

greater measurement is the longer stick. Come back tomorrow 

and measure them again and (assuming no one has broken them 

and that you measured correctly both times) you’ll get the same 

measurements as before. Each time you measure the sticks, you 

get the same measurements. You get the same measurements 

each time because the sticks’ lengths are deterministic—barring 

any physical alteration of the sticks, the measurements don’t 

change. So measuring is easy. Do it once and you’re done.
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But what if you want to know which of two cars gets better 

gas mileage, or which of two stocks yields a better return, or 

which of two states has greater unemployment? These phenom-

ena (mileage, return, unemployment) are all stochastic. You won’t 

get the same result each time you measure. Because you don’t get 

the same result each time you measure, it is possible that succes-

sive measurements may be contradictory. Last month, Microsoft 

stock outperformed Amazon. This month, Amazon outper-

formed Microsoft. Determining which stock performs better is 

more complicated than simply comparing two measurements.

Comparing Unemployment Rates

For example, consider Pennsylvania’s unemployment rate 

(shown in Figure 14). The rate doesn’t remain constant. In 

March 2007, it was at a low of 4.3 percent. Three years later, 

it was at a high of 8.7 percent. If we want to know whether 

Pennsylvania’s unemployment rate was greater than New 

York’s unemployment rate, how would we compare the two 

measurements? We certainly can ask if Pennsylvania’s unem-

ployment rate today is greater than New York’s unemploy-

ment rate today. We can even ask if Pennsylvania’s average 

unemployment rate over the past decade is greater than New 

York’s average unemployment over the past decade. But both 

of those questions miss an important nuance.
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Pennsylvania’s and New York’s unemployment rates are 

stochastic—they are, at least partially, driven by random 

chance. The states’ unemployment rates are driven by sys-

temic factors such as their tax environments, infrastructure, 

people’s educations, climates, and so on. But they are also 

driven by random, or stochastic, factors such as particular 

weather events, specific election outcomes, specific instances 

of corruption, and specific individuals moving into or out of 

the state, to name just a few. The stochastic events aren’t the 

Figure 14

Pennsylvania Unemployment Rate, 2005–2015

Source: Bureau of Labor Statistics (https://data.bls.gov/timeseries/LASST42000 
0000000003).
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result of anything systemic—they just happen randomly—

yet they can influence the unemployment rate. But when we 

compare the unemployment rates, what we really want to 

compare are the systemic parts, not the stochastic parts.36 For 

example, if I am choosing to start a business in one of those 

states and I want to know which has the lower unemployment 

rate, what I really care about are the systemic components of 

the unemployment rates because those systemic components 

will continue to affect the unemployment rates in the future. 

I don’t care about the stochastic components because those 

random components will come and go unpredictably.

One thing I might do is compare the two states’ unemploy-

ment rates over time as shown in Figure 15.

But this approach isn’t entirely satisfying. There are some 

months in which the unemployment rate is lower in New 

York, other months when it is lower in Pennsylvania, and still 

others in which the two unemployment rates are the same.

To compare the two unemployment rates, we need more 

than just their averages. We also need their standard devia-

tions. The standard deviation measures the degree to which 

the unemployment rate wanders away from its average. For 

example, Pennsylvania’s average unemployment rate over 

this period is 6.4 percent while New York’s is 6.7 percent. 
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Comparing just the average unemployment rates produces a 

mental picture like the one in Figure 16.

If we look just at the averages, it appears that New York’s 

unemployment rate is (on average) larger than Pennsylvania’s. 

But that view ignores the fact that the two unemployment 

rates wander. They aren’t always 6.4 percent and 6.7 per-

cent. They are only 6.4 percent and 6.7 percent on average. 

Figure 15

Pennsylvania and New York Unemployment Rates, 

2005–2015

Source: Bureau of Labor Statistics (https://data.bls.gov/timeseries/LASST42000 
0000000003, https://data.bls.gov/timeseries/LASST360000000000003).
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Over this period, the standard deviation of Pennsylvania’s 

unemployment rate is 1.5 percent. In other words, as Pennsyl-

vania’s unemployment rate wanders, from month to month, 

away from the average of 6.4 percent, it wanders an average 

distance of 1.5 percentage points. Looking at both the aver-

age and the standard deviation produces a very different pic-

ture of Pennsylvania’s unemployment rate (Figure 17).

Figure 17 shows the average distance Pennsylvania’s unem-

ployment rate wanders away from its 6.4 percent average. This 

is not the entire range that Pennsylvania’s unemployment rate 

Figure 16

Average Unemployment Rates in New York and Pennsylvania

8.2%7.8%7.4%7.0%6.6%6.2%5.8%5.4%5.0%4.6% 8.6%

PA NY

Figure 17

Average and Standard Deviation of  

Unemployment Rate in Pennsylvania

8.2%7.8%7.4%7.0%6.6%6.2%5.8%5.4%5.0%4.6% 8.6%

PA
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may wander. For example, in January 2007, the unemployment 

rate was 4.3 percent and in March 2010, it was 8.7 percent. It 

is simply the average distance the unemployment rate wanders.

We can produce a similar picture of New York’s unemploy-

ment rate (Figure 18). Here, we see that New York’s unem-

ployment rate wandered an average of 1.6 percentage points 

away from New York’s 6.7 percent average.

Finally, if we compare the unemployment rates in the two 

states—accounting for both the average and the standard 

deviation—we get a picture like that in Figure 19.

Note that the two ranges almost entirely overlap. While the 

average unemployment rates in the two states are different, 

when we examine both the averages and the standard devi-

ations, we see that the unemployment rates in the two states 

wandered over very similar ranges. Looking at this last pic-

ture, we would be more likely to conclude that there isn’t much 

of a difference in unemployment rates across the two states.

Figure 18

Average and Standard Deviation of  

Unemployment Rate in New York

8.2%7.8%7.4%7.0%6.6%6.2%5.8%5.4%5.0%4.6% 8.6%

NY
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Conversely, compare Pennsylvania’s and California’s unem-

ployment rates (Figure 20). California’s average unemployment 

rate over the period 2005 through 2015 was 8.4 percent—two 

percentage points higher than Pennsylvania’s. And when we 

look at both the standard deviations and the averages, we see 

that Pennsylvania’s unemployment rate did (on average) wan-

der over an area that included the wanderings of California’s 

Figure 19

Average and Standard Deviation of  

Unemployment Rates in New York and Pennsylvania

8.2%7.8%7.4%7.0%6.6%6.2%5.8%5.4%5.0%4.6% 8.6%
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Figure 20

Average and Standard Deviation of  

Unemployment Rates in California and Pennsylvania
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unemployment rate. But, California’s unemployment rate also 

wandered over a large range that Pennsylvania’s did not.

Consequently, we would be less likely to conclude that 

Pennsylvania’s and California’s unemployment rates were 

similar than we would that Pennsylvania’s and New York’s 

were similar.

The preceding explanation is a simplified description of the 

correct procedure for comparing two data sets. When per-

forming comparisons like these, statisticians use what are 

called p-values to determine whether the two averages are 

the same. The p-value is a measure, based on the observed 

averages and standard deviations, of the probability that the 

two averages are, in fact, the same.37 The p-value for the com-

parison of Pennsylvania’s unemployment rate to New York’s 

is 0.139. For simplicity, we can translate the result this way: 

“There is a 13.9 percent chance that the apparent difference 

we see between Pennsylvania’s and New York’s unemploy-

ment is due to random chance.”38 The p-value for the com-

parison of Pennsylvania’s unemployment rate to California’s 

is 0.000.39 We can translate this as meaning that there is vir-

tually no chance that the apparent difference we see between 

Pennsylvania’s and California’s unemployment rates is due to 

random chance.40
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But if two states’ average unemployment rates differ, why 

should we care whether they differ only because of random 

chance? We care because differences that are due to random 

chance won’t persist over time, but differences that are not due 

to random chance will. For example, suppose you flip a fair 

coin five times and get five heads. Because the coin is fair, you 

know that it was simply random chance that you got five heads 

in a row. Therefore, you won’t expect to get another five heads 

if you flip the coin five more times. But if you flip a weighted 

coin five times and get five heads, because you know the coin is 

weighted, you also know that those five heads weren’t due to ran-

dom chance. And because they weren’t attributable to random 

chance, you will expect to get five more heads if you flip the coin 

five more times. The same principle applies to the unemploy-

ment rates. If the difference between Pennsylvania’s and New 

York’s unemployment rates is due to random chance, then we 

would not expect to observe the difference in the future. Con-

versely, if the difference between Pennsylvania’s and California’s 

unemployment rates is not due to random chance, then we would 

expect to continue to observe the difference in the future.41

Comparing Income Inequalities

An argument sometimes levied against free markets is that, 

without the government controlling the economy, the rich 
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can exploit the poor and corporations can monopolize indus-

tries, thereby taking advantage of consumers and workers.42 

The result, so the argument goes, will be increased income 

inequality. We can attempt to address this concern by divid-

ing the countries of the world into two groups: those with 

more free markets and those with less free markets.

