Understanding the Amazon from Space

Yiqi Chen

Abstract

Kaggle recently released a data challenge which aims to
classify various phenomena of interest (atmospheric condi-
tions, land cover phenomena) in the Amazon basin from a
provided dataset of satellite images. In this work, we in-
tend to tackle this challenge by experimenting with different
convolutional neutral network (CNN) architectures, includ-
ing VGG, ResNet and DenseNet, as well as various opti-
mization approaches. Our best model achieves 0.93006 F2-
score on the test dataset, ranked 22/438 as of 6/12/2017.

1. Introduction

The Amazon rain-forest is the largest tropical rain-forest
in the world with the biggest biological diversity. How-
ever, the deforestation of Amazon rain-forest has acceler-
ated since 19917 In order to further understand the status
quo of Amazon surface, and potentially figure out how to
respond to the deforestation, Planet, a company that builds
and launches the largest constellation of Earth-imaging
satellites in the world, recently released a data challenge
over Kaggle[1]. In this challenge, we will classify atmo-
spheric conditions and various land cover phenomena from
a dataset of satellite images taken in the Amazon basin,
and try to achieve the highest accuracy on the provided test
dataset.

We will use convolutional neural network[2] (CNN)
models for this competition as they have been demon-
strated to be very successful in image classification tasks
since the AlexNet model[3] was introduced in the Ima-
geNet competition[4] in 2012. We fine-tuned 3 pre-trained
CNN architectures that have achieved great accuracy in the
ImageNet competition[4]]: the VGG model[S], the ResNet
model[6], and the DenseNet model[7]. Among the 3 ar-
chitectures, VGG network is a simple feed-forward convo-
lutional neutral network, whereas ResNet and DenseNet al-
low values in lower level layers to directly connect to higher
level layers.

Furthermore, we did various optimizations to boost the

Ihttp://rainforests.mongabay.com/amazon/
deforestation_calculations.html

Fanming Dong

Chuanwei Ruan

accuracy of our classification. We preprocessed the im-
age data through normalization and augmentation in order
to prevent overfitting. We carefully tuned when to enable
weight update, and when to adjust learning rate in order to
reduce the loss. Also, we fine-tuned the probability thresh-
old for prediction to better fit our evaluation metric.

2. Related Work

Previous methods to tackle the classification of satellite
images include statistical methods such as decision-trees
and SVM. Baker et al.[8] and Otukei et al.[9] applied gra-
dient boost trees and SVM on satellite images in order to
classify land coverage. Their studies are similar to ours and
they achieve about 85% accuracy on the test datasets. How-
ever, their models lack the ability for computers to learn
features automatically. These statistical methods rely on
hand-crafted features which can be improved by allowing
computers to learn the feature representation.

As mentioned in the introduction, we adopted VGGNet
model[5], ResNet model[6], and DenseNet model[7]. The
VGGNet model consists of several combinations of filters
and pooling layers. Compared to AlexNet[3], the VGGNet
model is deeper which allows more non-linearities and the
filters are smaller but as effective. The ResNet model is a
very deep model using residual connections. The residual
connection architecture allows ResNet to be able to train
very deep without degrading and thus allows the model to
have very good results in terms of accuracy. The DenseNet
model is a relatively new model. Its architecture is made
up of blocks that are connected to every other layers in the
model. It alleviates the problem of vanishing gradients and
reuses features in the model.

In our study, we also take inspirations from many pa-
pers about the tricks to improve training accuracy. As Ja-
cobs pointed out, the learning rates should be able to vary
over time in order to ensure faster convergence[10]. Don-
ahue et al.[11] and Razavian et al.[I12] pointed out that
model weights trained on different tasks are transferable
and are able to achieve faster convergence by using pre-
trained weights. In Kingma et al.’s paper[13]] proposed
the Adam optimizer. As they note, the Adam optimizer is
computational-efficient, memory-efficient, and suitable for
large datasets. Krizhevsky et al. used data augmentation

http://rainforests.mongabay.com/amazon/deforestation_calculations.html
http://rainforests.mongabay.com/amazon/deforestation_calculations.html

when they trained the AlexNet and found data augmenta-
tion to be helpful in getting more accuracy in results. As
Ding et al.[14] also pointed out, data augmentation works
great for target recognition in difficult conditions such as
random noise, and random missing information. Last but
not least, Zhang el al.[15] noted that neural network ensem-
ble models perform very well on scene classification . By
creating an ensemble, the result is able to get higher score
in accuracy.

