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Abstract—Ceph is a scalable, reliable and high-performance
storage solution that is widely used in the cloud computing
environment. Internally, Ceph provides three different storage
backends: FileStore, KStore and BlueStore. However, little effort
has been devoted to identifying the differences in those storage
backends and their implications on performance. In this paper,
we carry out extensive analysis with a microbenchmark and
a long-term workload to compare Ceph storage backends and
understand their write behaviors by focusing on WAF (Write
Amplification Factor). To accurately analyze WAF, we carefully
classify write traffic into several categories for each storage
backend.

We find that writes are amplified by more than 13x, no matter
which Ceph storage backend is used. In FileStore, the overhead
of Ceph write-ahead journaling triples write traffic compared to
the original data size. Also, FileStore has the journaling of journal
problem, generating a relatively large amount of file system
metadata and journal traffic. KStore suffers severe fluctuations
in IOPS (I/O Operations Per Second) and WAF due to large
compaction overheads. BlueStore shows the stable performance
on both HDDs and SSDs in terms of IOPS, WAF and latency.
Overall, FileStore performs the best among all storage backends
on SSDs, while BlueStore is also highly promising with good
average and tail latency even on HDDs.

I. INTRODUCTION

In the cloud computing era, a stable, consistent and high-
performance block storage service is essential to run a large
number of virtual machines. Ceph is a storage solution that
meets all these demanding requirements and has attracted a
spotlight in the last decade. Ceph is a scalable, highly reli-
able software-defined storage solution that provides multiple
interfaces for object, block and file level storage [1]. Ceph
aims at completely distributed storage without a single point
of failure and high fault tolerance with no specific hardware
support. Since Ceph provides strong consistency to clients,
users can access objects, block devices and files without
worrying about consistency. Moreover, because it has a scale-
out structure, Ceph can improve its performance gradually by
adding additional cluster nodes [2].

Internally, all storage services in Ceph are built upon the
Ceph RADOS (Reliable Autonomic Distributed Object Store)
layer [3], which manages fixed-size objects in a scalable,
distributed and reliable manner. Ceph provides three different

storage backends in the RADOS layer: FileStore, KStore and
BlueStore. FileStore and KStore manage objects on top of
traditional file systems and key-value stores (e.g., LevelDB
and RocksDB), respectively. On the other hand, BlueStore is
a new object store architecture that has been developed actively
for the Ceph RADOS layer in recent years. BlueStore saves
object data into the raw block device directly, while it manages
their metadata on a small key-value store such as RocksDB.
Currently, Ceph can be configured to use one of these storage
backends freely.

Due to Ceph’s popularity in the cloud computing environ-
ment, several research efforts have been made to find optimal
Ceph configurations under a given Ceph cluster setting [4], [5]
or to tune its performance for fast storage like SSD (Solid-
State Drive) [6]. However, little attention has been paid to
the differences in the storage backends available in Ceph and
their implications on the overall performance. In this paper,
we compare the write behaviors and performance of Ceph
backends with a focus on WAF (Write Amplification Factor).
The study on the WAF of various storage backends can be
very enlightening to understand the storage access behaviors of
Ceph for the following reasons. First, WAF has a major impact
not only on the overall performance, but also on device lifetime
when Ceph runs on SSDs. Second, the larger WAF, the more
limited effective bandwidth given to the underlying storage
device. In particular, HDD (Hard Disk Drive) exhibits very
low IOPS (I/O Operations Per Second) compared to SSD and
it is very important to use raw hardware bandwidth effectively.
Finally, as in the previous research with SQLite, there might
be issues such as journaling of journal [7] problem when
implementing distributed storage services on top of a local
file system.