We’ll use the Fraser Institute’s Economic Freedom of the 

World Index.43 Each year, Fraser looks at the degree of gov-

ernment control in a country’s markets by measuring things 

such as the fraction of spending controlled by government, 

the level of taxation, the progressivity of taxation, the magni-

tude of welfare programs, and other factors. Fraser then com-

bines these measurements into a single number—a “freedom 

index”—that represents the degree of economic freedom in 

the country. A higher score (on a scale of 1 to 10) indicates 

a greater degree of economic freedom. One factor Fraser 

does not consider in creating the freedom index is income 

inequality.

Let us take the 116 reporting countries and look at (pick-

ing a round number) the 50 that ranked highest for economic 

freedom and the 50 that ranked lowest. We’ll leave out the 

middle 16 countries because, being in the middle, they are 

likely to be more similar to each other than either to the 50 

more free countries or to the 50 less free countries. For each 

106656_Ch03_R2.indd   73 11/9/17   8:56 PM



74

UNDERSTANDING STATISTICS: AN INTRODUCTION

country, the Central Intelligence Agency reports a measure 

of income inequality called the Gini coefficient.44 The Gini 

coefficient ranges from 0 (perfect income equality—i.e., 

each person has the same income) to 100 (perfect income 

inequality—i.e., one person has all the income and the rest 

have nothing). The Gini coefficients for the countries are 

shown in Figure 21 (called a bar chart).

Figure 21 demonstrates the problem of comparing stochas-

tic variables. Some countries on the left show less inequality 

than do some countries on the right, and vice versa. A proper 

Figure 21

Freedom Index Gini Coefficients

Source: Gini Index, World Bank (http://data.worldbank.org/indicator/SI.POV.GINI); 
Economic Freedom of the World, Fraser Institute (http://www.freetheworld.com).
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comparison of the less economically free countries with the 

more economically free countries requires that we know the 

average and standard deviation of each group. The Gini coef-

ficients in the less economically free countries average 42.5 

with a standard deviation of 7.5. The Gini coefficients in the 

more economically free countries average 35.8 with a stan-

dard deviation of 9.4. The p-value for the difference in the 

two averages is 0.0002. That is well below the typical cut-

off of 0.05.45 Therefore, we conclude that the difference in 

the average Ginis across the two groups is likely not due to 

random chance.

This difference of means test doesn’t tell us anything about 

causality. It is possible that increased economic freedom causes 

less inequality. It is possible that less inequality causes more 

economic freedom. It is also possible that increased economic 

freedom and less inequality are jointly caused by something 

else. What the test does tell us is that, whatever the causality, 

the differences in average Gini coefficients we observed—one 

group with an average 42.5 and the other with an average 

35.8—are likely due to something other than random chance.

The ultimate purpose of statistical analysis is to enable us 

to predict or influence the future. For example, we want to 

understand the relationship between economic freedom and 

peace because we’d like more peace, and if economic freedom 
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yields more peace, then perhaps we should encourage more 

economic freedom. We want to know whether the probabil-

ity of dying is greater in a Boeing or in a Concorde because 

we want fewer people to die. We want to know who pays 

the most taxes because we want to adjust tax rates so that 

everyone pays a fair share. We want to know whether unem-

ployment is greater in Pennsylvania or in California because 

we want to know where we have a better chance of starting a 

successful business. Comparing stochastic measures such as 

fatality rates, tax rates, and unemployment rates is a first step 

in using statistics to make decisions. The next step is finding 

relationships among various stochastic measures.
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4

How Do We Know  

When One Thing  

Affects Another?

More sophisticated than simply comparing the magnitudes 

of two variables is asking whether changes in one variable are 

related to changes in another variable. Comparing averages 

only tells us whether one variable is (on average) larger than 

the other. A more sophisticated procedure, called regression 

analysis, tells us how much one variable changes as another 

changes.

Suppose we want to know the relationship between a car’s 

speed and the driver’s reaction. For simplicity, let’s assume 

that it takes the driver one second to react to an event. 
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For example, if a ball bounces into the street, one second 

elapses between the time the ball comes into view and when 

the driver depresses the brake. If the car is traveling 20 miles 

per hour (mph), then during that one second, the car will 

travel 29 feet. That’s about two car lengths. If the car is trav-

eling 40 mph, then the car will have traveled 59 feet by the 

time the driver hits the brakes. This relationship between the 

car’s speed and how far it will travel before the driver hits the 

brakes is shown in Figure 22.

We can also represent the line in Figure 22 as an equation:

Distance Traveled 5 1.467 3 Speed

Figure 22

Regression Analysis: Distance Traveled at Various Speeds
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We call this a regression equation. The graph is better for 

providing a visually intuitive representation of the relation-

ship. The equation is better as a tool for performing calcula-

tions concerning the relationship. But both communicate the 

same thing: the relationship between speed and distance.

We built the relationship shown in Figure 22 on the 

assumption that it takes the driver one second to react. In 

reality, it takes drivers different times to react depending on 

what else is going on in the car and on the road, how tired the 

driver is, and many other factors. Suppose we repeat the anal-

ysis, but this time instead of assuming that it takes the driver 

one second to react, we use an actual driver and measure his 

reaction time.

Figure 23 shows the actual distance a car travels between 

the time a real driver sees the ball and when he hits the 

brakes. Notice that the dots aren’t arranged in a neat line as 

they are in Figure 22. That’s because, for many reasons, a 

real driver doesn’t react in exactly one second every single 

time. Sometimes his reaction time is faster and sometimes 

it is slower. Figure 23 shows two things. First is the aver-

age trend. The trend (depicted by the straight line—called 

a trend line or regression line) is the underlying relationship 

between the driver’s speed and distance traveled, on average. 

Second are deviations from the trend. Those are shown by the 
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distance between the dots and the line. For example, when 

the driver was going 60 mph, he reacted slower than, on aver-

age, he reacted at other speeds. We know this because the 

dot at 60 mph is above the trend line, indicating that it took 

the driver longer than expected to react. When the driver 

was going 80 mph, he reacted faster than, on average, he did 

at other speeds. We know this because the dot at 80 mph is 

below the trend line.

Regression analysis takes data like that shown in Figure 23 

and divides it into two parts: a deterministic component and 

Figure 23

Regression Analysis: Actual Distance Traveled at  

Various Speeds

120

100

80

806040200 100

60

40

20

0

140

D
is

ta
nc

e 
T

ra
ve

le
d 

(f
ee

t)

Speed (mph)

106656_Ch04_R3.indd   80 11/28/17   4:03 AM



81

How Do We Know When One Thing Affects Another?  

a stochastic component. The deterministic component, as 

represented by the trend line, shows the average relationship 

between two variables. The stochastic component, as repre-

sented by deviations of individual data points from the trend 

line, shows the influence of random events on the relationship.

The regression equation that accompanies Figure 23 is

Distance 5 1.483 3 Speed 1 u

The first part of the equation (Distance 5 1.483 3 Speed) 

is the deterministic portion of the relationship and corre-

sponds to the regression line. The deterministic portion 

tells us the average relationship between the driver’s speed 

and reaction time. For example, according to this equation, 

if the driver is traveling at 30 mph, we can expect (on aver-

age) the driver to travel 1.483 3 30 5 44.49 feet between the 

time he sees the ball and the time he hits the brakes. Now, 

while this is what we can expect on average, we know that 

random events will cause the driver’s actual reaction time to 

deviate from the average. Sometimes he’ll stop more quickly 

and sometimes more slowly. This random component is rep-

resented by u in the regression equation. This term, called the 

error term, represents the random deviations of the dots from 

the line. The purpose of regression analysis is to take data 

composed of both deterministic and stochastic components 
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and to filter out the stochastic component. With the stochas-

tic component filtered out, what’s left is the underlying deter-

ministic relationship.