There are many other methods to approach satellite im-
age classification. Chen et al.[16] proposed a hybrid deep
neural network to do small object detection. It separates the
maps of the last convolutional layer and the max-pooling
layer of deep neural network to extract features of different
scales. Quintano et al.[17] proposed fractional type convo-
lution filtering. It can improve satellite image classification
by applying filtering algorithms as pre-classification.

3. Background

In this section, we describe in detail on important infor-
mation about how we set up the classification problem.

3.1. Dataset

According to description from the Kaggle website[T]],
the images come from Planet’s Flock 2 satellites in both
sun-synchronous orbit (SSO) and International Space Sta-
tion (ISS) orbit. The images were taken from January 1st,
2016 to February Ist, 2017, and all of them come from
Amazon basin.

Each raw image is 256 x 256 in size. Depth wise, dif-
ferent from ordinary JEPG image dataset which contains
3 channel (RGB), the satellite image dataset also uses the
GeoTiff format and contains one additional channel: near
infrared, which may give us additional information that is
not visible. However, we only use the JEPG image for-
mat in this project because the GeoTiff format does not
show promising results according to the discussion groups
on Kaggle[T].

Two sample images in the dataset are shown in Figure[I}

(a) Labels: clear, primary, road, (b) Labels: clear, primary, road,
water agriculture

Figure 1: Two sample satellite images in the training dataset

3.2. Image Labels

From Kaggle[T]], the image labels can be broken down
into three groups: “atmospheric conditions, common land
cover/land use phenomena, and rare land cover/land use
phenomena”. Labels of each category and their frequencies
in the dataset are shown in Figure 2] Each image should
have one atmospheric label, and may have any number of
land use labels. Also, if the atmospheric label of an image
is "cloudy’, then it should not have any land use label.

3.3. Training and Test Set

Kaggle[1] provides two datasets for this project: one
training set (40,480 samples) that includes correct labels,
and one test set (61,192 samples) whose labels aren’t re-
leased. We split the provided training set such that 1/10 of
the dataset can be used for validation.

3.4. Evaluation

As specified in Kaggle[1]], we evaluate the accuracy of
the dataset by using average F2-score of each image. Each
image has multiple labels and has its own F2-score. F2-
score is defined as the following:

Fy=5 precision - recall

4. precision + recall

Note that F2-score weighs recall higher than precision, and
we have a dedicated technique to optimize for this weight-
ing which will be discussed in the future sections.

4. Approach

We experimented with multiple state-of-the-art CNN ar-
chitectures and optimizations that are known to be very
helpful in training a neutral network. Sectionfd.T|talks about
the architectures and Section .2 talks about our optimiza-
tion approaches.

4.1. Architectures
4.1.1 VGG

We decided to choose the VGGNet[3]] as our starting model
given its robust performance and relatively simple architec-
ture. Specifically, we used the VGG-16[18|] model. It has
16 layers, in which 13 are convolutional layers, and the rest
are fully connected layers.

The VGGNet has achieved great accuracy on ImageNet.
However, unlike ImageNet, we only have around 40,000
images in our training data. The size of our data might
be too small to train the VGGNet from scratch. We de-
cide to use pre-trained VGGNet and keep the weights of
the convolutional layers fixed and modify the last fully con-
nected layer to fit our data. As transfer learning has been
proved to be a very successful method in applying CNN

Frequency of Each Label in the Dataset

cloudy
partly_cloudy

dear [O B

haze

primary I O

water

habitation
agriculture

road

cultivation
bare_ground
slash_burn
selective_logging
blooming
conventional_mine
artisinal_mine
blow_down

Bl Cloud Cover Labels
Bl Common Land Use Labels
EEl Rare Land Use Labels

0.0 0.2 0.4

0.6 0.8 1.0

Frequency

Figure 2: Frequency of Labels

models[[14], we believe we can borrow the strength from
other large dataset by fine-tunning the VGGNet.

