Understanding Testing Variability

Rocky Mountain Asphalt Conference & Equipment Show

February 19-21, 2014 Denver, Colorado

Understanding Testing Variability

Rocky Mountain Asphalt Conference & Equipment Show

February 19-21, 2014 Denver, Colorado

Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
- Summary

Why Understand Testing Variability

Provide quality product to our customer
Remain in business
Establish specification limits
Predict pay factors

"Quality"

Customer

Engineer

Quality - Customer

Product Meets or Exceeds Customer's Expectation - Short Term – Long Term (Durability) Appearance

Quality - Pavements

Looks Good
Rides Smoothly
No Splash and Spray
Quiet
Provide Friction

Quality – Engineer

Meets or Exceeds Expectation (Performance) - Short Term – Long Term Meets or Exceeds Specifications Uniform Product

Quality-Pavements (Engineer)

Meets or Exceeds Specification
 Satisfies Customer
 Short & Long Term Performance

 Rutting – Bleeding – Patching
 Raveling – Cracking

Quality Pavements

Mixture/ **Materials** Designs Thickness of Pavement Specifications Construction

Who Is Responsible for Quality? Owner (Public Agency) Contractor/Material Supplier All Levels of the Organization

Role of Specifications

Contractors/Material Supplier (Control Quality)

Owner (Public Agencies) (Specify Quality)

Types of Specifications

Proprietary Method QC/QA End Result Performance Related
Performance Based
Statistically Based
Warranty/Guarantee

Specifications – Quality Control/Quality Assurance

Lot/Sublot Process Control **/Quality Control** Quality Assurance Acceptance Measurement Pay Adjustment Certification/Accreditation

Texas A&M Transportation Institute

Outline

Introduction Variability Sampling Variability Testing Variability Materials/Construction Variability Percent within Limit Typical Variability

Statistical Representation of Variability

Mean – x
Standard Deviation – s
Coefficient of Variation - ^s/_x

Sources of Variability

Sampling – random variation in sampling methods or procedures

Testing – random variation in testing performance and equipment

> Sampling + testing variability = about 50% of the variation in test results

Material – random natural variation
 Construction – variation inherent in production and construction methods

Outline

Introduction Variability Sampling Variability Testing Variability Materials/Construction Variability Percent within Limit Typical Variability

Effect of Number of Samples and Associated Risk

Number of	Contractor's	Owner's Risk
Samples	Pisk	(β)
(n)	(α)	
1	0%	84%
1	5%	50%
4	0%	16%
4	5%	2.5%

Reported Test Result

Single sample/size test result Single sample/multiple test result Multiple samples/multiple test result $s_n = \frac{s}{\sqrt{n}}$

Sample Size & Frequency

Increase Sample Size & Increase Frequency (#) -Large Nom Max Agg Size -Large Mixture Variability -High Reliability -Large Effect on Performance -New Materials or Production example on - Compliance w/Specifications

- D3665 Random Sampling of Construction Materials
- E105 Probability Sampling of Materials
- E122 Choice of Sample Size to Estimate the Average Quality of a Lot or Process

41 – Acceptance of Evidence

Lot/Sublots/ #Tests

Lot

- Amount of material being evaluated for payment purposes
- Commonly defined by length of roadway or material mass
- Sublots/Lot
 - Sampling divisions within given lot
 - Commonly 4 or 5 with 1 test/sublot
- Tests/Sublot
 - Number of material tests or measurements per lot or sublot

The structure on lot and sublot

With simple random Sampling, All samples could end Up in one section of a Roadway lot

With simple random Sampling, All samples could end Up in one section of a Roadway lot

With simple random Sampling, All samples could end Up in one section of a Roadway lot

With simple random Sampling, All samples could end Up in one section of a Roadway lot

With simple random Sampling, All samples could end Up in one section of a Roadway lot

Point of Sampling

Asphalt -Plant Tank or Middle 1/3 of **Truck Load** -Bleed off & **Discard Prior to** Sampling -Sample & Seal

Cold Feed Sampling

Cold Feed "Belt Cuts" are taken from the collector belt enroute to the dryer drum

Truck

Loose Mat Sampling

Effect of Sampling Location on Gradation Variability

Coldfeeds (n=45)
Loose HMA (n=45)

Cores (n=46)

Wednesday, March 5, 14

Point of Sampling

In-Place Density

 Compacted Mat

 Thickness

 Compacted Mat

 Smoothness

 Longitudinal Profile or Index

Sample Splitting

Coarse @ 3.79%ac Fine @ 5.21%ac

Outline

Introduction Variability Sampling Variability Testing Variability Materials/Construction Variability Percent within Limit Typical Variability

Test or Measurement Method

Must be suitable for Field Applications -Inexpensive, easy set-up (mobile), relative insensitive to environment, easy to analyze data Understand Associated Variability! Specification Tolerances = (Variability)

Mix Design Volumetric

Superpave Gmm_{i, d, m}, AV, VMA, VFA, DP

Marshall
 AV, VMA, VFA

Mixture Volumetrics

 All Specified Volumetric Properties Calculated from Measured Material Properties (AASHTO or ASTM Test Methods):

- Asphalt Content (AC)
- Asphalt Cement Specific Gravity (G_b)
- Combined Aggregate Specific Gravity (G_{sb})
- Bulk Specific Gravity of Compacted Mixture (G_{mb})

Texasportation Previous Contraction Contractic Contraction Contractic Con

Properties Calculated Mixture Properties are Function of

	Calculated Property	Variables the Property is a Function of
	Gsb	P, Gsb
	Gse	Pmm, Pb, Gmm, Gb
	Gmm	Pmm, Ps, Gse, Pb
	Pba	Gb, Gse, Gsb
	Pbe	Pb, Pba, Ps
	AV	Gmb, Gmm
	VMA	Gmb, Gsb, Ps
	VFA	VMA, AV
	%Gmm _i	Gmb, Gmm
	%Gmm _m	Gmb, Gmm
Texas Trans	A&M DP	p0.075, Pbe
Institu	ite	

Question?