For example, let’s compare economic freedom and gender 

inequality. For each country, the United Nations Develop-

ment Programme compares women’s earnings, life expectan-

cies, and educations with those of men and produces a gender 

inequality index. The gender inequality index ranges from 

0 to 1. A value of 0 indicates that, for a given country, the 

quality of life for the average women is equal to that of the 

average man. A higher gender inequality index indicates that 

the quality of life for the average woman is not equal to that 

of the average man. The United Nations does not consider 

economic freedom when constructing its gender inequal-

ity index, and the Fraser Institute does not consider gender 

inequality when constructing its economic freedom index. 

So, if economic freedom is unrelated to gender inequality, 

the data should show no relationship. A simple comparison 

of averages shows that countries that are more economically 

free (those on the right side of Figure 24) have a lower aver-

age gender inequality index than do countries that are less 

economically free (those on the left side).

All that Figure 24 tells us is that less free countries 

experience more gender inequality and more free countries 

106656_Ch04_R3.indd   82 11/28/17   4:03 AM



83

How Do We Know When One Thing Affects Another?  

experience less gender inequality. A more interesting ques-

tion is, “By how much does gender inequality fall as economic 

freedom rises?” This question is not about the magnitudes of 

the variables, but about the relationship between them. Spe-

cifically, we want to know what the relationship is between 

gender inequality and economic freedom.

Simple Regression

Regression analysis quantifies the relationship by first assum-

ing that whatever relationship might exist between gender 

Figure 24

Average Gender Inequality and Average Economic Freedom

Source: Gender Inequality Index, United Nations Development Programme 
(http://hdr.undp.org/en/content/gender-inequality-index-gii); Economic Freedom 
of the World, Fraser Institute (http://www.freetheworld.com).
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inequality and economic freedom is linear.46 The equation 

takes this form:

Gender Inequality 5 a 1 b (Economic Freedom) 1 u

where a and b are numbers that we’ll estimate using the 

data, and u is a placeholder that represents all factors other 

than economic freedom that influence gender inequality. The 

error term, u, captures all the randomness that exists in the 

relationship between inequality and freedom. If the relation-

ship between inequality and freedom were deterministic (like 

the relationship between air speed and air pressure), then the 

error term would always be zero. If there was no relationship 

between inequality and freedom, then b would be zero, and 

the relationship would be driven entirely by the error term. In 

other words, the relationship would be completely random. 

We call this simple regression because we are showing Gen-

der Inequality as a function of only one thing—Economic 

Freedom.

To see how regression analysis works, let’s first look at 

the data. If we measure the economic freedom data on the 

horizontal axis and the gender inequality data on the vertical 

axis, we get Figure 25 (called a scatter plot).

The scatter plot in Figure 25 provides more information 

than the bar chart in Figure 24. The bar chart simply shows 
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the countries in order of economic freedom—those with less 

economic freedom on the left, and those with more on the 

right. The height of the bars represents the degree of gender 

inequality present in each country. What the bar chart doesn’t 

tell us is by how much inequality changes with a change in 

economic freedom.

The scatter plot improves on the bar chart by compar-

ing both the degree of gender inequality and the amount 

Figure 25

Gender Inequality vs. Economic Freedom Index,  

1995–2011

Source: Gender Inequality Index, United Nations Development Programme 
(http://hdr.undp.org/en/content/gender-inequality-index-gii); Economic Freedom 
of the World, Fraser Institute (http://www.freetheworld.com).
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of economic freedom in each country. In the scatter plot in 

Figure 25, each dot represents a country. The dot’s horizontal 

location indicates the country’s economic freedom measure 

(further to the right is “more free,” further to the left is “less 

free”), and its vertical location indicates the country’s gender 

inequality measure (further up is “less equal,” further down 

is “more equal”).

The scatter plot illustrates the important difference between 

an anecdote and a trend. Compare Zambia and Ukraine. 

Zambia experiences more economic freedom than Ukraine 

and it suffers more gender inequality than Ukraine. If we were 

to rely on anecdotes, we might point to these two countries 

as examples that economic freedom yields gender inequality. 

But, since the relationship between economic freedom and 

gender inequality is (at least in part) due to random events, 

we would be wrong in drawing such a conclusion from only 

two data points. With only two data points, we have no way 

of knowing whether the difference we see is due to something 

deterministic or to something stochastic. Instead, if we step 

back and look at all the dots at the same time, we see a pat-

tern. On average, the dots fall as you move from the top left 

to the bottom right of the graph.

In Figure 26, the straight line that approximates the data 

is called a trend line or a regression line. We obtain the line 

106656_Ch04_R3.indd   86 11/28/17   4:03 AM



87

How Do We Know When One Thing Affects Another?  

by selecting a and b in the earlier equation so that (roughly 

speaking) the line comes as close as possible to as many dots 

as possible while remaining a straight line.47

For this data set, the values of a and b that cause the line to 

come closest to the most dots are a 5 1.38 and b 5 20.15. 

These values are determined by statistical formulas compli-

cated enough to require a computer or statistical calculator 

(and therefore beyond the scope of this discussion).

Figure 26 

Trend Line: Gender Inequality Compared with Economic 

Freedom Index, 1995–2011

Source: Gender Inequality Index, United Nations Development Programme 
(http://hdr.undp.org/en/content/gender-inequality-index-gii); Economic Freedom 
of the World, Fraser Institute (http://www.freetheworld.com).

0.7

0.6

0.5

8765

Economic Freedom Index (1995–2011)

4 9

0.4

0.3

0.2

0.1

0

0.9

0.8

G
en

de
r I

ne
qu

al
ity

 (1
99

5–
20

11
)

106656_Ch04_R3.indd   87 11/28/17   4:03 AM



88

UNDERSTANDING STATISTICS: AN INTRODUCTION

Regression involves two steps. First, we assume that the 

relationship between two data sets is linear:

Gender Inequality 5 a 1 b (Economic Freedom) 1 u

The variable on the left (Gender Inequality) is called the 

outcome variable. The variables on the right (there may be 

more than one, though here we have Economic Freedom 

only) are called factor variables.48 We use a statistical algo-

rithm to estimate values for a and b. This gives us the esti-

mated regression equation:

Estimated Gender Inequality 5  

1.38 2 0.15 (Economic Freedom)

Notice two things. First, the error term, u, has disappeared 

in the estimated regression equation. Second, we have replaced 

“Gender Inequality” with “Estimated Gender Inequality.” 

The u term represents all things other than Economic Free-

dom that influence Gender Inequality. When we estimate the 

regression equation, we filter out those other influences. What 

remains is the relationship between Economic Freedom and 

what Gender Inequality would be if the other influences were 

not present. We call this Estimated Gender Inequality.

For example, consider the four countries in Table 4, each of 

which has an Economic Freedom index of 6.15.
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Table 4. Economic Freedom and Gender Inequality, 1995–2011, Four 
Examples

Country Economic Freedom Gender Inequality

Iran 6.15 0.46

Vietnam 6.15 0.27

Bolivia 6.15 0.52

Mauritania 6.15 0.61

Source: Gender Inequality Index, United Nations Development Programme 
(http://hdr.undp.org/en/content/gender-inequality-index-gii); Economic 
Freedom of the World, Fraser Institute (http://www.freetheworld.com).

The table also gives each country’s Gender Inequality mea-

sure. Even though the countries all have the same Economic 

Freedom index, their Gender Inequality measures differ 

because Economic Freedom is not the only factor that influ-

ences Gender Inequality. Those other factors are part of the 

error term, u, in the regression equation.

If we plug the countries’ Economic Freedom index into our 

estimated regression equation, we get:

Estimated Gender Inequality 5  

1.38 2 0.15 3 6.15 5 0.46

Our regression analysis says that, after filtering out the 

effects of things other than Economic Freedom, we should 

expect each of these four countries to have a Gender Inequal-

ity of 0.46. That is, we estimate that Gender Inequality should 
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be 0.46 when Economic Freedom is 6.15. The difference 

between the Gender Inequality and the Estimated Gender 

Inequality is an estimate of the regression error (called the 

residual). The residual, shown in Table 5, is the difference 

between the Gender Inequality we observed and the portion 

of Gender Inequality we estimate is attributable to Economic 

Freedom.

