

ALM RANGERS

Understanding TFS migrations from on-premises
to Visual Studio Online – Part 2: Walkthrough

Martin Hinshelwood, Hosam Kamel, Wouter de Kort, and Josh Garverick

Since Team Foundation Server (TFS) 2005, the ALM Rangers and ALM MVPs have had a mission to provide out-of-band

solutions to missing TFS features and guidance.

In this article, we continue from part 1 – Concepts, walking you through the migration of a simulated on-premises

environment, using Brian Keller's VM1, to Visual Studio Online (VSO).

This article covers the following exercises:

Prerequisites
You require the following to complete this walkthrough:

 The sample solution documented below

 The latest Brian Keller VM 2or an environment with:

o Visual Studio 2012 Professional or higher

o Team Foundation Server 2012 or higher

 Your Visual Studio Online Account, i.e.

https://youraccount.visualstudio.com.

Limitations
The walkthrough assumes you will be using Excel to

migrate Work Items from TFS on-premises to Visual

Studio Online. It is important to understand that this

approach has some limitations3:

 The migration will move items from source TFS to

Visual Studio Online in the “New State” or the first

state for the Work Items based on the Process

Template you are using.

 Test Cases can be migrated as a normal Work Item

while the test case step(s) and test case result(s) will

not be migrated.

 VSO will not create your area path. You have to

create a corresponding area path or use the default

area created for your project.

 Excel will assume one-to-one user mapping. It will

use the same name for TFS on-premises users. It is

important to make sure you have the users created

in Visual Studio Online prior the migration.

 Work Items history (including comments),

hyperlinks, and attachments will not be migrated by

Excel.

 Visual Studio Online does not support Process

customizations, so assume you will migrate to the

out-of-the-box Process Templates (Scrum, Agile, or

CMMI).

The walkthrough assumes you will be using Visual Studio

only to migrate latest Source Code from TFS on-premises

to Visual Studio Online. It is important to understand that

this approach has some limitations:

 Only the latest version of your code will be migrated.

 History, labels, branches, and permissions will not be

migrated.

1 http://aka.ms/ALMVMs

2 http://aka.ms/almvms

3 Peruse Understanding TFS migrations from on-premises to Visual Studio Online – Part 1 – Concepts, for possible alternatives.

http://aka.ms/ALMVMs
http://aka.ms/almvms

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

2

Exercise 1: Visual Studio Online Environment Preparations
GOAL We assume we start with no pre-configured environment, create a team project, download, and check-in our sample

solution.

Task 1.1: Logon to your Visual Studio Online account
Step Instructions

1

Logon

꙱ - Done

 Browse to your Visual Studio Online account

 Login using your Microsoft account or organizational account.

Task 1.2: Create a destination Team Project on Visual Studio Online

Step Instructions

1

Navigate to your

Visual Studio Online

account

꙱ - Done

 Browse to your Visual Studio Online account.

2

Create Team Project

꙱ - Done

 Create a Team Project by clicking on New under Recent projects & teams

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

3

Step Instructions

WARNING Team project name is immutable! You cannot change the name once created.

 Specify a project name, for example FabrikamFiberDemo.

 Select a Process Template that matches the same Process Template as your Team Foundation Server

source team project, for example Microsoft Visual Studio Scrum 2013.3.

WARNING Version control system is immutable! You cannot switch from TFVC to Git, for example.

 Select a version control that matches your Team Foundation Server source team project, for

example Team Foundation Version Control.

 Select Create.

 Wait until you get the confirmation that the project created successfully.

 Click Navigate to project.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

4

Exercise 2: Team Foundation Server Environment Preparations
GOAL Prepare the list of Work Items you need to migrate to Visual Studio Online. This can be as simple as a query that list all

the Work Items or creating a customized Work Item query to list only the Work Items within certain criteria.

Task 2.1: Logon to your environment
Step Instructions

1

Logon

꙱ - Done

 If you are logging in using an instance of Brian Keller’s VM, i.e. at TechReady, logon using the

administrator P2ssw0rd credentials.

 Alternatively, login using your own evaluation environment, with credentials that will allow you to

retrieve Work Item and version control data.

