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Introduction: 

Imagine you are a part of a ring of people, and, starting with the person in position 1, 

each person must kill the person to their left, continuing this ring of death until only one person 

remains. You have an opportunity to choose your position in this ring, and you know exactly 

how many people are a part of this ring. However, you have neither the time nor the mental 

capability to run a simulation in your head of how the situation will turn out. What position would 

you need to choose in order to survive this? This is the question posed by the Josephus 

Problem. Given a number of participants and a starting position, how do you survive? This IA 

will attempt to give a method or equation in order to figure out the surviving position in the 

situation posed. This solution will be found by testing the problem up to a certain amount, say 

36, in order to establish that a pattern exists, and then using that pattern in order to establish an 

equation to solve for the surviving position. 

 

I chose this topic because I came across it while researching possible ideas, and the 

idea intrigued me, mostly due to its historical relevance. I really enjoy learning about interesting 

historical happenings, so when I came across this problem, it sparked in my head that this was 

what I wanted to research. In the year 67, the Romans sieged the Jewish city of Yodfat, and 

after over a month, finally won the battle. Right before this, however, a group of 41 hid in a cave 

inside the walls in order to figure out what to do. They decided that the best plan would be to kill 

each other, instead of everyone committing suicide, as suicide was a sin. They decided that 

circling up and having people kill a certain number of people would be best. One man, however, 

advocated for surrender instead, Yosef Ben-Matityahu. This man would be one of two survivors 

of this, as he convinced the other that their deaths were unnecessary. This man would be taken 



as a slave to Vespasian, as well as given the name of Flavius Josephus, for which this 

mathematical problem is named. 

  

Credit cannot really be given to Josephus for creating this problem, however. I can't 

possibly imagine that 39 of the 41 people were willing to die. They weren't keeping a massive 

secret, they weren't hiding the Ark of the Covenant, they were just defending their honor. If 

everyone who would judge you is dead, what's the point in committing suicide? If, say, there 

were 42 people, then number 21 would have survived, and probably preferred capture to killing 

themselves. Maybe today it would be called the Octavius Problem, or the Julius Problem, if only 

someone else survived the Siege, but since Josephus was the survivor, we choose to honor him 

in his avoidance of an early death.  Anyway it turned out, we would probably have an equivalent 

of the problem today, whether it be from history or from some ambitious or inquisitive computer 

programmer. 

 

Taking Data and Learning From It: 

While the Josephus Problem is a simple one to set up in concept, being a ring of 

numbers and then just following a set pattern, in reality it isn't as simple. It's repetitive, and 

higher numbers can take a lot of time to work through to their conclusion. It is for this reason 

that it is much easier to run the problem at lower numbers in order to establish the pattern, and 

then testing with larger numbers, such as the 41 from the origin of the problem. 

 

The way that the Josephus Problem is set up, it is conducive to, instead of working out 

something beforehand, run through the problem with varying amounts of people in order to find 



a pattern. In essence, numbers are being plugged into the equation, without the equation 

actually being known, in order to reverse engineer how this equation actually plays out. 

 

 

 

 

 

 

   

 

          Fig.1 Example of the Josephus Problem with 4 soldiers 

 

For example, 4 is a relatively simple one to do. In order, 1 removes 2, 3 removes 4, then 

1 removes 3. So, with the input of 4, being the total number of soldiers, or just people, position 1 

will survive. For 5, the method would go 1 removes 2, 3 removes 4, 5 removes 1, 3 removes 5. 

With an input of 5, the output must be 3. With an input of 6, 1 removes 2, 3 removes 4, 5 

removes 6, 1 removes 3, 5 removes 1. This leaves 5 as the survivor. 

 

There are a few important things to note from these tests of the problem. Firstly, there is 

never an even numbered survivor. This is due to the fact that the starting person will always be 

number 1, an odd number, and since any number after an odd number is even, all evens are 

removed in the first round. Secondly, it seems like the number of the survivor moves up by 2 

when increasing the number of people. 