We now know enough to talk about the nature of the rela-

tionship between our outcome and factor variables. There are 

three parts to the relationship: significance, magnitude, and 

precision. The significance of the relationship indicates the 

likelihood that the apparent relationship between two vari-

ables is deterministic rather than stochastic.49 The magnitude 

of the relationship indicates by how much one variable 

changes when another changes. The precision indicates the 

Table 5. Economic Freedom, Gender Inequality, Estimated Gender 
Inequality, and Residual, 1995–2011

Country Economic Freedom Gender Inequality Residual

Iran 6.15 0.46 0.00

Vietnam 6.15 0.27 0.19

Bolivia 6.15 0.52 20.06

Mauritania 6.15 0.61 20.15

Source: Gender Inequality Index, United Nations Development Programme 
(http://hdr.undp.org/en/content/gender-inequality-index-gii); Economic 
Freedom of the World, Fraser Institute (http://www.freetheworld.com).
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proportion of variation in the values of a variable that can be 

explained by the variations in the values of other variables.

For example, consider the relationship between air pres-

sure and the diameter of the container holding the air. In a 

balloon, the internal air pressure and the balloon’s diameter 

move together (Figure 27). We say that the pressure/diameter 

relationship is significant: the diameter rises with air pressure 

not because of random chance but because of deterministic 

physical properties. The same is true for the air pressure in 

bar
psi

bar
psi

Figure 27

A Balloon Expanding
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a tire and the tire’s diameter. However, a given increase in 

a tire’s air pressure will result in a much smaller diameter 

increase than will the same increase in a balloon’s air pres-

sure. Although both relationships are significant, the magni-

tude of the pressure/diameter relationship in the tire is small 

while the magnitude in the balloon is large. The fact that the 

balloon’s diameter changes by a large amount while the tire’s 

changes by a small amount is attributable to differences in the 

materials used to make each and to the thickness of the walls 

of each. These additional factors—material composition and 

wall thickness—also affect the diameter and so reduce the 

precision of the pressure/diameter relationship.

A useful tool for describing precision, or how closely the esti-

mated regression equation fits the data, is the R2 (pronounced 

“R-squared” and also called the squared multiple correla-

tion coefficient). R2 measures what fraction of variations in 

the outcome variable is explained by variations in the factor 

variables. For the data in Figure 26, the R2 is 0.44, meaning 

that 44 percent of the variation in Gender Inequality can be 

attributed to variations in Economic Freedom.

Upon seeing the scatter plot in Figure 26, people who 

know a little bit about statistics might ask, “What’s the R2?” 

They are thinking that a low R2 means that the relation-

ship between Economic Freedom and Gender Inequality 
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isn’t significant. That is not a correct interpretation of R2. 

The measure of the significance of the relationship between 

Economic Freedom and Gender Inequality is the p-value. A 

lower p-value indicates a stronger relationship. The rule of 

thumb is that p-values less than 0.05 indicate a relationship 

strong enough to be noteworthy. For our data set, the p-value 

is 0.000, indicating a highly significant relationship between 

Economic Freedom and Gender Inequality.50

The R2 measures the precision of the relationship. For our 

data set, 44 percent of the variation in Gender Inequality can 

be attributed to variations in Economic Freedom. That means 

the remainder, 56 percent of the variation in Gender Inequal-

ity, is due to factors we have not considered in our equation. 

Finally, the value of the coefficient (also called the slope, or 

slope coefficient) attached to Economic Freedom, 20.15 in 

the estimated regression equation, measures the magnitude 

of the effect of Economic Freedom on Gender Inequality. On 

average, a one unit increase in Economic Freedom is asso-

ciated with a 0.15 unit decline in Gender Inequality. (See 

Table 6.)

To remember the difference between significance (p-value), 

magnitude (coefficient value), and precision (R2), consider 

the following analogy. You and your friend are at a party. You 

are on one side of a crowded room and your friend is on the 
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other side. You yell to your friend, “Help me find my phone!” 

The reason you yell the words is to attempt to elicit help. That 

is, you are attempting to establish a relationship between your 

words and your friend’s actions. We can use what we know 

about significance, magnitude, and precision to describe this 

relationship.

Because the room is crowded and noisy, your friend hears 

not just your voice but also the voices of everyone else in the 

room. Of all the sound that reaches your friend’s ear, the per-

centage that comes from your voice—the precision—is mea-

sured by R2. The more quiet the other people in the room are 

Table 6. Relationship Attributes

Relationship  
Attribute Description Statistica

Significance The likelihood that an 
apparent relationship 
between variables is 
deterministic.

p-value

Magnitude The amount by which one 
variable changes when 
another changes.

Slope coefficient

Precision The proportion of 
variation in the outcome 
that can be explained by 
variations in the factors.

R2

aA lower p-value indicates greater significance. A higher (in absolute value) 
slope coefficient indicates greater magnitude. A higher R2 indicates greater 
precision.

106656_Ch04_R3.indd   94 11/28/17   4:03 AM



95

How Do We Know When One Thing Affects Another?  

compared to you, the higher the R2 is. The more noisy the 

other people in the room are compared to you, the lower the 

R2 is. Just because your friend can hear your voice, doesn’t 

mean that he can make out what you are saying. The extent 

to which your friend can not just hear your voice but also can 

make out the words you are saying—the significance—is 

measured by the p-value. The better able your friend is to 

make out your specific words, the lower the p-value is. The 

less able your friend is to make out what you are saying, the 

higher the p-value is. Finally, the fact that your friend hears 

your voice and understands your words doesn’t mean that 

your friend is going to get up and help you find your phone. 

The extent to which your words spur your friend to action—

the magnitude—is measured by the slope coefficient. The less 

apt your friend is to take action in response to your plea, the 

closer to zero is the slope coefficient.

All three attributes of a statistical relationship are import-

ant, though for different reasons. If you want to know 

whether smoking reduces your life expectancy, you care about 

the significance (the p-value) of the relationship between 

smoking and longevity. If you want to know by how much 

your life expectancy declines on average when you smoke one 

more cigarette per day, you care about the magnitude (the 

slope coefficient) of the relationship. If you want to know how 
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much of your life expectancy is due to smoking versus other 

life choices, you care about the precision of the relationship 

(the R2).

Multiple Regression

We use multiple regression to estimate the relationship 

between an outcome variable and more than one factor vari-

able. The benefit of multiple regression is that it can filter out 

the effects of multiple factor variables simultaneously. For 

example, suppose you are responsible for scheduling trucks 

for a trucking company. Each truck is an expensive piece of 

equipment, so you don’t want trucks sitting idle. On the other 

hand, when a customer calls you asking you to make a deliv-

ery, you need to be able to tell the customer when you’ll have 

a truck available. To schedule the trucks well, you need to be 

able to predict how long each truck will be gone making deliv-

eries. How long a truck is gone depends on many things: the 

weather, traffic conditions, how far the truck has to travel, how 

many stops the truck needs to make, driver skills, and so on. 

Suppose that you have data on two of these things: how many 

miles a truck needs to travel (roundtrip) to make its deliveries 

and how many stops it will need to make to unload deliveries. 

You’ve recorded this data along with how long the trucks were 

gone (Table 7).
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Table 7. Truck Scheduling

Travel Time 
(Hours) Miles Traveled Stops

11.3 500 4

  6.8 250 3

10.9 500 4

  8.5 500 2

  6.2 250 2

  8.2 400 2

  9.4 375 3

  8.0 325 4

  9.6 450 3

  8.1 450 2

You will be sending a truck to make two stops. Roundtrip, 

it will travel 325 miles. You need to estimate how long the 

truck will be gone. How do you do this?

One reasonable approach is to notice that the trucks in your 

data set logged 87 hours total travel time, 4,000 total miles, 

and 29 total stops. On average, your trucks take 0.022 hours 

per mile and 3 hours per stop.

Average hours per mile 5 
87 hours

5 0.022 hours per mile
4,000 miles

Average hours per stop 5
87 hours

5 3 hours per stop
29 stops
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If your trucks average 0.022 hours per mile, then a truck 

traveling 325 miles should be gone 0.022 3 325 5 7.15 hours. 

That seems straightforward. Of course, this ignores the stops. 

If your trucks average 3 hours per stop, then a truck mak-

ing two stops should be gone 3 3 2 5 6 hours. But, that 

ignores miles traveled. We could combine the two measures. 

If a truck traveling 325 miles should be gone 7.15 hours and a 

truck making two stops should be gone 6 hours, then a truck 

that travels 325 miles and makes two stops should be gone 

7.15 1 6 5 13.15 hours. But, this doesn’t seem right either. 

It could be that the more stops a truck makes, the more miles 

it would have to travel. If this were true, then adding the two 

numbers would double count the effects of miles and stops 

on time. We could average the two numbers (7.15 hours and 

6 hours) to get 6.58 hours, but that seems arbitrary.

