
Understanding the Challenges and Needs of
Programmers Writing Web Automation Scripts

Rebecca Krosnick1, Steve Oney2,1

1Computer Science & Engineering, 2School of Information
University of Michigan | Ann Arbor, MI USA

{rkros, soney}@umich.edu

Abstract—For web scraping and task automation purposes,
programmers write scripts to interact with websites. This is
similar to writing end-to-end user interface (UI) test automation
suites for software, but on third-party websites that the program-
mer does not own, introducing new challenges. A programmer
might know what semantic operations they want their script
to perform, but translating this to code can be difficult. The
programmer must investigate the website’s internal structure,
content, and how UI elements behave, and then write code to
click, type, and otherwise interact with UI elements. Many tools
and frameworks for creating web automation scripts exist but the
challenges programmers face in using them remains understud-
ied. We conducted two studies to study how programmers write
web automation scripts. The first study focuses on understanding
general challenges. The second focuses on the ways website UI
context and script feedback can be helpful. We also provide a set
of design findings that detail the kinds of context and feedback
developers need while writing web automation scripts.

Index Terms—web automation, automation, macros

I. INTRODUCTION

The Web is a rich source of information and services. The
vast majority of web content was designed to be accessed by
people through web browsers. However, there is tremendous
value in providing services that are also computer-accessible.
Web automation macros—programs that mimic human input
to interact with web pages—can help users perform repetitive
tasks, test software applications at scale, help users overcome
web accessibility issues, and more. Decades of research into
web automation has explored how to allow computers to
extract information [1] and perform actions [2]–[4] on web
content. Although many tools for web automation have been
proposed, the fundamental challenges of writing web automa-
tion code remains understudied.

The particular challenges and needs of web automation
tools are important to understand for several reasons. First,
web automation (and related techniques like Robotic Process
Automation) are increasingly common as more information
and services continue to be digitized. Second, an evidence-
backed description of the challenges of web automation can
help provide valuable design guidelines to a large and growing
body of work into web automation tools. Finally, several
aspects of writing web automation code make it meaningfully
different from other kinds of programming. Writing web

This work is supported by NSF Award 2007857.

978-1-6654-4592-421$31.00 ©2021 IEEE

automation code requires referencing an external data source
(a web page) that was designed to be consumed by humans,
rather than code. Aspects of interacting with a web page that
are second-nature to people—referencing a particular button,
handling unexpected content, and dealing with sequentiality
and timing—can be challenging to deal with in code. Further,
web pages change over time (e.g., through redesigns or internal
refactoring) and change with context (e.g., with A/B testing).

This paper contributes an evidence-backed description of the
challenges of writing web automation macros. We conducted
two studies—one focused on the general challenges of writing
web macros and another focused specifically on providing
feedback and context—to better understand these challenges.
Among other things, our findings include that developers need
feedback and UI context about the page elements they are
selecting and interacting with. This paper contributes:

• A first study, uncovering the general challenges program-
mers face when writing web automation scripts in a
traditional text editor.

• A web automation IDE prototype that presents UI snap-
shots and feedback on element selection across multiple
execution contexts.

• A second study, understanding where UI feedback and
context features can help programmers writing web au-
tomation scripts, and where support is still lacking.

• Design implications for future web automation tools.

II. BACKGROUND AND RELATED WORK

A. Background on Web Automation
Web automation is useful for saving time and energy on te-

dious and repetitive computer tasks (e.g., approving employee
payroll, scraping data), testing software systems robustly at
scale, and automating web tasks on inaccessible websites for
blind users [5]–[8]. Web automation tools mimic human inter-
actions on web pages. In most web automation frameworks,
programmers write code that simulates interactions such as
clicking and typing in a web browser. In order to specify
which UI elements to interact with, programmers typically
use XPath [9] or CSS selectors [10]. Both XPath and CSS
selectors reference the DOM (Document Object Model) [11]—
a tree structure that represents page content. The typical setup
for writing web automation scripts consists of a code editor
(for writing the automation code) and a web browser with
developer tools [12], [13] (for referencing the page’s DOM).

https://978-1-6654-4592-421$31.00
mailto:soney}@umich.edu

B. Web Automation Tools

Selenium [14], Puppeteer [15], and Cypress [16] are three
widely-used commercial web automation frameworks at the
time of writing. All three frameworks work similarly—
programmers write code in these frameworks (which provide
functions for simulating user input, referencing the page, and
more). Selenium and Puppeteer simply show the real-time
execution of the script on the website UI. Cypress is a newer
framework that additionally allows the programmer to post
hoc inspect the page state before or after any script command
and see which elements were selected. In a lab study we test
Cypress and a prototype we built to learn what kinds of UI
context and feedback programmers find useful.

Some tools have explored Programming-by-Demonstration
(PbD) approaches for web automation, in order to save
developers the effort of writing scripts manually. PbD and
direct manipulation interfaces allow users to specify or edit
a program’s behavior by providing visual examples [17], [18]
or directly manipulating the visual output [19]–[21]. Selenium
IDE [22], iMacros [23], Cypress Studio [24] and several re-
search systems (e.g., Koala [3], CoScripter [4], Rousillon [25]
and Sugilite [2]) have explored PbD approaches for generating
scripts, i.e., by having the user demonstrate their actions on
the web UI. However, PbD systems are limited so in order
to have precise control, programmers often still want to hand-
write their web automation scripts.

Other researchers have proposed making UI automation
easier by simplifying the language used to write web au-
tomation macros. Koala [3] and CoScripter [4] represent
scripts in a language that is close to natural language—for
example, “Click ‘Add to cart’.” Similarly, Sikuli [26] allows
programmers to specify elements visually (with screenshots)
for desktop-based automation. With these tools, developers
would not need to reference the page’s internal DOM structure.
Instead, the interpreter searches the page for an element that
fits the high-level description of the target element. However,
scripts generated in these systems are often not as expressive
(because the language is limited) or robust as scripts that
explicitly reference the internal page DOM.