We firstly fixed the convolutional layers and fine-tuned
the two fully connected while the weights of the last fully
connected layer were not used. The intuition is that the con-
volutional layers close to the input extract the low-level im-
age features while the fully connected layers extract more
tasks specific features. The satellite images used in our
project are quite different from the images in ImageNet,
which mainly consists of the objects in daily life. Thus,
the high-level information in fully connected layers might
be irrelevant to our task while the low-level image features
might still be very useful. To add more representation abil-
ity, we also tried setting the higher-level convolutional lay-
ers to be learnable and assigning lower layers with lower
learning rates. We hope the high level layers can quickly
learn the high-level features representations without dis-
turbing the low-level layers.

The VGG-16 model implementation and the pre-trained
weights on ImageNet[3] are downloaded from Tensorflow-

SHEm[TS].

4.1.2 ResNet

We also applied the ResNet-50 model[18]. It has 50 layers
and the last layer is a fully connected layer.

We tried two approaches with the ResNet model. One
is to use the pre-trained weights and the other one is to
train the ResNet model from scratch. Out of the pre-trained
weights, we throw out the logits and bias of two layers
because the pre-trained weights in the slim model do not
have them. However, the result from our pre-trained weight
ResNet model does not perform very well. The other ap-

proach is to train the ResNet model from scratch. This does
not intuitively make too much sense because we only have
a limited amount of data. The final result also does not look
good either.

The ResNet-50 model implementation and the pre-
trained weights on ImageNet[3] are downloaded from
Tensorflow-Slim[[18]]. The ResNet-50 model structure is
also referenced from Tensorflow-Slim[[18]].

4.1.3 DenseNet

In this task, the prediction labels are of very different scales
and semantics. We think it would be beneficial to use an
architecture that allows final classifiers to easily access in-
formation from different layers. For example, features from
the early layers might be enough to predict the cloud con-
ditions and primary forest. The DenseNet [7]] is an ideal
choice for this purpose. The DenseNet consists of stacks
of dense blocks. Each dense block is a stack of convolu-
tional layers. In the dense block, the feature map learned in
previous layers are concatenated to the channel dimension
as shown in Figure [3] This design allows higher layers to
access all information from previous layers directly.

Concatenate features map

Figure 3: Simple Illustration of a Dense Block

For our project, we first implemented a DenseNet with
40 layers in TensorFlow and trained it from scratch. Be-
cause the performance was not ideal we then use a pre-
trained DenseNet121-BC model. This model has 121 lay-
ers. "BC” means that the model uses Bottleneck layers and
has a compression rate larger than O as described in [7]. The
Bottleneck layer and compression used here are to improve
computational efficiency.

The weights and the model implementation of the pre-
trained DenseNet121-BC model on ImageNet[3] are down-
loaded from Githubusing Keras[19]].

4.2. Training Optimizations
4.2.1 Loss Function

In this project, we tried two loss functions:

1. Sigmoid Loss

In this multi-label classification problem, we treat each
label as a binary label and compute its sigmoid cross
entropy loss independently. And overall loss of an im-
age is the average loss over all labels. In particular, the
following equation is applied to compute the loss:

K
, 1 , , .
LW = 7 E y,(:)scoreg) —log(1 + escoreﬁv))
k=1

2. Sigmoid+Softmax Loss

Even though there may be more than 1 true label
among the 17 total labels, there can be 1 and only 1
true cloud cover label out of 4 possible cloud cover
labels for each image. In order to optimize for these
constraint, we apply the one-hot softmax cross entropy
loss on the 4 cloud cover labels, and apply the same
sigmoid cross entropy loss on the rest 13 land use la-
bels. Since our evaluation metric, F2-score, weighs
each label equally, we put weight of 4/17 on the soft-
max loss and 13/17 on the sigmoid loss.

4.2.2 Optimizer

We choose the Adam[[13]] optimizer with learning rate decay
for our problem. The Adam optimizer combines the proper-
ties of momentum as well as AdaGrad[20]]. Adam has been
proven to be effective in many situations. Given the limit of
time and resources, we use Adam as the default optimizer
without experimenting other optimization techniques.