Notice the problem. It is not clear how we should handle 

these two pieces of information: hours per mile, and hours 

per stop. If we use only one of the measures, we unrealisti-

cally ignore the other. But if we add them together, we get a 

number that may be inflated because of double counting, and 

averaging them seems arbitrary. The underlying problem isn’t 

simply that one set of averages underestimates and another 

overestimates. The problem is that the averages aren’t even 

measuring what we want to know. What we want to know is 
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not the average number of hours it takes to make a stop and 

the average number of hours it takes to travel a mile, but how 

much time an additional stop or an additional mile will add 

to the truck’s time away. These things sound similar, but they 

can be very different.

For example, suppose it takes one hour to make one dozen 

cookies. That’s an average of 5 minutes per cookie. How 

long would it take to make two dozen cookies? If we look 

at the average measure of 5 minutes per cookie, we’d con-

clude that two dozen cookies should take two hours. But 

clearly that’s not right. It might take a little longer to make 

two dozen cookies than to make one dozen, but it won’t 

take twice as long. If you’re already making one dozen cook-

ies you don’t then start over again from the beginning for 

the second dozen. If you can, you make all two dozen cook-

ies in one batch. What we want to know is not the average 

time it takes to make a dozen cookies, but the extra time 

required to make an additional dozen cookies. The extra 

time required to bake one more cookie is called the mar-

ginal effect of a cookie on time. The average time required 

to bake all the cookies is called the average effect of cook-

ies on time. Average effects look backward by showing the 

combined effect of many occurrences of a factor (cookies) 

on an outcome (time). Marginal effects look forward by 
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showing the effect of one more occurrence of a factor on 

the outcome.

To find the marginal effect of miles on time and the mar-

ginal effect of stops on time, we need to filter out the effect 

of miles on time from the effect of hours on time. Multiple 

regression does this. We can combine our three measures into 

a single regression equation:

Time 5 a 1 b (Miles) 1 c (Stops) 1 u

Time is the variable we are attempting to explain, so it 

is the outcome variable. We are using Miles and Stops to 

explain Time, so Miles and Stops are factor variables. Feed-

ing the data into statistical software generates the following 

estimated regression equation:

Estimated Time 5 1.13 1 0.01 (Miles) 1  

0.92 (Stops)

The R2 for the estimated regression line is 0.90. That means 

variations in Miles and Stops (together) account for 90 per-

cent of the variations in Time. The remaining 10 percent of 

the variation in Time is due to things other than Miles and 

Stops—for example, variations in traffic conditions, weather 

conditions, and so forth. The slope coefficient for Miles has 

a p-value of 0.000.51 The slope coefficient for Stops has a 
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p-value of 0.004. Both of these are well below the 0.05 cutoff, 

so we would conclude that both Miles and Stops have signif-

icant effects on Time.

Finally, look at the magnitude of the slope coefficients. In 

a multiple regression equation, the slope coefficients are the 

marginal effects. That means they show the effect of one fac-

tor on the outcome after filtering out the effects of the other 

factors on the outcome. For example, the results tell us that 

each additional stop adds 0.92 hours to the travel time after 

accounting for the effect of miles on travel time. Similarly, 

each additional mile traveled adds 0.01 hours to the travel 

time after accounting for the effect of stops on travel time.

Our goal was to predict the travel time for a truck traveling 

325 miles and making two stops. Using our estimated regres-

sion equation, we have our estimate:

Estimated Time 5 1.13 1 0.01 3 325 1 0.92 3 2 5 

6.22 hours

The multiple regression equation accounts for both the 

effect of miles on time and the effect of stops on time but 

filters out overlap in the two effects so that there is no double 

counting.

But what about that 1.13? That is the estimate for a, which 

is called the intercept. The intercept is the time we expect a 
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truck to be gone that travels zero miles and makes zero stops. 

Here is the equation:

Estimated Time 5 1.13 1 0.01 3 0 1 0.92 3 0 5 

1.13 hours

But a truck that travels no miles and makes no stops doesn’t 

make sense. How do we interpret this calculation? It turns 

out that 1.13 is a fixed time that is independent of miles or 

stops. Think of it as “overhead”—a constant amount of time 

that is common to all trips, regardless of the number of miles 

or stops. For example, before setting out on each trip the 

driver may need to check the oil in his engine, the air pres-

sure in his tires, and that the load is securely strapped down. 

All of those activities eat up time even though the truck has 

traveled no miles and made no stops. The intercept measures 

this overhead.

Experimentation and Control

In a laboratory setting, botanists test for the effects of chemi-

cals on plants by growing two groups of identical plants under 

(nearly) identical conditions, with just one deliberately chosen 

exception. One group of plants is exposed to a chemical and 

the other is not. If all other conditions (water, air, tempera-

ture, sunlight, etc.) are the same for the two groups of plants 
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and the plants that are exposed to the chemical die, then the 

botanists can conclude that the chemical is poisonous to the 

plants.

Where humans are involved, controlled experimentation is 

often not possible. But we can use multiple regression in an 

attempt to mimic the effects of controlled experimentation. 

Because a multiple regression filters out the effects of factors 

on the outcome, if we have enough observations, we can obtain 

results similar to those from controlled experimentation.

For example, suppose we want to know whether differences 

in tax rates across counties in the United States encourage 

people to move. Three reasonable arguments can be made. 

First, people may want to avoid high tax rates, and to that end 

move out of counties with higher tax rates into counties with 

lower tax rates. Second, people may desire the government 

services that can be provided with more tax revenue, in which 

case they will tend to move out of counties with lower tax 

rates and into counties with higher tax rates. Third, tax rates 

may be relatively unimportant, and people may base their 

decisions about moving on other factors, such as employment 

prospects, climate, and crime.

We cannot conduct a laboratory experiment because we 

cannot control extraneous factors that might influence peo-

ple’s decisions, such as employment, climate, and crime. Even 
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if we could, unlike the plants, people aren’t the same. Some 

people will care more about crime than taxes. Some people 

will care more about taxes than climate. Some people will 

care more about employment than crime. Multiple regression 

solves these problems by filtering out the effects of extraneous 

factors and filtering out random differences in individuals.

One such study looked at the relationship between the top 

marginal income tax rate and the number of high-income 

households (households with annual incomes of $200,000 or 

more) as a fraction of all households.52 Suppose the authors 

estimated this regression equation:

High-Income Households 5 a 1 

b (Top income tax rate) 1 u

Suppose they found a significant negative relationship between 

the top income tax rate and the number of high-income house-

holds. That is, they found that when the income tax rate was 

higher, there were fewer high-income households. Does that 

mean high-income households are avoiding high-tax counties? 

Possibly. But such a finding would raise reasonable questions. It 

could be that the income tax rate affected the number of high-in-

come households. But it could also be that high-income house-

holds and the income tax rate were both affected by some other 

unseen factor. For example, counties with colder climates might 
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need higher taxes to pay for road maintenance. Meanwhile, 

high-income households can afford to live wherever they want 

and may choose to live in warmer climates. In this example, the 

income tax rate may have no effect on the number of high-in-

come households. But because both variables are affected by the 

weather, the two appear to be related in the data.

If we could conduct a controlled experiment, we would place 

high-income households in two counties that were in every 

way identical except that one county had a higher income tax 

and the other had a lower income tax, and then we’d watch to 

see how many of the high-income households moved between 

the two counties. But because we can’t impose experimental 

controls, we are left open to criticisms like the “cold climate” 

argument discussed earlier.

Multiple regression comes to the rescue by statistically 

factoring out the effects of the factors we can’t control. The 

authors in the study of high-income households estimated the 

following multiple regression model:

Number of High-Income Households 5 a 1 

b (Top income tax rate) 1 c (Top income bracket cutoff)

		  1 d (Property tax rate) 1 e (Sales tax rate)

		  1 f  (Unemployment rate) 1 g (Crime rate)

		  1 h (Mean temperature) 1 u
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The results from this more complicated regression model 

show the relationship between the top income tax rate and 

the number of high-income households after filtering out the 

effects of income bracket definitions, property taxes, sales 

taxes, unemployment, crime, and the average temperature on 

the number of high-income households. After filtering out 

the effects of all of those things, the data still showed that 

higher income tax rates were associated with lower numbers 

of high-income households.

We’ve seen how probabilities, comparisons of averages and 

standard deviations, and regression can be used to give us 

insights into stochastic relationships—insights that can’t be 

seen by looking at specific examples. But understanding sta-

tistical results is contingent on understanding the measures 

that feed into the statistical results. A statistical result such 

as “cats, on average, are larger than dogs” doesn’t ring true 

if by “dogs” and “cats” we mean domesticated dogs and cats. 