C. UI Context and Feedback

As we describe in the “Design Implications” section, many
of the challenges of writing web automation code can be cate-
gorized as the need for UI context or live feedback. Although
the specific context and feedback needs for web automation
developers are unique, prior research has explored mechanisms
for integrating context and feedback into development tools.

Some programming systems [27]–[30] generate story-
boards [31] to illustrate the sequence of program actions and
their resulting user interface states. Cypress and our prototype
that we evaluated in Study 2 similarly offer UI snapshots to
explain program behavior.

Kubelka et al. [32] studied the kinds of immediate feedback
features programmers use in several languages, including
JavaScript. They observed how programmers heavily use the
DOM inspector and console to get faster feedback. In our

work, we similarly observed how programmers heavily use
the DOM inspector and console. We also observed challenges
programmers face specific to web automation and then evalu-
ated environments that offer continual or live feedback on UI
state sequences and UI element selection.

III. STUDY 1: TRADITIONAL EDITOR ENVIRONMENT

We conducted a user study to learn the strategies program-
mers use and the challenges they encounter when writing web
automation scripts in a traditional text editor environment.

A. Study Design

We recruited 15 participants (3 female, 12 male; 20–40
years old) from our university and social media. All par-
ticipants reported substantial experience with JavaScript and
querying the DOM with CSS selectors. Six had 2–5 years and
nine had at least 5 years of general programming experience.
Our participants included eight professional developers, one
product designer, five graduate students, and one undergradu-
ate student. All but one participant reported at least some prior
experience with creating web automation scripts.

Each session lasted 90 minutes and participants were com-
pensated with a $25 USD (or equivalent) Amazon gift card.
We asked participants to use Puppeteer [15] to write a web
automation script. Only one participant had prior experience
using Puppeteer. We first gave participants a 15 minute tutorial
to familiarize them with Puppeteer. During the task we gave
participants reference material for Puppeteer and CSS, allowed
them to search online, answered questions about syntax, and
provided hints if they were stuck for awhile. We gave each
participant one of three tasks to work on for 45 minutes (each
task was assigned to five participants):

• Airbnb or Google Hotels: Create a script that searches for
hotels. Set a location (text field), check-in and check-out
dates (calendar widget), and display matching results.

• Amazon: Create a script for identifying an item to pur-
chase. Search for an item (text field), indicate it must be
available via Prime (checkbox), find the first result with
a “Best Seller” label, and print out the name of the item.

We chose these tasks to observe a variety of scripting steps
participants would need to take (e.g., advancing a calendar
to the desired month on Airbnb and Google Hotels; querying
for appropriate ancestor and descendant DOM elements on
Amazon), as well as their element selection strategies for a
variety of website DOMs. Although the Airbnb and Google
Hotels tasks are semantically very similar, we used both
because we noticed the Google Hotels DOM is complex and
many participants were stuck in the early stages of the task.

We asked participants to generalize their scripts to support
variable input values (i.e., locations, dates, item to purchase)
and gave them two test cases to ensure their script worked for.
We then conducted a brief interview.

B. Findings

1) Selecting UI elements: In order to correctly select a de-
sired UI element, participants had to choose CSS selectors [10]

that uniquely identify the desired element and are robust
to page state changes and varying user input. This involved
inspecting the DOM to understand the relationships between
nodes and reasoning about selector specificity, either based on
intuition or by testing selectors manually. For many element
selection subtasks, choosing appropriate CSS selectors took a
few minutes and some iteration (e.g., stacking selectors once
the participant realized a particular CSS class was not unique
enough), but were not overly difficult. Other element selection
subtasks were more challenging, as we describe below:

Sometimes a unique identifier is not robust across
sessions. Some websites (e.g., the Google Hotels website in
our study) randomly generate the letters/numbers in IDs [33],
classes [34], or attributes [35] per page load or browser
session. However, some participants did not realize this
ahead of time and accidentally chose selectors containing
randomly generated strings. Two Google Hotels participants
did this when trying to select the calendar element, using
the dev tool’s “Copy selector” feature to get a unique
selector for it (e.g., #ow28 > div:nth-child(1)
> div:nth-child(1) > div:nth-child(1) >
div:nth-child(2)), but this included an ID (e.g.,
#ow28) that was randomly generated per page load. These
participants were then puzzled when the selector did not
match any elements on the next run, and when they tried
“Copy selector” again and got a different selector this time
(e.g., #ow24 > div > div > div:nth-child(1)).
C3 spent 20 minutes and C5 ten minutes unsuccessfully
investigating why their selectors were not working before the
study facilitator explained that the IDs change per page load.

Fig. 1. To query the Amazon DOM for the first “Best Seller” and get the
item’s name, (1) query for the first “Best Seller” label, (2) query for its
ancestor that represents the full item, and then (3) query for the item name.