Also, we tuned the decay rate in the Adam optimizer in
order to enable the loss to go down even when our model
is very deep. The utilization of the decay rate also makes
sense because we used pre-trained DenseNet weights rather
than training the model from scratch.

Zhttps://github.com/flyyufelix/DenseNet-Keras.
git

4.2.3 Data Augmentation

When we initially built the vanilla transfer learning archi-
tecture, we observed heavy overfitting even after applying
weight decay and dropout[21]]. To mitigate this problem,
we applied data augmentation to transform each raw image
into 36 training samples. This approach has been heavily
used in AlexNet[3]].

Specifically, we applied 4 types of image transformation
to each image:

1. Resizing: Each image in the Amazon dataset has size
256 x 256, whereas all ImageNet pre-trained architec-
tures uses input of size 224 x 224. We simply resize
the image to the network input size.

2. Cropping: We take 5 crops for each image - 4 in the
corners and 1 in the center.

3. Flipping: We flip each image both vertically and hori-
zontally.

4. Rotating: We rotate each image to 90, 180 and 270
degrees.

Notice that unlike typical photograph images such as
what is in the ImageNet, satellite images can preserve
the semantic meaning after flipping vertically and rotating.
This allows us to do more powerful data augmentation than
what was applied in AlextNet[3]].

In training, we randomly pick 1 of the 36 transformations
for each image in each epoch. In testing, we compute the
scores of all transformations and use the average score.

4.2.4 Warm Up and then Fully Train

We tuned the learning rate in two stages. First, we freeze
all convolutional layers and only train on the last fully con-
nected layers in the first 2 epochs. Also in the first stage
we use relatively large learning rate (0.01 or 0.001). In the
second stage, we train on all layers and switch to a smaller
learning rate. The intuition behind having two stages of
learning rates is that the weights of fully connected lay-
ers are randomly re-initialized, hence the gradients given
by the first few epochs might be meaningless for the rest
of the network. We want the fully connected layers to be
quickly adapted to the training data without perturbing the
pre-trained convolutional layers too much.

4.2.5 Threshold Tuning

At first, we used a default rate of 0.5 as a threshold. A
threshold is the value that when the scores of each label
pass this threshold, we will add the corresponding label to
the final predicted values. Threshold tuning makes sense
in our case because the goal is to optimize F2-score which

https://github.com/flyyufelix/DenseNet-Keras.git
https://github.com/flyyufelix/DenseNet-Keras.git

has more weight on recall. We used threshold rate from 0.1
to 0.9 and tested our prediction to calculate F2-score in the
validation set.

4.2.6 Ensemble

After we got results from test set after tuning the threshold,
we made an ensemble model. The intuition behind tuning
threshold first and then make an ensemble model is that we
want to first optimize individual models and then get a re-
sult from these optimized individual models. We create the
ensemble model by first looking at the predicted labels from
the best epochs of each model. Then, we output the labels
that appear more than certain frequencies. We further tuned
this threshold and we found the ensemble model is able to
give us a little boost in the final F2 score.

5. Experiment

We experimented with VGGNet, ResNet and DenseNet
and examined the effectiveness of tricks mentioned in Sec-
tion[4.2] Section[5.T]and[5.2]discuss the results we got from
VGGNet and DenseNet. Section[5.3|compares the best per-
formances among different models.

5.1. VGG

We used the pre-trained weights of VGG-16 model on
ImageNet. Table [T] shows the performances of VGG-16
models under different settings. The mini-batch size used
for all training is 128 and the input image size is 224 x 224
x 3. In the beginning, we only trained the model with very
simple setting: train all of the fully connected layers and the
last three convolutional layers. No other tricks were used.
As we gradually added more tricks including adjusting the
learnable layers, designing new loss function, applying data
augmentation and assigning different layers with different
learning rates, we observe consistent improvements in terms
of the F2-score on the validation datasets. The most signif-
icant improvement was gained from fine-tuning the thresh-
old for different labels. It consistently provides improve-
ment on F2-score from 0.01 to 0.02. Observing that the last
two fully connected layers in the VGG-16 model have too
many parameters, we changed number of neurons in the last
two hidden layers from 4096 to 1024. This simplified ver-
sion VGG-16 model gives the best performance compared
to the original VGG-16 model.