But it makes more sense if by “dogs” and “cats” we mean 

undomesticated dogs and cats (e.g., wolves, foxes, lions, and 

tigers). The definitions of the stochastic variables become 

very important in understanding the nature of particular 

stochastic relationships.
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What Do Economic 

Measures Tell Us?

The media often quote economic statistics: GDP, unemploy-

ment, inflation. But most people who know what these terms 

mean aren’t aware of important nuances. For example, as dis-

cussed earlier, unemployment is not the opposite of employment. 

The existence of a third category, nonemployment, means it is 

possible for the unemployment rate to fall and yet for more people 

to be out of work. Nuances like this can result in people misin-

terpreting the information that these economic statistics provide.

Measuring Production

Gross domestic product (GDP) is the most frequently cited 

measure of the strength of an economy. We associate a rising 
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GDP with more employment and higher incomes. When 

economists and politicians talk about economic stimula-

tion or the economy slowing down, they are usually talking 

about changes in GDP. GDP measures the market value of 

all final goods and services produced in a country in a given 

year. By “final,” economists mean goods and services that 

are not used in the production of other goods and services. 

For example, when you buy a car for your personal use or 

electricity for your home, you are purchasing a final good or 

service. But a cleaning service that purchases a car to trans-

port its employees and cleaning supplies, or a business that 

purchases electricity to run its machinery or light its office, 

has purchased intermediate goods. Whether a good or ser-

vice is “final” or “intermediate” depends on the use to which 

it is put.

The reason GDP ignores intermediate products is that 

counting them would result in double counting of pro-

duction. For example, suppose a car manufacturer spends 

$30,000 on labor, materials, energy, overhead, and other 

factors producing a car that it sells for $31,000 to a dealer. 

The manufacturer took $30,000 worth of inputs and trans-

formed them into output worth $31,000. How do we know 

the output is worth $31,000? We know because someone 

(the dealer) willingly paid $31,000 for it. The manufacturer 
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took $30,000 worth of inputs and added $1,000 worth of 

value. Suppose the dealer then sells the car to a consumer 

for $33,000. The dealer took something worth $31,000 and 

transformed it (by providing transportation from the factory, 

storage until purchased, and help to the consumer in choos-

ing which car to buy, and completing the paperwork) into 

something worth $33,000. The dealer added $2,000 worth 

of value. When we add to GDP the $33,000 the consumer 

paid for the car, we are capturing the value added at each 

stage in the production process going all the way back to the 

raw materials. The values of the final goods include the val-

ues of all the inputs that went into bringing the final goods 

to the consumer.

GDP excludes a significant amount of production, largely 

because the production can’t be measured. Work people do 

at home—cutting their grass, cleaning their homes, wash-

ing their cars, watching their kids—is productive work. It 

should be included in GDP. The fact that people are doing 

these things for themselves or their families is irrelevant; 

they are nonetheless producing goods and services. How-

ever, because no money changes hands, the value of these 

goods and services can’t be measured and included in GDP. 

GDP is calculated from tax and payroll records. If no money 

changes hands, no record is generated. For the same reason, 
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the production of illegal goods and services (e.g., recreational 

drugs) is excluded, as is the illegal production of otherwise 

legal goods and services (e.g., work done “under the table”).

The point of GDP is to measure production within a coun-

try, so goods and services produced outside the country are 

not counted. And because the purpose is to measure produc-

tion, money that changes hands for reasons other than pro-

duction isn’t counted either. For example, transfer payments 

(money the government gives to people) and purchases of 

stocks and bonds don’t represent production and so aren’t 

included in GDP.

So, GDP does not count all economic activity, just eco-

nomic activity involving final products. The assumption is 

that increased economic activity in final products implies 

increased economic activity up the supply chain. An alternate 

measure, gross output (GO), counts sales of both final and 

intermediate goods and services. Because of double counting, 

GO isn’t useful for measuring the total value of goods and 

services an economy produces, but it is more useful than GDP 

for measuring economic activity because it measures all sales 

in the economy.

A larger problem with both measures is that they don’t 

distinguish between a dollar spent on apple pies and a dol-

lar spent on mud pies. For example, politicians are quick to 
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point out that GDP rises when the government spends more 

money. But that is true merely by definition. It ignores the 

fact that when GDP rises because of government spending, 

the additional goods and services produced are goods and ser-

vices that politicians and bureaucrats have selected, whereas 

when GDP rises because of private spending, the additional 

goods and services produced are goods and services that con-

sumers have selected. In other words, GDP counts a billion 

dollars of smart phones as being equivalent to a billion dollars 

of smart bombs. But the former tends to generate far more 

consumer satisfaction than the latter.

In the end, we can say in very general terms that an increase 

in GDP (or GO) indicates that the economy is expanding. 

Often, but not always, that’s good: it can be good if it means 

that people are producing more things that people want. 

But it can be bad if the things being produced are things 

we’d rather not have. For example, a decline in energy prices 

will spur an increase in GDP as it becomes cheaper to pro-

duce and transport goods. That increase in GDP is good 

because it means that people can buy more things they want 

and, generally, buy them at lower prices. But government 

spending on a war will also spur an increase in GDP as busi-

nesses ramp up production of goods for the war effort. Put-

ting aside the noneconomic circumstances surrounding the 
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war, this increase in GDP isn’t good because the economy 

is producing more things that people would rather not have 

(such as more tanks and fighter aircraft) in exchange for 

fewer things people would rather have (such as more cars 

and commercial aircraft).

Measuring Quality of Life

Both GDP and GO measure sales. But people’s quality of 

life is influenced by more than simply what they buy. Health 

and longevity matter, as does education. Poverty matters and, 

at least in some instances, inequality matters. The United 

Nations Development Programme (UNDP) compiles several 

indices that attempt to measure quality of life across coun-

tries. Chief among them is the Human Development Index 

(HDI).53 The UNDP combines measures of income, educa-

tion, and longevity and assigns each country an HDI that 

ranges from 0 (extremely low quality of life) to 1 (extremely 

high quality of life). Figure 28 shows the HDIs for 2013.

In 2013, HDIs ranged from a low of 0.34 for Niger to a high 

of 0.94 for Norway. In general, European countries appear to 

score higher on the HDI—the lowest is Bulgaria at 0.78. But 

many non-European countries score better than Bulgaria, 

including Libya, Uruguay, and Cuba. In fact, more than half 

of the countries with HDIs in the range of 0.78 and 0.94—the 
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low and high for European countries—aren’t European coun-

tries. This point raises a statistical question: Do European 

countries score better on the HDI than non-European coun-

tries? The question is simple to ask but not simple to answer 

because there is no “European” HDI nor a “non-European” 

HDI. Some individual European HDIs are greater than some 

individual non-European HDIs and vice versa. The HDIs are 

stochastic across countries, so we can only compare the two 

Figure 28

Human Development Index, 2013

Source: United Nations Development Programme, “Human Development Index” 
(http://hdr.undp.org/en/content/human-development-index-hdi).
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sets statistically. The average HDI for the European coun-

tries is 0.87; for non-European countries it’s 0.65. These two 

averages are statistically different with a p-value of 0.000.54 In 

English, that means the observed difference in the two aver-

ages is likely not the result of random chance. Thus, we can 

conclude that, though the individual countries vary, the aver-

age for the European countries is greater and by an amount 

likely not due to random chance.

GDP (per capita) and HDI measures give us a sense of 

the living standards of the average person, but they don’t 

necessarily tell us anything about the poor. A separate 

measure, the poverty rate, tells us that. There are several 

major poverty measures from which to choose: some mea-

sure the fraction of the population living on less than a 

specified amount of money; others measure the fraction of 

the population consuming less than a certain amount of 

food. The charts that follow show the poverty rates for the 

76 countries for which we have data for at least one year 

over the period 2001–2010. Figure 29 shows the average 

poverty rate for the quarter of countries that are most eco-

nomically free, the next most free quarter of countries, the 

next to the least free, and the least free quarter of countries. 

Notice that the average poverty rate is greater for the less-

free countries.
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A different view of the same data set is presented in 

Figure 30. Rather than grouping the countries into four cat-

egories, this chart shows each individual country’s economic 

freedom plotted against the country’s poverty rate. Notice 

that the dots (on average) move down and to the right. This 

indicates that (on average) countries that score higher on the 

economic freedom index also experience less poverty.