Multi-part queries through the DOM hierarchy. To
select the item name for the first “Best Seller” on an Amazon
results page, it was not possible for participants to query for
simply a single selector. The “Best Seller” label (Figure 1, box
1) and the item name (Figure 1, box 3) are neither ancestors
nor descendants of one another, but rather both descendants of
a common DOM node ancestor (Figure 1, box 2) representing

the item as a whole (which contains the “Best Seller” label,
the item name, item image, etc). Four participants took the
approach of first searching for the first “Best Seller” label
on the page, then querying up through the DOM tree for
the node representing the item as a whole, then querying
down through this node’s descendants to find the item
name (Figure 1). For example, one participant’s query was
$(".a-badge-text:contains(Best Seller)")
[0].closest(‘div[data-component-type=
"s-search-result"]’).find("h2 span.a-text-
normal"). This was non-trivial, because it required careful
search of the DOM to find a common ancestor for the “Best
Seller” label and item name nodes. These four participants
took between 7.5 and 22 minutes to investigate, identify,
and test their full selector query chain, a testament to the
challenge. The fifth Amazon participant took a slightly
different approach, first selecting all of the item containers on
the page, then looping through to find the first one containing
the text “Best Seller”, and then planned to query down
through this node’s descendants to find the item name. This
participant spent 13 minutes on this, but ran out of time.

2) Keeping track of DOM nodes: Most commercial web-
sites have extensive and complex DOM trees. In order to write
selectors that are correct, robust, and unique, programmers
need to account for not only the target DOM node but also
other elements in the DOM. For example, they might need
to find the common ancestor of two elements or compare
different elements to see if they have the same class. Although
most browser dev tools make it easy to navigate to one par-
ticular element, they often do not help developers understand
the relationships between different parts of the DOM.

3) Navigation and timing: Some interactions cause the
browser to navigate to a different page (i.e., from the Ama-
zon home page to a search results page). Before trying
to interact with a UI element on a new page, the script
needs to allow the page to finish loading (e.g., via the
waitForNavigation [36] command). However, some par-
ticipants forgot to include a “wait” command and as a result
their script failed to find target UI elements on the page. It took
the programmer some effort to understand why the UI element
could not be interacted with, because when they manually
inspect the page, they see the UI element is present.

4) Trouble typing into input fields: Three Google Hotels
participants (C2, C3, C6) had trouble with what originally
appeared to be a simple subtask – typing a location into a
search bar. These participants decided to select the search
bar by the selector .whsOnd.zHQkBf and programmatically
type into it, but when they ran the script they did not see
this typing behavior occur and were puzzled. One participant
instead searched for a different selector to use, while the other
two participants spent significant time (C2: 16 min, C6: 5 min)
trying to debug, trying different things like setting the value
attribute of the element, which also did not work as desired.
The reason participants could not type into the element is
because there are actually multiple <input> elements on
the page with the same class, the first two of which correspond

to the location search bar. However, it turns out that the first
element is disabled, which none of the participants noticed.
In order to successfully type into the search bar, participants
either had to click into the first element before typing into
it to give it focus, or they had to select the second element
matching their selector, which turns out to not be disabled.
This second element matching the selector (but not the first)
has the attribute selector [aria-label="Enter your
destination"], which a fourth participant C4 chose on
a whim at the beginning of the task and as a result never
ran into the challenges the other participants faced. Relatedly,
participant D3 working on the Airbnb task tried typing dates
into the “Check in” and “Check out” date elements, but these
elements cannot be typed into at all—the user or script has to
actually click dates on the calendar. For these challenges in
trying to type into or set the value of UI elements, partici-
pants did not receive explicit feedback from the environment
that these actions could not be performed.

5) Interacting with calendar widgets: A large part of the
Google Hotels and Airbnb tasks involved appropriately inter-
acting with and querying the calendar widget. The calendar
widget only shows two months at a time (the current month
and the next month), so if trying to book a hotel for several
months in the future, the script will need to advance the
calendar to the correct month. Participants had to reason about
how to identify if their desired month and date were visible in
the calendar, which involved understanding what the DOM
looks like. For example, the Airbnb calendar widget only
shows two months at a time, but the DOM actually contains
four months in total at a time (i.e., the prior and next months
are in the DOM but visibly hidden), which impacts the logic
the user might use to correctly identify the current months.
Participants also had to make sure that relevant UI rendering
finished before they performed queries (e.g., that the calendar
finished rendering before they queried any of its contents),
otherwise the desired DOM nodes might not be present.

6) Feedback loop and debugging: Participants used a com-
bination of different approaches to understand the results of
their code. Six participants simply ran their full in-progress
Puppeteer script each time they wanted to evaluate its behavior.
The other nine participants used a combination of running
the full script and executing commands in the browser dev
console, shortening their feedback loop. The browser dev
console gave them immediate feedback on whether their
CSS selectors uniquely matched the elements they intended,
whether interacting with an element had the desired effect
(e.g., whether clicking on a button causes the page to nav-
igate), and whether an element had particular attributes. In
fact, one participant (Amazon task) essentially drafted his
entire script in the browser dev console before adapting it to
the Puppeteer environment, incrementally writing commands,
observing whether they worked, and adjusting as necessary.
11 participants also inserted console.log print statements
into their scripts to check intermediate values. Six participants
used the browser debugger in order to step through their code
to identify the source of a problem and be able to inspect the

DOM at a particular page state.
Several participants explicitly commented that the feedback

loop for evaluating whether their code worked was slow, not
receiving feedback on their code until the next time they
actually ran the script. For example, Google Hotels participant
C4 said “I’ve done a fair amount of testing and I work as a
front end Dev for my job. So I’m using selectors all day long.
You can see clearly how many mistakes I was making and
there’s nothing, there’s no feedback to go ‘you’re being a bit
of an idiot here’. The computer is terrible at that....The tests
are reasonably kind of slow to run. So if you get something
wrong, you have to go work out kind of what’s gone wrong,
that’s not obvious. And then you kind of go run the tests again.
And by the time you’ve done all that, it’s like well two minutes
in my life, I’m never getting back”.

7) Future website changes might break scripts: Six par-
ticipants noted that even if they find CSS selectors that work
today, their script could break at any time if the website owner
changes the website’s content, layout, or DOM implementation
– “I would say probably in all cases, you just can’t be sure
if it’s going to work tomorrow...I don’t know that [selecting
by text] is necessarily going to be more stable than just a test
ID or class name. Because who knows what they will change
first” (D4 – Airbnb).