Task 2.2: Create a custom Work Items query

Step Instructions

1

Start Visual Studio

꙱ - Done

 Start Visual Studio.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

5

Step Instructions

2

Connect to your

Team Project (TP)

꙱ - Done

 Connect to the source Team Project you wish to migrate to your Visual Studio Online destination

3

Create a new Work

Item query

꙱ - Done

 Navigate to “Work Items” from Team Explorer.

 Click “New Query”.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

6

Step Instructions

 Fill in the correct filter to retrieve the Work Items you need to migrate to Visual Studio Online.

 Once done, run the query by clicking on “Run” and validating the query results.

 Save the query to your queries “My Queries”.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

7

Task 2.3: Export custom query result to Excel
Step Instructions

1

Open Query in

Result mode

꙱ - Done

 Open the query created previously (“Visual Studio Online Migration”) in result mode, and from Open

in Microsoft Office select Open Query in Microsoft Excel.

 Save the source Excel sheet.

Exercise 3: Migrate Work Items to Visual Studio Online
GOAL Migrate the Work Items from on-premises TFS to Visual Studio Online

Task 3.1: Create a new input list Excel sheet
Step Instructions

1

Create a new Excel

sheet

꙱ - Done

 Open a new instance of Excel.

 Connect to Visual Studio Online project from Excel by clicking on New List from Team tab.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

8

Step Instructions

 Select Input list from New List window.

2

Validate columns

along with their

sequence.

꙱ - Done

 The migration is based on Copy and Paste, so be sure to validate the columns and their sequence on

both sheets.

3

Optionally

rearrange

destination fields

꙱ - Done

 In case you need to rearrange the destination Excel sheet fields, click on Choose Columns.

 Add the missing fields and rearrange the existing ones to match the source Excel sheet.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

9

Step Instructions

 Click on Choose Columns and start adding and arranging the columns.

Task 3.2: Copy and Paste data from source sheet to the input list sheet
Step Instructions

1

Open the original

sheet and select the

data

꙱ - Done

 Open the Source Excel sheet and Copy the Work Items.

 Select the fields you want to migrate if you did not customize them as mentioned above.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

10

Step Instructions

2

Paste the copied

cells to the

destination Excel

sheet

꙱ - Done

 Validate the order of the fields and paste the data in the first cell. Whenever you see a cell with a

green rectangle on the top left, this indicates a validation issue. Make sure to correct the values.

 In the case below we did not have the same mapped users into my account, so we had to pick the

users manually.

3 publish the Work

Items to Visual

Studio Online

꙱ - Done

 Click Publish and wait until you see that all rows have a valid work Item ID

4 Validate the

migrated Work

Items

꙱ - Done

 You can validate the migration by comparing the number of Work Items added in the source and

destination team projects.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

11

Exercise 4: Migrate Source Code to Visual Studio Online
GOAL Migrate the latest source control from on-premises TFS to Visual Studio Online

Task 4.1: Download Latest version of your code
Step Instructions

1

Navigate to TFS

Web Access

꙱ - Done

 Navigate to TFS Web Access URL

 From “CODE” link, select the folder you need to migrate. In our case we will move the main folder, and

right click “Download as Zip

 Save the zipped folder to the local disk.

Task 4.2: Configure Visual Studio Online project workspace
Step Instructions

1

Start Visual Studio

꙱ - Done

 Open Visual Studio and Connect to Visual Studio Online project.

2

map a new

workspace for your

code files

 On the top of Team Explorer click Configure your workspace.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

12

Step Instructions

꙱ - Done  Select local folder and click Map & Get

Task 4.3: Copy Code and Check-in
Step Instructions

1

Open new

workspace folder

꙱ - Done

 Open Visual Studio.

 Connect to Visual Studio Online project.

2

Copy unzipped

version of main to

workspace

꙱ - Done

 On the top of Team Explorer click on the hyperlink that mapped to your hard disk folder.

 This will open the folder that is mapped to your workspace.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

13

Step Instructions

 Copy the main folder (uncompressed version) to that folder.

3

Add files to your

Visual Studio Online

project

꙱ - Done

 In Visual Studio Source Control window click on Add Items to Folder icon.