 



In order to fully flesh out a pattern, iterations from 1 person to 16 people will be looked 

at. 

  

Number of People in 

Circle (n) 

Surviving Position 

f(n) 

Number of People in 

Circle (n) 

Surviving Position 

f(n) 

1 1 9 3 

2 1 10 5 

3 3 11 7 

4 1 12 9 

5 3 13 11 

6 5 14 13 

7 7 15 15 

8 1 16 1 

     Table 1: Results from n=1 to n=16 

 

A few important things can be gleaned by looking at more data. First, when the number 

of people equals 1,2,4,8, or 16, the person in position 1 survives. In other words, if the base 

number of people is a power of 2, then the resulting survivor is 1, or the person who begins the 

process. This will be important in describing an equation. Secondly, the pattern of skipping all 

even numbers and moving on to the next odd number holds true in this selection, continuing 

until the base number of people is a power of two, which in essence resets the survivor. 

 



Constructing the Equation: 

So with these patterns in mind, an equation can be built that should be able to predict 

the number of the survivor. But first, notation should be explained. f(n) will represent the number 

of the survivor. x cannot really be used in the equation as one would generally use it, because n 

will be split into two different terms. n will equal (2x + p). The term 2x will represent the largest 

power of 2 that can be subtracted from n. p represents the rest of what was once n. So, n= (2x + 

p), but where does this go? In order to break 

this down further, an odd example must be 

made, and by odd, it is meant that the 

number of people in the circle is not a power 

of 2. 

So how is n represented here? The 

highest power of two in 13 is 8 so the 2x  term 

equals 8, while p equals 5. After 5 people have been eliminated (2,4,6,8, and 10), notice  

Fig. 2 Jospehus Problem of 13 

how many people are left in the circle.  

 There are 8, a power of 2. Based on the pattern established by Table 1, it is known that 

any circle with a population equal to a power of 2 will end on the person who began it. Once 10 

has been removed, and the circle now consists of 8, 11 becomes the starter of the circle, and 

once done to completion, 11 is the survivor if n=13. 

How does 11 relate to 5, however? If other circles are looked at, say, 10 and 11, a new 

pattern can be established to determine how the survivor (f(n)) is connected to p. 10 can be 

broken down into 8+2, so two people must be removed (2 and 4), meaning 5 is the survivor. 11 



is broken into 8+3, so three must be removed (2,4, and 6) meaning 7 survives. In all three of 

these cases, f(n) is equal to 2p+1. 

Finally, there must a slight addendum to the equation. Not any number can be used for 

the equation. Since the variable n, the number of people in the circle, must be a possible 

number of people, the set of numbers that n can be chosen from must be restricted. The 

number cannot be negative, and cannot be a decimal or fraction. Therefore, n must be a subset 

of all natural counting numbers, anywhere from 1 to infinity, so n∈N. With this information, a 

final equation can finally be constructed. 

 

f(n)=2p+1 where p=n-2x and 2x>p and n∈N  

 

The actual function portion of this gives the survivor's number, while the other three parts 

set the conditions for this to actually work correctly. If 2x<p, then the equation spits out a survivor 

number higher than the total amount of people within the circle, which obviously does not make 

sense. This includes the possibility of n=0. If n were to equal 0, p would equal -1, which makes 

even less sense, which is why n must be restricted to the natural counting numbers. 

 

 

 

 

Final Check: 

 

 



  Fig. 3 The Accurate-To-Life Example of the Josephus problem 

Going back to the origin of the Josephus problem, there were 41 men who were within 

the circle, and Josephus needed to know what position he needed to be in. n=41, and 41 can be 

broken into 32 and 9. Plugging that 9 into the function from the last section gives us 19 as the 

position of the survivor. If the arduous process of drawing out the circle with 41 people is done, 

the surviving position is indeed the 19th position in the Circle. 