As a proxy for testing the robustness of participants’ CSS
selectors and understanding how website DOMs change over
time, we searched for participants’ selectors in older versions
of the task websites (via the Internet Archive WayBack
Machine [37]) to see if they existed there. Some selectors
work for website versions from the last several years, for
example the #twotabsearchtextbox selector for the
search bar on the Amazon home page works on websites
back until July 2010. However, participants’ selectors for
other elements do not work for earlier website versions within
a year of when we ran our study (October 2020). Of the
four Amazon participants who finished creating a selector to
select the text for the first “Best Seller” item on the page,
three participants’ selectors do not work on the January 2020
version because they selected by attribute values or class
combinations that previously did not exist. Of the three Google
Hotels participants who finished creating a selector for click-
ing to open the calendar widget, two participants’ selectors
(.p0RA.ogfYpf.Py5Hke and .DpvwYc.of9kZ) do not
work on the October 2019 version, while another seemingly
obscure selector (.eoY5cb.MphfQd.yJ5hSd) does work.
In fact, .DpvwYc.of9kZ actually no longer works on the
current Google Hotels website as of the submission of this
paper (May 5, 2021). This suggests that writing selectors that
are robust across page changes is a significant challenge.

IV. STUDY 2: ENVIRONMENTS THAT PROVIDE UI
CONTEXT AND LIVE FEEDBACK

We conducted a study to evaluate the benefits and limita-
tions of web automation environments that provide the pro-
grammer UI context and feedback. We evaluated a prototype
we built (Figures 2 and 3) and Cypress [16], an increasingly

popular test automation framework. First we describe each
environment. Then we describe the study design and results.

A. Prototype

We designed and built a prototype IDE (Figures 2 and 3)
for programmers writing web automation scripts, inspired in
part by Study 1. The prototype provides live feedback on
CSS selectors, integrates UI context within the code editor,
and helps users understand script results across different user
inputs and for different pages. We built this prototype to
provoke new ideas about providing UI context and feedback
in web automation tools, and see to what degree programmers
find them useful. The prototype includes a code editor on the
left, main website view in the center, and UI snapshots which
pop out from the right. Chromium dev tools are available for
the main website and UI snapshots.

Fig. 2. It is challenging to select an author link on Medium because the <a>
element does not have a semantic or specific selector. Instead, the parent
<div> has a unique set of classes, so the programmer includes those in
the selector – .bh.b.bj.aq a. Our prototype immediately highlights all
matching elements on the page with a blue border, and lets the programmer see
that they are mistakenly selecting not only author links but also publications.

1) Dynamic element highlighting: When the programmer
writes a CSS selector, matching UI elements in the current
website view are highlighted with a blue border, as Figure 2
shows. Each time the user edits their code or moves their
cursor to a different line, the highlights update to show the
matching elements. This gives developers immediate feedback
on which elements they are selecting and can help them
identify mistakes.

2) UI snapshots: At runtime the tool captures UI “before”
and “after” snapshots for each line of code, which the pro-
grammer can review to understand the effect of a given line.
If the line has a CSS selector, the matching UI elements
are highlighted in the snapshots (Figure 3, green borders for
elements matching line 14 selector dd.txt).

3) CSS selector validity feedback: An error message is
provided and squiggle shown beneath each CSS selector string
in the editor to indicate its validity in the context of the runtime
page state: a yellow squiggle if the selector is found but not
unique (Figure 3, lines 6 and 14) and a red squiggle if the
selector is not found. Squiggles are updated live when the
user edits a selector, with the selector checked against the UI

“before” snapshot for that line. If snapshots are stale (i.e.,
earlier parts of the script have been edited since the last run),
validity feedback is not shown for CSS selectors on that line.

Fig. 3. Our prototype lets users inspect UI snapshots per line of code, across
execution contexts. Here, the script has failed in the i=1 iteration of the loop,
and the snapshots illustrate why. The UI snapshots for line 14 indicate that
Stella (i=0) has five info elements (highlighted with a green border) matching
selector dd.txt whereas Molly (i=1) only has one, which explains why the
infoItems[1] indexing on line 15 failed for Molly’s page.

4) Context and feedback across different runs: The proto-
type allows programmers to write scripts that contain loops
and to run their script simultaneously across different sets of
user inputs. This lets programmers test their code to make sure
it works across scenarios or pages, and see corresponding UI
snapshots and holistic CSS selector feedback for a given line
of code in one place (Figure 3). This might help programmers
discover that they have written a CSS selector or other logic
that works in some scenarios or pages but not all.

5) Implementation: The prototype is implemented as an
Electron [38] app, using Monaco editor [39] and Pup-
peteer [15] as the automation scripting library. It uses rrweb-
snapshot [40] to capture and render UI snapshots of the DOM.

B. Cypress

Fig. 4. Cypress running a script that scrapes data from the Petfinder website.
The user can hover or click on a particular command to see the UI state at that
point in the execution, here item 40 where [data-test="Pet_Breeds"]
is selected. The matched element (“Pit Bull Terrier Mix”) is highlighted in
the website view on the right.

Cypress [16] is an increasingly popular test automation
environment that offers visual context and feedback about

scripts at runtime. With Cypress, programmers write their code
in a text editor and when they save their file, the results
of their script are automatically updated in a web browser
augmented with Cypress UI panes (Figure 4). On the left,
the Cypress command log presents the sequence of element
selection and interaction commands the script executed. The
programmer can hover or click on a given command (e.g.,
item 40 in Figure 4) to see the website’s UI state at that point
in the execution in the main browser viewport. For selection
commands, the selected element(s) will also be highlighted in
the website UI and the number of matched elements indicated
on the command log item. Programmers can also use their
browser’s built-in developer tools as they normally would.