5.2. DenseNet

We first trained a DenseNet40-B model with 40 layers
from scratch to evaluate the potential benefits of using the
DenseNet. Although this model doesn’t use pre-trained
weights, it still gives a validation F2-score comparable to
that of the VGG-16 models.

We then focused on fine-tuning the pre-trained DenseNet
model. We chose DenseNetl121-BC as our model. It has
121 layers but only 7 million trainable parameters. The
DenseNet121-BC model consumes a lot of memory during
the training, so we use mini-batch size of 16. We first train
the full model using Adam with learning rate Se-4. Then
we realized it would be better to warm up the model first
as mentioned in Section [4.2.4] where we train only the fully
connected layers for a few epochs before training the full
model. We then added learning decay to the model. The
decay is defined as the following

1
1+ decay rate - # iterations

lr:=Ir

We also tried to change the loss function as we did for
the VGGNet model. Although it gives better validation F2-
score before tuning the threshold, it gives slightly worse re-
sult after tuning.

5.3. Models Comparison

100

—— Simplified VGG with sigmoid
DenseNet121 with sigmoid

—— DenseNet121 with sigmoid+softmax
0.95

| ey

F2-score
o
w0
o

o
-]
e

0.80 4

T T T T T T
0 10 20 30 40 50
epoch

Figure 4: F2 Convergence Curve over Epochs on Best Ar-
chitectures and Loss Functions

Table [3 lists the best performances we got for different
models. The best model is the pre-trained DenseNet121-
BC model. To further reduce the variance, we applies data
augmentation to the best model at test time and took the av-
erage score as mentioned in Section This helps us
get F2-score 0.9288 on the leaderboard. Ideally the test-
time data augmentation could be applied to all models, but
considering we have 61,192 test images and with test aug-
mentation we need to predict 61,192 x 36 images which we
don’t have enough resources to compute. So we only select
the best candidate to do test-time data augmentation.

Figure [4] shows the speed of convergence between mod-
els. We can see that DenseNet converges much faster than

Model Learning Rate | Trainable Layers Data Augmentation | Loss Function Validation F2
VGG-16 Se-4 FC + last 3 Conv No sigmoid 0.880

VGG-16 Se-6 FC + last 3 Conv Yes sigmoid 0.899

VGG-16 Se-6 FC + last 3 Conv Yes softmax + sigmoid | 0.904

VGG-16 Se-6 FC + last 6 Conv Yes softmax + sigmoid | 0.902

VGG-16 Se-6 All + layer wise learning rate | Yes softmax + sigmoid | 0.8966
Simplified VGG-16 | 5e-6 All + layer wise learning rate | Yes softmax + sigmoid | 0.9052/0.9167*

Table 1: Experiment Results For VGG. For layer-wise learning rate, we divide learning rate by 10 every 3 layers from fully
connected layers to the bottom convolutional layers. * means the model has been applied threshold tunning.

Learning Rate | Warming Up | Learning Rate Decay | Loss Function Validation F2
Se-4 No No sigmoid 0.880

5e-6 Yes No sigmoid 0.899

Se-6 Yes Se-5 sigmoid 0.904/0.9278*
S5e-6 Yes 5e-5 softmax + sigmoid | 0.9069/0.9205*

Table 2: Experiment Results For DenseNet121-BC. * means the model has been applied threshold tunning. Data augmenta-

tion is used during training for all settings.

VGGNet.

5.4. Ensemble of Models

We used the prediction labels from different trained
DenseNet121-BC and VGG models. For DenseNet121-
BC, we included models trained using different learning
rate settings and different loss functions. For VGG models,
we used the simplified VGG-16 models. This ensemble of
models yields our best F2 performance on the leaderboard,
which is 0.9300.

5.5. Detailed Analysis on Best Single Model

Among the architectures we experimented so far, the
DenseNet121-BC gives the best performance both in the
validation datasets and the leaderboard.

During training, early stopping was applied: The train-
ing will stop if the validation loss did not decrease within 3
consecutive epochs. We then select the checkpoint with the
highest validation F2-score. Figure [/| shows that the model
start to overfit the data after approximately 10 epochs.