 

Further Evidence and Explanations: 

In order to prove further that the equation given works, it is necessary to take the 

equation to a different base of numbers, specifically base 2. It's necessary to understand binary, 

or base 2, somewhat well in order to understand the following explanation. Base refers to the 

amount of digits in a counting system, so the standard counting system for most of the world is 

base 10, using the arabic numerals 1-9. Once the number needs to increment past 9, the place 

to the left of it increments by one and the original place returns to 0. This should be understood 

well. In binary, the exact same thing happens, but only the digits 0 and 1 are used. So counting 

to 5, instead of going 1, 2, 3, 4, 5, would go 1, 10, 11, 100, 101. In essence, each place is equal 

to the number of digits to a certain power. The ones place is any base to the 0th power, the 

second place is to the 1st power, third place is to the 2nd, etc. So any base 10 number can be 

converted into binary. For example, 41 is converted to 101001. 

Now how does this relate to the Josephus Problem? Think back to the equation created. 

 

f(n)=2p+1 where p=n-2x and 2x>p and n∈N  

 



What is the first step to solving the equation? Subtract 2x from the number of people. For any 

number in binary, this is equivalent to removing the furthest left 1. 41 (101001) minus 32 

(100000) is equal to 9 (1001). The next step after removing the highest power of 2 is to multiply 

the number by 2. In binary, this is equivalent to moving every number to the left by 1, as that is 

how . 9 (1001) multiplied by 2 is equal to 18 (10010). The final step is to add 1, which is the 

exact same in binary. 18 (10010) plus 1 (1) is equal to 19 (10011). In essence, the way that the 

equation works is the furthest left 1 is moved to the far right of the number.  101001 (41) 

becomes 10011 (19) through the function created to solve the Josephus problem. This will work 

no matter what number you use, because the basic principles used to create the function don't 

change. Any number that is a power of 2, such as 1000000 (64) is reduced to just 1, which is 

exactly what is wanted. 

 

Now how exactly is it that no matter what power of 2 is used, it will always equal 1? 

Consider how the problem works out with 2, 4, and 8 people. With 2, 1 will kill 2, so 1 is 

victorious. With 4, 2 and 4 are killed in the first round, leaving only 2 people, and as previously 

stated, with 2 people, 1 will always win. For 8, positions 2, 4, 6, and 8 are killed, leaving 4, 

which, as previously shown, leaves 1 as the winner. The powers of 2 always leave 1 as the 

winner because they all cut the amount of people in half each iteration, which always bring the 

people to 1. Now, how can non-powers of 2 be explained? It's simple. At some point in going 

around the circle, there will be a number of people alive equal to a power of 2. For 67 people, 

once three people die, there are 64 people left. From that point, the problem can be worked out 

as if those three people were never there and position 7 (the next position after three deaths) 

can be relabeled as position 1 in a circle of 64, and it's easily known how that turns out. 

 



Real World Application: 

The Josephus Problem has its basis in history, and while the story likely got mixed up 

somewhere along the line, the basis of it is that it was essentially a more lethal "counting-out 

game", which is something that will end up choosing a single person through some process, 

whether that be from a rhyme or a complicated math function. These counting-out games have 

their place in society, with many games, such as Eeny meeny miny moe or Tinker, Tailor, taking 

place at local elementary schools, but the Josephus problem in particular has applications in 

computer science. While computers cannot rhyme, at least not yet, they can compute massive 

amounts of data, say if the problem were scaled up to 3000 people and instead of removing 

every other person, 6 people are skipped, meaning 1 removes 8, 9 removes 17, and so on. The 

iterations are, quite literally, infinite. As an example for a practical application of the Josephus 

Problem, a random number generator can be built from the Problem. By having a set amount of 

people, the number of people skipped can be varied, causing a "random" number to be 

generated. While other random number generators may be more efficient, or perhaps more 

random, this is still a practical application. 
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