C. Study design

We recruited ten participants (eight male, two female; age
21–56, median age 29) from our university department, social
media, and the Future of Coding community to participate in
a 90 minute user study. We compensated participants with a
$25 USD (or equivalent) Amazon gift card. Participants were
all experienced programmers (eight with at least 5 years, two
with 2–5 years experience) and all reported being comfort-
able working with CSS selectors and JavaScript methods for
querying the DOM. Four participants reported some but not
extensive experience with Cypress. Participants came from
a variety of occupations (five professional developers, three
PhD students, one undergraduate student, one CTO) and have
varying experience with UI automation, ranging from none
to more than five years. Each participant completed a web
scraping task on each of the two conditions, our prototype
and Cypress. The two web scraping tasks were:

1) Medium: Create a script that navigates to a Medium
topic page1 and for the first five articles, navigates to the
article author’s page, prints out the number of followers
they have, and then navigates to their “About” page.

2) Petfinder: Create a script that navigates to a Petfinder
search results page2 and for the first five dogs, navigates
to the dog’s page, prints out the dog’s breed, and prints
out information about the dog’s health.

We chose these two websites because they are non-trivial to
write scripts for: many elements do not have IDs, classes, or
attributes that are semantically meaningful to select by; and
there are differences across pages on a given site, either in the
content shown or DOM implementation.

We counterbalanced task order and website/tool pairings.
Participants were given 25 to 30 minutes per task, with the
exception of P1 who was only given 22 minutes for the
Cypress task. Before each task, participants watched an eight
minute tutorial video about the tool that illustrated how it
works and its different UI context and feedback features. We
gave them a reference sheet and allowed them to search the
web for resources during the task. Due to short task time
and to help fill knowledge gaps, during the task we answered

1https://medium.com/topic/programming
2https://www.petfinder.com/search/dogs-for-adoption/us/ny/new-york-city/

questions they had about Cypress, Puppeteer, and CSS syntax
and provided hints if the participant was stuck for awhile.
After completing both tasks, we conducted a brief interview.

D. Results

Participants found aspects of both tools useful, in particular
the feedback on which UI elements are being selected. We
first give an overview of the main challenges participants
encountered in writing generalized scripts. We then discuss
the kinds of context and feedback participants needed, in what
ways the tools provided them, and participants’ opinions on
specific UI context and feedback features.

1) Challenges: A primary challenge of the tasks was identi-
fying selector logic that generalizes appropriately. Specifically,
some of the common challenges were:

Selecting content correctly across pages when it has no
semantically meaningful class names and content order
varies. Petfinder dog profile pages (e.g., as seen in the
snapshots in Figure 3) include information about the dog’s
health, friendliness, adoption fee, and more, but the exact
categories and number of categories shown per dog varies.
This information is presented in DOM elements that have no
semantically meaningful class or attribute names, making them
more challenging to extract. When we asked participants to
scrape dogs’ health information across pages, six participants
tried selecting by a general selector like dl dd.txt, which
selects text from all information categories, and then indexing
into the results list to choose the second item (which, on the
first dog’s page, corresponds to the health information). A
couple participants noted that this might not work, but tried
it anyway. Once they ran their script, they got an error and
saw that the second dog only has “health” information and
no other categories, so their indexing approach is not robust
(Figure 3). Three other participants up front chose to select
by text value, which was a successful approach – they first
selected the element containing the text “Health”, then chose
its next sibling to retrieve the information itself.

Selecting an element correctly when it has different
CSS class names across different pages. The Medium
website uses obscure CSS class names that vary across pages.
All authors have a “number of followers” element in their
page header but the CSS classes are different per author.
Many participants constructed their selector for the “number
of followers” element using the CSS classes listed on the
first author’s page (e.g., .cd.gg.t a), which then did not
work on other author pages. Four participants encountered this
problem only after they ran their script and saw a “no elements
matched” error. However, two other participants avoided this
problem by instead using the more robust and semantic se-
lector [href$="/followers"], selecting elements whose
href attribute ends in /followers. One participant made
this choice based on intuition, and the other first chose to
review multiple author pages’ to compare their DOM trees and
check if the class-based selector they chose would generalize,
and they saw it did not.

https://medium.com/topic/programming
https://www.petfinder.com/search/dogs-for-adoption/us/ny/new-york-city/

Identifying elements that are clickable. For subtasks that
involved clicking, participants were easily able to identify
the correct visual element on the page to click on. However,
when constructing a CSS selector, some participants selected
an ancestor element of the clickable <a> element (e.g.,
because the ancestor has more specific classes or attributes),
but the ancestor in some cases actually does not respond
to click events. For example, when selecting an author link
from the Medium starting page, participants discovered that
author links do not have semantically meaningful or specific
classes or attributes (Figure 2). The best option is to use
the author link’s parent’s class names (e.g., .bh.b.bj.aq)
as part of the selector. Five participants used a selector like
.bh.b.bj.aq but forgot to further query to select the actual
<a> element, and were therefore confused when clicking
.bh.b.bj.aq did not navigate to the author’s page. Two
participants experienced the same problem on Petfinder.