Another statistic related to poverty is infant mortality. Gen-

erally speaking, countries with better health care experience 

Figure 29

National Poverty Rates, in Quartiles by Economic Freedom

Source: World Bank (http://data.worldbank.org/topic/poverty); Economic 
Freedom of the World, Fraser Institute (http://www.freetheworld.com).
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lower infant mortality rates. Proponents of nationalized 

health care point to the higher than usual infant mortality 

rates in the United States (compared with other developed 

countries) as evidence that the United States would bene-

fit from a nationalized health care system. There are two 

problems with this claim. First, infant mortality is defined 

very differently across countries. Even among developed 

countries, some countries do not include in their mortality 

statistics infants who do not survive for a specified period 

Figure 30

National Poverty Rates and Economic Freedom Index

Source: World Bank (http://data.worldbank.org/topic/poverty); Economic 
Freedom of the World, Fraser Institute (http://www.freetheworld.com).
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beyond birth. By contrast, the United States counts all infants 

who, at the moment of birth, show any signs of life.55 This 

difference alone would tend to cause the United States’ infant 

mortality figures to be higher. But there is also an interesting 

counterforce at play in the statistics. Women in the United 

States tend to receive excellent prenatal care. That means 

sickly babies who would otherwise die in utero have a greater 

chance of surviving to birth. But babies who die in utero are 

not included in infant mortality statistics. Therefore, excel-

lent prenatal care has the effect of putting upward pressure 

on infant mortality statistics.

Related to poverty measures are exploitation measures. 

A society that exploits the weak and discriminates against 

minorities imposes a lesser quality of life on its people, 

regardless of its average income or poverty rate. Although 

many peoples have been exploited and subject to discrimi-

nation over many centuries and in many cultures, two demo-

graphic groups stand out for the frequency with which they 

are targeted: women and children.

Again, it is interesting to compare these outcomes with 

economic freedom. Figure 31 shows child labor rates for 

the 74 reporting countries over the period 2000–2009, bro-

ken down by economic freedom (the middle 34 countries 

are omitted).
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The chart shows that the average child labor rate was 

almost twice as high among the 20 least economically free 

countries as among the 20 most economically free. A rea-

sonable counterargument can be made to this result. People 

in rich countries have the leisure to be concerned with and 

fight for economic freedom. Also, people in rich countries 

don’t like to see their children exploited. Therefore, it is pos-

sible that the result we see in the chart is due to the “rich 

country effect.” That is, there is no relationship between 

Figure 31

Child Labor Rates in Least and Most Economically Free 

Countries, 2000–2009

20 Least Economically Free 20 Most Economically Free
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Source: Childinfo.org, UNICEF; Economic Freedom of the World, Fraser Institute.
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economic freedom and child labor. Economic freedom and 

child labor rates are actually both correlated with a third, 

unseen, factor: wealth.

One way to address this criticism is to repeat the anal-

ysis but look only at the poorest countries. It is possible 

that, among the poorest countries, the relationship actually 

reverses. If economically free countries tend to have fewer 

labor restrictions, they may be more likely to tolerate child 

labor. The data are shown in Figure 32 (the middle five coun-

tries are removed).

Figure 32

Child Labor Rates in Poorest Countries, 2000–2009

Source: UNICEF (http://data.unicef.org/topic/child-protection/child-labour/); 
Economic Freedom of the World, Fraser Institute (http://www.freetheworld.com).
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We see the same pattern emerge. Of course, by developed 

countries’ standards, the child labor rates are unacceptably 

high in both cases. Despite this, the pattern persists: econom-

ically free poor countries have lower child labor rates than do 

economically unfree poor countries.
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Anecdotes catch our imaginations and stick in our memo-

ries. Perhaps humans evolved to embrace anecdotes because 

one’s neighbors’ experiences helped one avoid possibly fatal 

errors from eating the wrong plant or hunting the wrong 

animal. Humans dressed up their anecdotes with colorful 

details and even created artificial anecdotes to entertain and 

educate. These became the first stories handed down from 

one person to the next. As modern humans, we retain our 

primal thirst for anecdotes, and it is this urge that drives our 

multibillion-dollar entertainment industry. Although anec-

dotes give us a colorful and entertaining view of the world 

around us, that view is often murky. Good decisions are best 

made with far more clear, though less colorful, statistics. 

The drawback is that statistics are creatures of mathematics. 
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To make practical use of them, we translate what they tell us 

into English. And therein lies the danger of our coloring into 

them meanings or nuances that they don’t possess.

The trick to understanding statistics is to put aside deter-

ministic thinking—to stop thinking in terms of anecdotes 

and start thinking in terms of aggregates. Deterministic, 

nonrandom, truths hold for every instance—that iron has a 

higher melting temperature than aluminum is true for every 

example of iron and aluminum. A statistical truth does not 

necessarily hold in every instance. It exists in the intersections 

among the instances. It is statistically true that an increase in 

the price of gas causes people to drive less. Not every person 

will drive less when the price of gas rises, but the effect of 

those who do drive less will outweigh the effect of those who 

drive more. In the aggregate, people will drive less.

Understanding statistics is the first step toward seeing the 

world more clearly. For simplicity, we talk as if the world were 

nonrandom. We say things like, “Smoking will kill you,” and 

“Practice improves performance.” In describing the world 

in nonrandom terms, we forget that important randomness 

exists everywhere. The truth is that smoking won’t kill you, 

but it will increase the probability of your dying at a younger 

age. Practice does not improve performance, but it does 
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increase the probability of better performance. Acknowledg-

ing randomness helps us make better decisions by encourag-

ing us not to look to specific examples for direction but to 

look for statistical patterns in many examples to extrapolate 

underlying truth.
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22. The figures here ignore government transfers—money the government gives 

to people (e.g., Earned Income Tax Credits). If we include government trans-

fers in the calculations, the top 1 percent pay an average effective rate of about 

29 percent, the middle 20 percent pay an average effective rate of around negative 

11 percent, and the poorest 20 percent pay an average effective rate of negative 

55 percent. Including government transfers, the bottom 60 percent of taxpayers 
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30. The ages are determined by the New England Journal of Medicine study on sui-
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and those who were on the drug for a longer duration. Additional complications 
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of Medicine.
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called the population mean. Combining the systemic and stochastic portions 
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data we have observed when, in fact, the two population averages are identical.

38. For a non-statistician, this is an adequate interpretation of a p-value. The 

technically correct interpretation is less intuitive: “If the systemic portions of 

Pennsylvania’s and New York’s unemployment rates were the same, there would be 

a 13.9 percent chance of observing the sample data we did observe.”

39. The first nonzero digit occurs beyond the third decimal place.

40. The rule of thumb is to conclude that two averages are different if the p-value 

falls below 0.05.

41. Assuming, of course, that there are no major alterations to economic conditions 

in the two states.

42. For more in-depth discussion of this topic, see Antony Davies, James R. Harrigan, 
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46. A linear relationship is one that, when graphed, yields a straight line.
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Antony Davies, James R. Harrigan, and Megan Teague, 

“Equality, Liberty, Prosperity.” Written for non-statisticians, 

“Equality, Liberty, Prosperity” takes a statistical view of the 

relationship between more versus less restrictive economic pol-

icies and socioeconomic outcomes such as income, poverty, 

inequality, and population growth. The article asks whether 

differing levels of government control of economies across 

states and across time is associated with differing quality-of-life 

outcomes. This article is a good follow-up to this book for peo-

ple who are interested in the application of statistical analysis to 

social and economic questions. The article is available in Social 

Philosophy and Policy, Volume 31, Issue 2, or at http://www 

.antolin-davies.com/research/elp.pdf.
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Murray R. Spiegel and Larry J. Stephens, Schaum’s Outline 

of Statistics, and John J. Schiller, R. Alu Srinivasan, and 

Murray R. Spiegel, Schaum’s Outline of Probability and Sta-

tistics. The Schaum’s Outline series can be used as references or 

read as books. These provide a good first step for people look-

ing to learn how to compute statistics in addition to under-

standing what statistics tell us.

Damodar N. Gujarati and Dawn C. Porter, Basic Econo-

metrics. In many fields, regression analysis is the foundation 

of the most complex statistical analysis. Gujarati and Porter’s 

book is more mathematically heavy than the other works 

in this list but provides a good introduction to regression 

analysis.
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72–76, 74f

measurement and, 63

standard deviation and, 66–72

stochastic relationships and, 

64

in unemployment rates, 

64–72, 65f, 67f, 68f, 69f, 

70f

difference of means test, 75–76

discouraged workers, 32–33

econometric analysis, 7–8

economic freedom, 82–96, 83f, 

85f, 87f, 89t, 90t, 91f, 94t, 

114, 115f, 116f, 117–19, 

118f

Economic Freedom of the 

World Index, 73–75, 74f, 

82, 83f, 85f

effective tax rate, 45

employment discrimination, 

57–62, 58f, 59f, 60f
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employment rate, 33–35, 35f. 