 Select Main folder and click Finish

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

14

Step Instructions

 Main should be added now with pending changes icon.

4

Check-in your

pending changes

꙱ - Done

 Navigate to Pending Changes from Team Explorer, provide a comment and click Check In.

 Wait until the check-in completes successfully.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

15

Step Instructions

 You can verify the success of the check-in by confirming that a new changeset ID appears.

5

Validate the code

꙱ - Done

 Navigate to Team Explorer Home tab.

 You will be able to see the migrated solution in the “Solution” sections.

 Double click to open the solution.

 Navigate to Solution Explorer and make sure all of your projects are correctly bound to the Visual

Studio Online project.

Conclusion
NOTE This walkthrough performed a simple migration, using out-of-the-box tools, as recommended by

Understanding TFS migrations from on-premises to Visual Studio Online – Part 1: Concepts. It is

important that you understand the limitations, as well as implications if you wish to migrate more.

Let us review a brief migration retrospective with Willy-Peter, our hypothetical user, and our migration experts Martin,

Hosam, Wouter, and Josh.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

16

Willy-Peter is very happy with the migrated team project, but has many questions:

Question Response

At a first glance Work Items

and version control data looks

great, thanks guys. What has

not been migrated, and why?

Josh: Test cases, steps, and data are not migrated, along with check-in/Work Item links, build

definitions, and version control history.

Wouter: The things Josh mentioned are not migrated because we are doing a snapshot

migration. This means that we only take the current point in time. Queries do not allow us to

query for the whole Work Item history, making it impossible to copy with Excel. To migrate

the version control history, more advanced tooling is necessary.

Martin: We can additionally migrate Build Definitions, Area Path, Iteration Path, Test Cases,

Shared Steps, Test Data, Test Plans, and Test Suites which would require code and significant

additional time. We would, however, be unable to migrate Test Results, Builds, and Code

Coverage as this is not possible.

Hosam: It is doable but not through this approach. Moving Work Items with tracking history

will require significant time and special migration consideration,

We invested a lot of time

linking check-ins to Work

Items. Why are the links

missing and what would the

implications be to migrate

them as part of a migration to

Visual Studio Online?

Josh: The links are missing because the changeset IDs and Work Item IDs are automatically

generated, and there is no way to recreate those IDs when migrating using the standard

toolsets. Migrating these into VSO would require a substantial amount of time, as those links

would have to be recreated manually.

Wouter: Without any custom tooling support all those links need to be created by hand. This

is very time consuming since the IDs are not the same as in your on-premises version.

Martin: As we did not bring across each changeset (the history) and instead have one

changeset that represents the current state of the code there are no individual changesets to

associate with the Work Items. We could associate every current Work Item that did have a

link with that single changeset but that would provide little value.

Hosam: we did the migration in two steps: Work Items and Source Code. They are totally

disconnected steps which mean we lost any relationship between code and Work Items. Since

we are migrating the history you have only one version of your code “The Latest” and the

default new state for your Work Items.

Our build teams are going to

ask about their build definitions

and what needs to be done to

migrate the builds to Visual

Studio Online.

Josh: They can be migrated, but it requires work to get the configuration bits moved over.

Wouter: Your build definition templates are migrated as a part of your source control

migration. The build definitions can be recreated with those templates. You need to manually

copy all configuration settings from your on-premises definition to VSO.

Martin: We could create a script that would migrate the build definitions across, which would

take time. If you have 10 builds it is probably not worth it, if you have 1000, then it may be

worthwhile.

Hosam: I agree that we migrated the artifacts related to the build in terms of build definition

templates, but you do have to manually create the build. We are not migrating any previous

build history or output. One point to mention is that even though we clone the build you

have to manually check the configuration since it will be changed if you have different source

control paths and branches.

Also, refer to VSO build agent capabilities to understand if your application will required any

additional software or will work fine with the hosted build controller

http://www.visualstudio.com/get-started/hosted-build-controller-vs

We discussed history in our

planning workshops and agreed

that it is not worth migrating.

Can you please reiterate the

key reasons for not migrating

history?