The distributions of the F2-scores for each label shown
in the Figure [f] seem to be similar to the frequency of la-
bels shown in the Section 3.1. It is reasonable because for
some rare labels the classifier tends to only predict nega-
tive results. This is also one of the reasons explaining why
tunning threshold gives significant performance boosts.

We also plot the co-occurrence matrix for both the true
labels and our predication labels on validation set. (see Fig-
ure 5| The predication labels are attained after adjusting
the threshold. Because the threshold for most labels are
lower than 0.5, the model tends to predict more positive re-
sults than the ground truth. Hence, the plot on the right is

slightly lighter for most of the pairs of labels compared with
the plot on the left. From Figure [5] we see the model suc-
cessfully captures some hierarchical relationships between
labels. For example, the blooming will only occur in pri-
mary forest.

5.6. Discussion

1. Fully connected layers might not be necessary. Mod-
els with very few parameters in fully connected layers
(DenseNets) are able to give accurate results. Also,
fine-tuning pre-trained model is better than training
from scratch considering the size of the training data
in this competition is limited.

2. Regularization and model ensemble work really well.
Both training and test time data augmentation can help
reduce variance, which leads to a better performance.
And the ensemble of models trained with different set-
tings is effective for models with many local optimum.

3. Learning rate decay is necessary. Without learning rate
decay the model will have a hard time dividing into
regions with lower loss. We see a great improvement
after adding the learning rate decay.

4. The modified sigmoid+softmax loss function gives
worse results compared with simple sigmoid loss func-
tion with fine-tuned threshold. One possible reason
is that the modified loss function introduces another
hyper-parameter, weight of sigmoid loss function com-
pared to softmax loss function. In our experiment we
simply set the weight proportional to number of labels
in different categories. Tuning this parameter could
potentially give us high F2-score.

Model F2 on training | F2 on validation | F2 on Leaderboard | # Parameters
Pre-trained Simplified VGG 0.9001/0.9234* | 0.9052/0.9167* 0.9123* 42.3M
DenseNet40-BC 0.907 0.902 0.9043* 1.15M
Pre-trained DenseNet121-BC 0.9084 0.9053 0.9233* ™
Pre-trained DenseNet121-BC* 0.9288* -

Pre-trained DenseNet121-Sig+Softmax | 0.9115 0.9069 0.9147* ™
Pre-trained ResNet50 0.87 0.88 - 0.85M
Ensemble - - 0.93006* -

Table 3: Best Results for Different Models. * means the result was obtained using test-time data augmentation. Due to the
limit in time, we did not tune ResNet50 a lot hence did not submit its test time prediction to leaderboard on Kaggle.

True Label Prediction Label

Figure 5: Co-occurrence Matrix on True Labels vs Predicted Labels on the Best Model on Validation Set

cloudy
partly_cloudy
cear

haze

primary

water

habitation
agriculture

road

cultivation
bare_ground
slash_burn
selective_logging
blooming
conventional_mine
artisinal_mine
blow_down

road
cultivation

bare_ground
road

cultivation

water
habitation
bare_ground

agriculture
gging

blooming

haze
conventional_mine

water
clear
primary

habitation

haze
agriculture

clear

primary
gging
blooming
cloudy
partly_cloudy

cloudy
conventional_mine

partly_cloudy

artisinal_mine

artisinal_mine
slash_burn

blow_down

slash_burn
blow_down

selective_lo
selective_|o

1.000

—— training

cloudy
validation

partly_cloudy
clear

haze

primary

water

habitation
agriculture

road

cultivation
bare_ground
slash_burn
selective_logging
blooming
conventional_mine
artisinal_mine
blow_down

0.975

0.950 +

0.925 4

7 0.9001

F2-score

0.875 1

0.850

____- Training
— m Vvalidation

T
0.2

0.825 1

T T T T T T T T T
1.0 2 4 6 8 10 12 14 16
epoch

T T
0.6 0.8

F2-score

T
0.4

Figure 6: F2-Score of each Label on the Best Model on
Validation Set

Figure 7: F2 Convergence Curve Comparison between
Training set and Validation Set on Best Model

5. Figure[6]shows that F2-scores of rare labels are signif-
icantly lower. A potential solution is to train a separate

model focus only on these rare labels and apply tech- niques such as oversampling.