What are the <u>combined</u> effects of variability in material and mixture property measurements on calculated volumetric properties and optimum asphalt content selection?

Perform an analysis to find out

Analysis

Show the effect of what is considered acceptable variability in G_b, G_{sb}, G_{mb}, G_{mm} measurements on mixture volumetrics for both within and between laboratory conditions

- 19mm Superpave mix design data
- ASTM single-operator and multilaboratory precision
- Monte Carlo Simulations
- Generate range of volumetric properties due to test

Enterthod variability

Test Method Precision and

Precision Statements Account for Inherent Test Method Variability (uncontrollable random error)

- Single-operator, within lab, repeatability
- Multilaboratory, between lab, reproducability

One-Sigma Limits (standard deviation, σ, 1S)

Precision and Bias

Precise Not Bias

Low Variability

High Variability

Not Precise

Not Bias

Precision Statements are Based on Interlaboratory Studies

Within Laboratory Precision (Single Operator Precision)

Designations			Single Operator Precision				
AASHTO Method	ASTM Method	Description	Standard Deviation (1S)		Acceptable Range of Two Results (D2S)		
			AASHTO	ASTM	AASHTO	ASTM	
T228	D70	Asphalt Cement Specific	0.0008	0.0008	0.0023	0.0023	
T85	C127	Coarse Aggregate Specific	0.009	0.009	0.025	0.025	
T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032	
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0124	*	0.035	
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0040 (0.0064)	0.0040 (0.0064)	0.011 (0.018)	0.011 (0.018)	

* - "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Between Laboratory Precision (Multilaboratory Precision)

Designations			Multilaboratory Precision				
AASHTO Method	ASTM Method	Description	Standard Deviation (1S)		Acceptable Range of Two Results (D2S)		
			AASHTO	ASTM	AASHTO	ASTM	
T228	D70	Asphalt Cement Specific	0.0024	0.0024	0.0068	0.0068	
T85	C127	Coarse Aggregate Specific	0.013	0.013	0.038	0.038	
T84	C128	Fine Aggregate Specific	0.023	0.023	0.066	0.066	
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0269	*	0.076	
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0064 (0.0193)	0.0064 (0.0193)	0.019 (0.055)	0.019 (0.055)	

* - "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Monte Carlo Simulation Process

Develop Probability Distributions from Mix Design Property Means and **ASTM One-Sigma Limits for Each** Input Variable

• eg.: G_{mb} and G_{mm}

Repeatedly Sample the Input Distributions (G_{mb} and G_{mm}) and Calculate the Output Variable to Generate an Output Distribution

Monte Carlo Simulation

Summary Plots

Wednesday, March 5, 14

Within Laboratory Air Voids

Between Laboratory Air Voids

Summary and Conclusions

 "Acceptable" Variability Associated with the Measurement of the Properties Required to Determine HMA Volumetrics can Have a Significant Impact on Calculated Volumetric Properties

Summary and Conclusions

 Within Laboratory Test Method Variability May Lead to Differences in AV and VMA of 1.0+% for Any Given Mix Design

 These Differences Translate into Potential Differences of 0.7% in Optimum Asphalt Content Selection

Summary and Conclusions

 Between Laboratory Test Method Variability May Lead to Differences in AV and VMA of over 2.0% for Any Given Mix Design

These Differences Translate into Potential Differences of Over 1.0% in Optimum Asphalt Content Selection

Outline

Introduction Variability Sampling Variability Testing Variability Materials/Construction Variability Percent within Limit

Wednesday, March 5, 14

Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability

Wednesday, March 5, 14

Wednesday, March 5, 14

Wednesday, March 5, 14

Percent within Limits

Wednesday, March 5, 14

Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability

Typical Variability

Property	Standard
Asphalt Content, %	0.25
% pass 4.75 mm, %	3.0
% pass 2.36 mm to 0.15	2.0
% pass 0.075 mm, %	0.7
Air Voids, %	1.0
VMA, %	1.5
VFA, %	5.0

Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
- Summary

Why Understand Testing Variability

Provide quality product to our customer
Remain in business
Establish specification limits
Predict pay factors

Wednesday, March 5, 14

QC/QA and Variability

Sampling

Number of Samples and Size

- Sampling Location
 - Random
 - *Stratified Random
 - Systematic uniform interval
 - Quota @ change in process
 - Judgment
- Sampling Method
- Acceptance OR Source Approval OR QC OR Independent Assurance/Verification of Test Procedures

Monte Carlo Simulation

Wednesday, March 5, 14

Texas A&M Transportation Institute % **AC**

Typical Variability

Property	Standard
Asphalt Content, %	0.25
% pass 4.75 mm, %	3.0
% pass 2.36 mm to 0.15	2.0
% pass 0.075 mm, %	0.7
Air Voids, %	1.0
VMA, %	1.5
VFA, %	5.0