Josh: It is very time and labor intensive to migrate history. The return on investment for what

the history provides is rather low when compared to what is required to perform that detailed

migration. In addition, typical use cases around viewing code history tend to settle around

figuring out when something changed (or who changed it), and that can be done from the

original instance—at a much lower time/labor cost—if absolutely necessary.

http://www.visualstudio.com/get-started/hosted-build-controller-vs

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

17

Question Response

Wouter: This all comes down to a cost/benefit. Migrating history is very time consuming and

error prone. Instead, you could keep the on-premises version around as an archive for

whenever someone needs to look at the history.

Martin: I agree with the above and would add that in most cases the use of history is very

low. Developers mostly do not look at history.

Hosam: I agree, the use of history is very low and is not worth the effort to move it.

You mentioned custom

migration tools in your secret

migration toolbox? What are

they and when should we

consider them?

Josh: OpsHub, streamlines migration of standard items from TFS to VSO. Custom .NET code

leverages the TFS and VSO APIs, for when you are feeling spunky and want fine-grained

control over migration options.

Wouter: OpsHub is an option for migrating from on-premises to VSO. You can also use the

simple migration strategy you have seen in this walkthrough and supplement it with some

.NET code that leverages the TFS APIs but you can understand why that is more time

consuming.

Martin: For most folks, the TFS Integration Tools are the only option for large scale

migrations, with history. However these tools are incomplete and incredibly error prone. If

you can find a commercial tool you would be better with that but the cost is usually

prohibitive.

Hosam: Whenever you see value bringing the history along during your migration, then you

have to consider a tool. Every tool has limitations, so you have to pick what really gives you

maximum value with minimum tradeoffs. OpsHub, TFS Integration tool, and Tasktop are all

good tools to consider.

If we wanted to add some

history and especially the links,

would we have to re-do the

migration or could we morph

the new team project on Visual

Studio Online?

Josh: You would be able to morph the new team project if those items are essential. Though

it would be advisable to weigh how much of that information needs to be migrated as the

time spent morphing the project may outweigh the overall benefit.

Wouter: Morphing is an option but it is time consuming.

Martin: You would have to redo the migration as history as in the past and you are already at

a particular point in time. In order to add history, you would need to wipe out your Source

Code and start again with the oldest version that you want to keep.

Hosam: I agree, with the responses above,

If we wanted to move to

another Process Template on

Visual Studio Online, for

example CMMI, what would be

your response?

Wouter: Migrating the Source Code is not an issue since that is not linked to the Process

Template. Migrating Work Items is another story. If you really want to migrate Work Items

while changing the Process Template, you should first change the Process Template on-

premises by using command-line tools like witadmin. This is not easy to do, but it is possible.

Martin: This is a fairly straight-forward process that involves first morphing your on-premises

project to be the same as the one that you want to use in VSO: Upgrading your Process

Template in Team Foundation Server

Josh: I agree with Wouter and Martin. It is not a simple process, but it is attainable.

Hosam: The simple migration approach we used is just mapping Excel rows and cells, taking

into consideration the data validation coming from VSO project. This is achievable by just

mapping fewer fields containing the main information in Excel. In the end we are moving to

an initial state and the data fields can be easily mapped.

Developers have mentioned an

interest in dogfooding Git. We

migrated from TFVC to TFVC,

would it be feasible to migrate

from TFVC to Git?

Wouter: This is absolutely possible. Instead of creating a Team Foundation Version Control

(TFVC) based project on VSO, you create one based on Git. After cloning the repository

locally, you copy your sources to it and do your first commit and push.

Martin: However, at this time you cannot have more than one source control type per Team

Project. If you plan on moving to Git eventually, then you would have to create a new Team

Project and migrate your Work Items again.

Josh: I agree with the points above, noting that the one source control per team project is

especially important.

Understanding TFS migrations from on-premises to Visual Studio Online – Part 2: Walkthrough

18

Question Response

Hosam: I agree, with the responses above and you may want to have a new project created

on VSO just for dogfooding.

Is the mapping of users an

Excel specific problem?

Peter: No, TFS Integration Platform and other tools operating on WIT are also similarly

affected by inconsistencies of user information. Display names are strings, which need to

match up, for data to end up on the right identities. I would treat this as a general migration

problem, not an excel only issue.