6. Conclusion

The best performing model in our case is the ensemble
model which combines the results from three DenseNet121
models and one VGG-16 model. The ensemble threshold
for the best performing model is 50%. The single best per-
forming model is the DenseNet121-BC model using pre-
trained weights. The best performing single model adopts a
two-stage learning rate with the learning rate of 5e-6 and the
decay rate of 5e-5 in the second stage. The best performing
single model has used test-time data augmentation.

For the ensemble model, the intuition behind why its
result is better than the other individual models is that by
combining the results from several good models, the vari-
ance will decrease and thus boost the overall F2-score. This
is what we see in our results as well. The reason why the
single best performing model is the above DenseNet model
are:

1. The DenseNet architecture allows each block to take
information from every other block and this feature
matches the characteristics of our dataset.

2. The transferable pre-trained weights gives the model a
good starting point and the two-stage learning rate tun-
ing allows the loss to decrease when the model trains
deep.

3. Applying data augmentation at test time helps reduc-
ing the variance of prediction.

As for the next steps, there are two types of work we
want to pursue. First, we want to further tune our current
model to have a better test F2-score. This includes trying
more hyperparamaters to tune our current best performing
model and focusing on the rare labels in order to predict
them more accurately. The other type of work requires more
changes to our current model. This includes implementing
the small object detection technique in Chen et al.’s paper
[L6] because in our dataset, the labels can correspond to
small items in the satellite images. Another possibility is to
include some hand-crafted features in the model. It is worth
mentioning that from manually designed features such as
moments estimations, the XGboost[22]] algorithm can give
competitive F2-score around 0.88. Including these hand-
crafted features may further improve our F2-score.

References

[1] Kaggle.
2017.

[2] Yann LeCun and Yoshua Bengio. The handbook of brain
theory and neural networks. chapter Convolutional Networks
for Images, Speech, and Time Series, pages 255-258. MIT
Press, Cambridge, MA, USA, 1998.

Planet: Understanding the amazon from space,

3

—

[4

—

(5]

[6

—_

[7

—

(8]

[9

—

[10]

(11]

(12]

(13]

(14]

(15]

(16]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097-1105, 2012.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211-252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770-778, 2016.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens
van der Maaten. Densely connected convolutional networks.
arXiv preprint arXiv:1608.06993, 2016.

Corey Baker, Rick Lawrence, Clifford Montagne, and Dun-
can Patten. Mapping wetlands and riparian areas using land-
sat etm+ imagery and decision-tree-based models. Werlands,
26(2):465-474, 2006.

John Richard Otukei and Thomas Blaschke. Land cover
change assessment using decision trees, support vector ma-
chines and maximum likelihood classification algorithms.
International Journal of Applied Earth Observation and
Geoinformation, 12:S27-S31, 2010.

Robert A Jacobs. Increased rates of convergence through
learning rate adaptation. Neural networks, 1(4):295-307,
1988.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep
convolutional activation feature for generic visual recogni-
tion. In Icml, volume 32, pages 647-655, 2014.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. Cnn features off-the-shelf: an astound-
ing baseline for recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pages 806-813, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan Huang.
Convolutional neural network with data augmentation for sar
target recognition. [EEE Geoscience and Remote Sensing
Letters, 13(3):364-368, 2016.

Fan Zhang, Bo Du, and Liangpei Zhang. Scene classifica-
tion via a gradient boosting random convolutional network
framework. IEEE Transactions on Geoscience and Remote
Sensing, 54(3):1793-1802, 2016.

Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-
Hong Pan. Vehicle detection in satellite images by hybrid
deep convolutional neural networks. IEEE Geoscience and
remote sensing letters, 11(10):1797-1801, 2014.

(17]

[18]
(19]

(20]

(21]

(22]

C Quintano and E Cuesta. Improving satellite image classi-
fication by using fractional type convolution filtering. Inter-
national Journal of Applied Earth Observation and Geoin-
formation, 12(4):298-301, 2010.

Sergio Guadarrama and Nathan Silberman. Tensorflow-slim.

Frangois Chollet et al. Keras. https://github.com/
fchollet/keras) 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Research,
12(Jul):2121-2159, 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929-1958, 2014.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree
boosting system. CoRR, abs/1603.02754, 2016.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