Choosing a selector that is specific enough to select
certain elements but not others. As mentioned above, par-
ticipants used selectors like .bh.b.bj.aq and then further
queried by a to select author links from the Medium website.
Many participants therefore simply chose .bh.b.bj.aq a,
which selects all <a> with an ancestor that has classes
.bh.b.bj.aq. This selects the author link (e.g., text “Owen
Williams” in Figure 2), but also incorrectly selects publication
links (e.g., text “in Debugger”). Three participants used this
selector and only discovered it was too general once they
ran their script and saw it navigating not only to author
pages but also publication pages. On the other hand, a dif-
ferent participant (P2) realized his selector was too general
before he even ran his script, by taking advantage of our
prototype’s dynamic element highlighting feature. For his first
selector attempt .bh.b.bj.aq a, author and publication
links were highlighted (Figure 2), which is not what he
wanted. He then adjusted his selector to be .bh.b.bj.aq
a:first-child and saw the blue highlighting update to
highlight only the author links as he wanted.

2) Element selection context and feedback: Participants
appreciated receiving feedback and UI context for the ele-
ments their script selected. Seven of ten participants verbally
expressed that they found the CSS selector inline feedback
squiggles in our prototype useful. Participant P6 said “I found
that really useful, the inline contextual help on that, because
that helped me like immediately identify, ‘OK, it was running
this line, it couldn’t find this thing’ ”, referring to a CSS
selector he wrote that had a typo. A couple participants also
noticed that the selector feedback squiggles update when they
edit a selector string – “I’m seeing that when it doesn’t
match anything, that turns red. If I had known it existed
at the beginning I would’ve used that instead of fiddling
around in the console. That feedback is really nice” (P7).
Participants similarly appreciated Cypress’s runtime element
selection feedback.

Participants also appreciated selected elements being high-
lighted in the website view and UI snapshots, and used this
to identify if they selected the desired elements and make

corrections accordingly. For example, with Cypress, partici-
pant P2 realized that simply selecting by the text “Health”
on the Petfinder website was not specific enough to query
the “Health” category, because he saw another instance of
“Health” on the page was getting selected instead. With
Cypress, P9 realized that her selector for selecting author
links on Medium was actually incorrectly selecting publication
links some of the time. Seven participants said the dynamic
element highlighting our prototype offers in the main website
view is useful, commenting on how the dynamic highlighting
shortens the feedback loop and provides an easy way for
checking if their selector is selecting the right elements. P2
in particular used the dynamic highlighting feature heavily,
iteratively writing and adjusting his selector based on the
highlighting feedback, and for example realizing he was
incorrectly selecting publication links as discussed above in
the “Challenges” section and Figure 2.

Participants mentioned additional kinds of live feedback
they would like to see. P1 and P6 want to see live UI snapshots
that update immediately each time the user edits their code.
P2 also wants to see variable and element attribute values
evaluated live – “I would probably like to see what the [hrefs]
capture, because I usually spend a lot of time debugging...like
what would be evaluated...a bit of like a REPL experience like
in dev tools or console”.

3) Understanding page states: In creating their scripts,
participants needed to understand the pages with which their
script was interacting. When participants needed to confirm
that their script commands worked as intended and navigated
to the correct sequence of pages, most participants simply
watched their script run in the main website view. One partic-
ipant (P4) used Cypress’s snapshots heavily for understanding
unexpected page navigation. She was confused why a certain
author was visited twice and used Cypress’s snapshots to
discover that the order of authors listed on Medium had
changed during the course of her script’s execution, which
was using the live website content. To write generalized
element selection logic, participants needed to understand the
similarities and differences between different author pages on
Medium and different dog pages on Petfinder, and to do this
they manually navigated in the main website viewport.

Although participants did not heavily use UI snapshots,
several participants commented on how they could be useful.
P8 commented on how being able to compare different pages
is important – “I realized that each page might be different,
I wondered if that selector from the last page is going to be
generalizable...I wonder if there’s like a better way than me
just manually clicking through [the pages], I was imagining
if there’s a visual comparison, where I got to select multiple
sites at once...”. We suspect UI snapshots were underutilized
by participants because 1) the short task time was not enough
to become fully familiar with UI snapshots and internalize
where they would be useful and 2) UI snapshots might be a
tool that is appropriate for less frequent situations.

4) Traditional debugging approaches: Even with the var-
ious UI context and feedback features available, most par-

https://bh.b.bj.aq

ticipants still leveraged traditional web UI development and
debugging techniques. Seven participants executed selector
query commands in the browser dev console to experiment
with candidate selectors, check which element(s) they match,
and further inspect these elements.

V. DESIGN IMPLICATIONS

As our study results show, writing web automation code
presents a unique set of challenges and information needs.
We can divide the information needs of web automation
developers into roughly two categories: context and feedback.
In this section, we describe our recommendations for the
kinds of contextual information and feedback that future web
automation tools should provide.

A. Contextual Information

Web automation code references the internal structure of
the web page on which it runs. Providing the right context
about the target web page can make it easier for developers
to write Web automation macros by bridging the “gulf of
execution” [41].

• DOM nodes and values: The code editor should provide
inline access to the values of variables, selected elements,
and their attributes, perhaps available on hover. Inline
access is important for helping developers early on un-
derstand the elements they are selecting and the values
their script is producing.

• UI snapshots: UI snapshots of each step of the execution
should be provided to help programmers understand
whether they are selecting the correct elements, whether
the expected behavior occurred, and what the page state is
after a given command. Many participants in our second
study found this helpful.

B. Effective Feedback

Immediate feedback can help developers discover problems
in their code early by bridging the “gulf of evaluation” [41].
It may be technically challenging to provide live feedback, as
web automation scripts do not run immediately but rather only
as quickly as web pages navigate and render. For efficiency, a
live feedback tool might keep a copy of the page state per line
of code, so that whatever line of code the programmer edits
next, the script can be run starting from that particular line.