Thanks for taking the time to read this and keep a look out for more articles from the ALM Rangers4.

Reference Information

 Migration and Integration Solutions5

 TFS Integration Tools Blogs and Reference Sites6

 TFS Planning, Disaster Avoidance, and Recovery

Guide7

 Import Excel data into TFS with History8

 Migrating from an On-premises Team Foundation

Server to Team Foundation Service Preview Using

the TFS Integration Tools9

Martin Hinshelwood is an independent consultant with

over 14 years of software development experience. He

currently specializes in ALM from Scrum and EBMgt to TFS

and Visual Studio. He is a Microsoft ALM MVP and ALM

Ranger. He has extensive migration experience and a number

of custom tools to help you with migrations.

You can reach Martin via his blog at nakedalm.com/blog. You

can also follow him on Twitter at twitter.com/MrHinsh.

Hosam Kamel is a Senior Premier Field Engineer (PFE) at

Microsoft, and a Visual Studio ALM Ranger specializing in

providing field-level support for Visual Studio Application

Lifecycle Management (ALM) and Team Foundation Server.

He focuses on helping software professionals and

organizations build better applications and solutions using

Microsoft Application Lifecycle Management technologies,

practices, and tools. He works with development teams,

supporting them, removing the traditional silos between

development, testing, and project management to establish

cohesive processes with the Visual Studio ALM tools. His

experience with Team Foundation Server and Visual Studio

started with the beginning of the Visual Studio Team System

(VSTS) and its product family nearly seven years ago. He is

also an active Visual Studio ALM Ranger with lots of projects

contributions. He has authored several articles and spoken at

various user groups, events, and conferences. Prior to joining

Microsoft, Hosam worked as a Regional Technology Solution

Professional for MEA Center of Expertise.

Wouter de Kort started with software development when

he was 7 years old. He now works as a Microsoft Lead ALM

Consultant at Ordina. Wouter helps organizations to stay on

the cutting edge of software development on the Microsoft

stack. He focuses on Application Lifecycle Management and

Software Architecture for web applications. He loves solving

complex problems and helping other developers to grow.

Wouter authored several books, is a Microsoft Certified

Trainer, and an ALM Ranger. You can find him on Twitter

(@wouterdekort) and on his blog at

http://wouterdekort.blogspot.com.

Josh Garverick is a software architect, developer, and ALM

enthusiast who is one of the newer members of the ALM

Rangers. He has broad cross-platform experience from

developing applications to setting up build and deployment

environments, including on-premises and cloud-based

solutions. He is a contributor to the .NET wrapper for the

Docker remote API (Docker.DotNet). You can find his other

OSS contributions at github.com/jgarverick, and follow him

on Twitter at twitter.com/jgarverick.

THANKS to the following technical experts for

reviewing this article: Bill Heys, Mario Rodriguez, Peter

Antal, Wendell Phillips, and Willy-Peter Schaub.

4 http://aka.ms/vsarunderstand

5
http://msdn.microsoft.com/en-us/vstudio/bb840033

6
http://aka.ms/vsartoctip

7 http://aka.ms/treasure5

8 http://nakedalm.com/import-Excel-data-into-tfs-with-history/

9 http://msdn.microsoft.com/en-us/magazine/jj130558.aspx

http://aka.ms/vsarunderstand
http://msdn.microsoft.com/en-us/vstudio/bb840033
file:///C:/Users/aaronha/Downloads/aka.ms/vsartoctip
http://aka.ms/treasure5
http://aka.ms/treasure5
http://nakedalm.com/import-excel-data-into-tfs-with-history/
http://msdn.microsoft.com/en-us/magazine/jj130558.aspx
http://msdn.microsoft.com/en-us/magazine/jj130558.aspx
http://msdn.microsoft.com/en-us/magazine/jj130558.aspx
http://nakedalm.com/blog
http://twitter.com/MrHinsh
https://twitter.com/wouterdekort
http://wouterdekort.blogspot.com/
https://www.nuget.org/packages/Docker.DotNet/
https://github.com/jgarverick
http://twitter.com/jgarverick