See also unemployment rate

endogenous variable, 130n48

English, translation of statistics 

into, 11–15, 121–22

equation

estimated regression, 88

regression, 79

errors

with aggregation bias, 22–30, 

25f, 27f, 28f, 31f

with causation, 20–22, 21f

with correlation, 15–20, 16f, 

19f

in measurement subject, 

31–40, 35f

in translation of statistics into 

English, 11–15

error term, 81–82

estimated regression equation, 88

exogenous variable, 130n48

experimentation, control and, 

102–6

explanatory variable, 130n48

exploitation measures, 117

factor variables, 88

final goods and services, 108

freedom, economic, 82–96, 83f, 

85f, 87f, 89t, 90t, 91f, 94t, 

114, 115f, 116f, 117–19, 

118f

GDP. See gross domestic 

product

gender discrimination, 57–62, 

58f, 59f, 60f

gender inequality, 82–95, 83f, 

85f, 87f, 89t, 90t, 91f, 94t

Gini coefficient, 74–75, 74f

GO. See gross output

goods, intermediate, 108

goods and services, final, 108

government transfers, taxation 

and, 127n22

gross domestic product (GDP), 

107–12

gross output (GO), 110–12

HDI. See Human Development 

Index
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heart, in decisionmaking, 

55–57, 56t

Human Development Index 

(HDI), 112–14, 113f

income

average per capita, 11–13

of families, by quintile, 31f

in GDP, 39

in Human Development 

Index, 112

inequality, 26–30, 27f, 28f, 

72–76, 74f

median, over time, 24–25, 

25f

tax rates and, 44–46, 45t

independent variable, 130n48

infant mortality, 115–17

inflation, 36–40

intercept, 101–2

intermediate goods, 108–9

joint probability, 53–55, 55t

labor force, 32–34

labor supply, 7

linear relationship, 84, 88, 

129n46

magnitude, 90, 92, 94t

mean. See also p-value

defined, 4

difference and, 66–72 

in difference of means test, 

75–76

population, 128n36

p-value and, 129n40 

sample, 128n36

standard deviation and, 

13–15

measurement

difference and, 63

errors with subject of, 31–40, 

35f

of production, 107–12

of quality of life, 112–20, 

113f, 115f, 116f, 118f, 

119f

minimum wage, 2, 9

multiple regression, 96–106, 

97t
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noise, 7, 22–24

nonemployed, 32

number line, 3, 4f

observation bias, 42–46, 45t

outcome variable, 88

percentage change, 51–53

percentage point change, 51–53

population mean, 128n36

poverty rates, 114, 115f, 116f

precision, 90–91, 92–96, 94t

prediction, correlation and, 

17–20

probability

of combination of probable 

and improbable events, 

50–51

conditional, 53–55, 55t

defined, 41

“heart” in, 55–57, 56t

joint, 53–55, 55t

misconceptions about, 

49–62, 55t, 56t, 58f, 

59f, 60f

and number of options, 

49–50

observation bias and, 42–43

repetition and, 44–46, 45t

and Simpson’s paradox, 

57–62, 58f, 59f, 60f

unlikely events and, 46–49

production, measurement of, 

107–12

public debt, 37–40

p-value, 71, 75, 93, 94t,  

95, 129n37, 129n38, 

129n45

quality of life, 112–20, 113f, 

115f, 116f, 118f, 119f

R2, 92–96, 94t

random correlation, 18–19

randomness, in data, 22–23

random selection, 23–24

regression

multiple, 96–102, 97t

simple, 83–96, 85f, 87f, 89t, 

90t, 91f, 94t
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regression analysis, 77–83, 78f, 

80f, 83f

regression equation, 79, 81, 

100, 101, 104

regression equation, estimated, 

88–90, 92, 93

regression line, 79, 81, 86–87, 

87f, 100

repetition, observation bias 

and, 44–46, 45t

residual, 90, 90t, 130n47

reverse causality, 20

“rich country effect,” 118–19

sample mean, 128n36

scatter plot, 84–86, 85f

selection, random, 23–24

significance, 90, 94t, 130n49

simple regression, 83–95, 85f, 

87f, 89t, 90t, 91f, 94t

Simpson’s paradox, 57–62, 58f, 

59f, 60f

slope, 93

slope coefficient, 93, 94t, 95, 

100–101

squared multiple regression 

coefficient, 92

standard deviation

average vs., 13–15

defined, 4

difference and, 66–72

statistical analysis

statistics vs., 1–3

stochastic relationships and, 

7–8

statistics

statistical analysis vs., 1–3

translation of, into English, 

11–15, 121–22

statutory tax rate, 45

stochastic relationships,  

6–9, 40, 64–66, 81–82,  

90

suicide, 55–57, 56t

sum of squared residuals, 

130n47

taxation

and decisionmaking on places 

to live, 103–6
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of rich, 44–46, 45t

tax rates, 45–46, 45t, 127n22

third variable effect, 20–21

translation, of statistics 

into English, 11–15, 

121–22

trend, 79, 86

trend line, 79–81, 86–87, 87f

truck scheduling, 96–102, 97t

Ukraine, 85f, 86

unemployment, 2

unemployment rate, 32–33, 

34–35, 35f, 64–72, 65f,  

67f, 68f, 69f, 70f, 126n7,  

126n8

unlikely events, 46–49

urban basket, 36

variable

dependent, 130n48

endogenous, 130n48

exogenous, 130n48

explanatory, 130n48

factor, 88

independent, 130n48

outcome, 88

variance, defined, 4

wage stagnation, 24–26, 25f

women, employment 

discrimination against, 

57–62, 58f, 59f, 60f

Zambia, 85f, 86
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Libertarianism.org

Liberty. It’s a simple idea and the linchpin of a complex sys-

tem of values and practices: justice, prosperity, responsibility, 

toleration, cooperation, and peace. Many people believe that 

liberty is the core political value of modern civilization itself, 

the one that gives substance and form to all the other values 

of social life. They’re called libertarians.

Libertarianism.org is the Cato Institute’s treasury of 

resources about the theory and history of liberty. The book 

you’re holding is a small part of what Libertarianism.org has 

to offer. In addition to hosting classic texts by historical liber-

tarian figures and original articles from modern-day thinkers, 

Libertarianism.org publishes podcasts, videos, online intro-

ductory courses, and books on a variety of topics within the 

libertarian tradition.
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Cato Institute

Founded in 1977, the Cato Institute is a public policy research 

foundation dedicated to broadening the parameters of policy 

debate to allow consideration of more options that are con-

sistent with the principles of limited government, individual 

liberty, and peace. To that end, the Institute strives to achieve 

greater involvement of the intelligent, concerned lay public in 

questions of policy and the proper role of government.

The Institute is named for Cato’s Letters, libertarian pam-

phlets that were widely read in the American Colonies in the 

early 18th century and played a major role in laying the philo-

sophical foundation for the American Revolution.

Despite the achievement of the nation’s Founders, today 

virtually no aspect of life is free from government encroach-

ment. A pervasive intolerance for individual rights is shown 

by government’s arbitrary intrusions into private economic 
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transactions and its disregard for civil liberties. And while 

freedom around the globe has notably increased in the past 

several decades, many countries have moved in the opposite 

direction, and most governments still do not respect or safe-

guard the wide range of civil and economic liberties.

To address those issues, the Cato Institute undertakes an 

extensive publications program on the complete spectrum of 

policy issues. Books, monographs, and shorter studies are com-

missioned to examine the federal budget, Social Security, regu-

lation, military spending, international trade, and myriad other 

issues. Major policy conferences are held throughout the year, 

from which papers are published thrice yearly in the Cato Journal. 

The Institute also publishes the quarterly magazine Regulation.

In order to maintain its independence, the Cato Institute 

accepts no government funding. Contributions are received 

from foundations, corporations, and individuals, and other 

revenue is generated from the sale of publications. The Insti-

tute is a nonprofit, tax-exempt, educational foundation under 

Section 501(c)3 of the Internal Revenue Code.

CATO INSTITUTE

1000 Massachusetts Ave., N.W.

Washington, D.C. 20001

www.cato.org
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