• Feedback on selectors: The code editor should provide
inline feedback per element selection command, indicat-
ing clearly the number of matching elements and whether
any elements are hidden. The exact elements that are
selected should be highlighted in a UI snapshot of the
corresponding page state. Many participants in our second
study found this feedback helpful. UI snapshots should be
shown in the periphery of the editor so the programmer
can validate their element selection logic as they write it.

• Feedback on interactivity of elements: The code editor
should give feedback on whether the selected element
can be interacted with as the developer intends. For
example, if the programmer tries typing into an element

that cannot be typed into, clicking on an element that
cannot be clicked, or setting the value for an element
that has no value attribute, the editor should show an
error rather than letting the command silently fail. This
feedback is important because information about element
event handlers is not always clearly visible in browser
dev tools. None of the environments we evaluated provide
feedback on whether elements can be interacted with as
intended, and as a result a few of our participants were
puzzled that their interaction commands did nothing.

• Feedback across pages: Many participants in our studies
wrote element selection logic that worked for one website
page but that they later realized did not work for others.
Perhaps web automation tools should proactively suggest
or prompt users to identify multiple pages that the script
should run correctly on. This could help programmers
earlier on understand differences across pages and write
code that appropriately generalizes.

• Longitudinal feedback: Developers cannot anticipate and
have no control over how and in what ways third-party
websites will change over time. We saw that the DOM for
websites from our first study changed within the course of
a year, and some participant-chosen selectors would not
have worked on those other website versions. It would
be valuable for web automation tools to help developers
identify when a website has changed in ways that will
break their script or cause its behavior to change, and to
help developers repair their script accordingly.

VI. DISCUSSION AND LIMITATIONS

Our study design allows us to present a qualitative descrip-
tion of the challenges and needs of programmers writing web
automation scripts. However, due to its small participant size
and exploratory nature it is lacking quantitative measures of
how long certain task types take and whether UI context and
feedback features offer speedup. Additional studies with more
participants, a broader set of tasks, and longer study sessions
would be informative.

UI context and feedback features will inform program-
mers as they develop and debug, but will not actually write
the code for them. Recent innovations in programming-by-
demonstration [2], [25] could help generate automation scripts,
but for full control, programmers will still need to reason about
and choose navigation logic and CSS selectors themselves.

VII. CONCLUSION

Programmers writing web automation scripts have special-
ized needs, as they need to interpret third-party websites and
programmatically mimic user interactions. Through two user
studies, we found that these programmers need contextual in-
formation about the UIs they are interacting with and feedback
on their element selection and interaction code. We hope our
research can help guide the design of future web automation
tools. We also believe many of our design implications may
be relevant for UI test automation and UI programming.

ACKNOWLEDGMENTS

We thank our study participants for their time and effort
which has provided invaluable insights, and our anonymous
reviewers for their feedback which has helped improve the
paper. We also thank John Joon Young Chung, Nel Escher,
Nikhita Joshi, Sarah Krosnick, Mauli Pandey, April Yi Wang,
Lei Zhang, and Haotian Zheng for their feedback.

REFERENCES

[1] M. Craven, A. McCallum, D. PiPasquo, T. Mitchell, and D. Freitag,
“Learning to extract symbolic knowledge from the world wide web,”
Carnegie Mellon University, Tech. Rep., 1998.

[2] T. J.-J. Li, A. Azaria, and B. A. Myers, “Sugilite: creating multimodal
smartphone automation by demonstration,” in Proceedings of the 2017
CHI conference on human factors in computing systems, 2017, pp. 6038–
6049.

[3] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan,
“Koala: capture, share, automate, personalize business processes on the
web,” in Proceedings of the SIGCHI conference on Human factors in
computing systems, 2007, pp. 943–946.

[4] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter: automat-
ing & sharing how-to knowledge in the enterprise,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 2008,
pp. 1719–1728.

[5] S. Oney, A. Lundgard, R. Krosnick, M. Nebeling, and W. S. Lasecki,
“Arboretum and arbility: Improving web accessibility through a shared
browsing architecture,” in Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technology, 2018, pp. 937–949.

[6] J. P. Bigham, T. Lau, and J. Nichols, “Trailblazer: enabling blind users
to blaze trails through the web,” in Proceedings of the 14th international
conference on Intelligent user interfaces, 2009, pp. 177–186.

[7] J. P. Bigham, I. Lin, and S. Savage, “The effects of” not knowing
what you don’t know” on web accessibility for blind web users,” in
Proceedings of the 19th international ACM SIGACCESS conference on
computers and accessibility, 2017, pp. 101–109.

[8] J. P. Bigham and R. E. Ladner, “Accessmonkey: a collaborative scripting
framework for web users and developers,” in Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A),
2007, pp. 25–34.

[9] “Xpath,” https://developer.mozilla.org/en-US/docs/Web/XPath/,
accessed: 2021-03-20.

[10] “Css selectors,” https://developer.mozilla.org/en-US/docs/Learn/CSS/
Building blocks/Selectors, accessed: 2021-03-19.

[11] “Document object model (dom),” https://developer.mozilla.org/en-US/
docs/Web/API/Document Object Model/, accessed: 2021-06-29.

[12] “Get started with viewing and changing the dom,” https://developer.
chrome.com/docs/devtools/dom/, accessed: 2021-05-02.

[13] “Dom property viewer,” https://developer.mozilla.org/en-US/docs/Tools/
DOM Property Viewer, accessed: 2021-05-02.

[14] “Selenium,” https://www.selenium.dev/, accessed: 2020-09-11.
[15] “Puppeteer,” https://pptr.dev/, accessed: 2020-09-18.
[16] “Cypress,” https://www.cypress.io/, accessed: 2021-03-19.
[17] R. G. McDaniel and B. A. Myers, “Getting more out of programming-

by-demonstration,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 1999, pp. 442–449.

[18] M. R. Frank, P. N. Sukaviriya, and J. D. Foley, “Inference bear:
designing interactive interfaces through before and after snapshots,” in
Proceedings of the 1st conference on Designing interactive systems:
processes, practices, methods, & techniques, 1995, pp. 167–175.

[19] B. Hempel and R. Chugh, “Semi-automated svg programming via direct
manipulation,” in Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, 2016, pp. 379–390.

[20] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-sketch: Output-directed
programming for svg,” in Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology, 2019, pp. 281–292.

[21] B. Victor, “Inventing on principle,” https://vimeo.com/36579366/, ac-
cessed: 2021-03-20.

[22] “Selenium ide,” https://www.selenium.dev/selenium-ide/, accessed:
2020-06-08.

[23] “imacros,” https://imacros.net/, accessed: 2020-06-08.
[24] “Cypress studio,” https://docs.cypress.io/guides/core-concepts/

cypress-studio, accessed: 2021-05-05.
[25] S. E. Chasins, M. Mueller, and R. Bodik, “Rousillon: Scraping dis-

tributed hierarchical web data,” in Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology, 2018, pp. 963–
975.

[26] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using gui screenshots
for search and automation,” in Proceedings of the 22nd annual ACM
symposium on User interface software and technology, 2009, pp. 183–
192.

[27] F. Modugno and B. A. Myers, “A state-based visual language for a
demonstrational visual shell,” in Proceedings of 1994 IEEE Symposium
on Visual Languages. IEEE, 1994, pp. 304–311.

[28] J. Meskens, K. Luyten, and K. Coninx, “D-macs: building multi-device
user interfaces by demonstrating, sharing and replaying design actions,”
in Proceedings of the 23nd annual ACM symposium on User interface
software and technology, 2010, pp. 129–138.

[29] P.-Y. Chi, S.-P. Hu, and Y. Li, “Doppio: Tracking ui flows and code
changes for app development,” in Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, 2018, pp. 1–13.

[30] P.-Y. Chi, Y. Li, and B. Hartmann, “Enhancing cross-device interaction
scripting with interactive illustrations,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, 2016, pp. 5482–
5493.

[31] K. N. Truong, G. R. Hayes, and G. D. Abowd, “Storyboarding: an
empirical determination of best practices and effective guidelines,” in
Proceedings of the 6th conference on Designing Interactive systems,
2006, pp. 12–21.

[32] J. Kubelka, R. Robbes, and A. Bergel, “The road to live programming:
insights from the practice,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 2018, pp. 1090–
1101.

[33] “Id selectors,” https://developer.mozilla.org/en-US/docs/Web/CSS/ID
selectors, accessed: 2021-05-05.

[34] “Class selectors,” https://developer.mozilla.org/en-US/docs/Web/CSS/
Class selectors, accessed: 2021-05-05.

[35] “Attribute selectors,” https://developer.mozilla.org/en-US/docs/Web/
CSS/Attribute selectors, accessed: 2021-05-05.

[36] “Puppeteer waitfornavigation,” https://pptr.dev/#?product=Puppeteer&
version=v8.0.0&show=api-pagewaitfornavigationoptions/, accessed:
2021-05-02.

[37] “Internet archive wayback machine,” https://archive.org/web/, accessed:
2021-05-05.

[38] “Electron,” https://www.electronjs.org/, accessed: 2020-09-18.
[39] “Monacoeditor,” https://microsoft.github.io/monaco-editor/, accessed:

2021-05-02.
[40] “rrweb-snapshot,” https://github.com/rrweb-io/rrweb-snapshot,

accessed: 2020-09-18.
[41] D. A. Norman, The psychology of everyday things. Basic books, 1988.

https://developer.mozilla.org/en-US/docs/Web/XPath/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
https://developer.chrome.com/docs/devtools/dom/
https://developer.chrome.com/docs/devtools/dom/
https://developer.mozilla.org/en-US/docs/Tools/DOM_Property_Viewer
https://developer.mozilla.org/en-US/docs/Tools/DOM_Property_Viewer
https://www.selenium.dev/
https://pptr.dev/
https://www.cypress.io/
https://vimeo.com/36579366/
https://www.selenium.dev/selenium-ide/
https://imacros.net/
https://docs.cypress.io/guides/core-concepts/cypress-studio
https://docs.cypress.io/guides/core-concepts/cypress-studio
https://developer.mozilla.org/en-US/docs/Web/CSS/ID_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/ID_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
https://pptr.dev/#?product=Puppeteer&version=v8.0.0&show=api-pagewaitfornavigationoptions/
https://pptr.dev/#?product=Puppeteer&version=v8.0.0&show=api-pagewaitfornavigationoptions/
https://archive.org/web/
https://www.electronjs.org/
https://microsoft.github.io/monaco-editor/
https://github.com/rrweb-io/rrweb-snapshot

	Introduction
	Background and Related Work
	Background on Web Automation
	Web Automation Tools
	UI Context and Feedback

	Study 1: Traditional Editor Environment
	Study Design
	Findings
	Selecting UI elements
	Keeping track of DOM nodes
	Navigation and timing
	Trouble typing into input fields
	Interacting with calendar widgets
	Feedback loop and debugging
	Future website changes might break scripts

	Study 2: Environments that Provide UI Context and Live Feedback
	Prototype
	Dynamic element highlighting
	UI snapshots
	CSS selector validity feedback
	Context and feedback across different runs
	Implementation

	Cypress
	Study design
	Results
	Challenges
	Element selection context and feedback
	Understanding page states
	Traditional debugging approaches

	Design Implications
	Contextual Information
	Effective Feedback

	Discussion and Limitations
	Conclusion
	References