We have used a microbenchmark and a long-term workload
of 4KB random writes to measure write traffic of various
Ceph storage backends on both HDDs and SSDs. Our results
with the long-term workload indicate that Ceph amplifies
the amount of write traffic by more than 13x under the
replication factor of 3, regardless of the storage backend used.
In FileStore, we find that write-ahead journaling with separate
Ceph journal does not double, but rather triples write traffic



compared to the original data size. Also, the journaling of
journal problem is severe, making file system metadata and
journaling traffic as much as the original data size. In the case
of KStore, the compaction process takes up almost all write
traffic, resulting in poor tail latency and severe fluctuations
in IOPS. Finally, BlueStore is free from the journaling of
journal problem as it stores data directly in the storage
device. However, RocksDB traffic to store metadata and object
attributes still overwhelms data traffic over a factor of three in
BlueStore.

The rest of the paper is organized as follows. Section II
presents more detailed background on Ceph. In Section III,
we introduce our measurement methodology and experimental
configurations. In Section IV, we perform several microbench-
marks and discuss the basic write behaviors of Ceph backends.
Section V evaluates various Ceph backends with the long-term
workload on HDDs and SSDs. We discuss the related work in
Section VI. Finally, Section VII concludes the paper.

II. BACKGROUND

This section gives a brief overview of the Ceph architecture
and its storage backends.

A. Ceph Architecture

Ceph provides multiple storage services at an object level
(Ceph object storage), a block level (Ceph block storage) and
a file level (Ceph file system). Internally, they are all based
on one unified layer called RADOS (Reliable Autonomic
Distributed Object Store). Ceph consists of several daemons
running in the RADOS layer, each of which performs a
specific task. The Ceph monitor (MON) daemon manages the
cluster-wide node information called cluster map. The Ceph
metadata (MDS) daemon is needed only for the file-level
service to maintain the metadata of each file as is done in
traditional distributed file systems. Finally, the Ceph object
storage device (OSD) daemon is responsible for retrieving and
storing objects by interacting with its local disks.

One important feature in the Ceph object and block storage
is that clients can directly contact the OSD daemon that has
a primary copy of the required data. In traditional distributed
storage systems, clients have to make a request to a centralized
server first to get metadata (e.g., data locations), which can be
a performance bottleneck as well as a critical single point of
failure. Ceph eliminates the need for the centralized server
by placing data using a pseudo-random distribution algorithm
called CRUSH [8].

B. Ceph RADOS Block Device (RBD)

Ceph RADOS block device, also known as RBD, provides
a thin-provisioned block device to the clients. A block device
represents a consecutive sequence of bytes and Ceph divides
it into a set of objects of equal size. When a client modifies a
region of the RBD, the corresponding objects are automatically
stripped and replicated over the entire Ceph cluster system.
The size of objects is set to 4MiB by default.

There are two types of RBD: librbd and krbd. librbd is
a user-level library implementation which is widely used as

a primary block storage for virtual machines in the cloud
computing platforms such as OpenStack. krbd is implemented
as a kernel module which exports device files directly to the
kernel so that clients can mount them just like conventional
disks. In this paper, we use the krbd module to investigate the
performance of the Ceph RADOS block device without any
interference from hypervisor or other virtual machines.

C. Ceph Storage Backends

The Ceph OSD daemon consists of many functional mod-
ules in order to support software-defined storage services.
In the heart of the Ceph OSD daemon, there is a module
called ObjectStore which is responsible for how objects are
stored and managed. In particular, Ceph is designed to support
multiple storage engines by registering them as different
backends for ObjectStore. The stable Ceph Jewel LTS version
currently supports three kinds of storage backends: FileStore,
KStore and BlueStore. In the following subsections, we briefly
present overall architecture and characteristics of each storage
backend.

1) FileStore

In FileStore, each object is stored as a separate file in the un-
derlying local file systems such as XFS, BTRFS and ZFS. Us-
ing FileStore, Ceph mandates to use an external Ceph journal
for ensuring consistency. Since Ceph guarantees strong con-
sistency among data copies, all write operations are treated as
atomic transactions. Unfortunately, there is no POSIX API that
provides the atomicity of compound write operations. Instead,
FileStore first writes incoming transactions to its own journal
disk in an append-only manner. After writing to the journal,
worker threads in FileStore perform actual write operations to
the file system with the writev() system call. In every a
few seconds up to filestore_max_sync_interval (5
seconds by default), FileStore calls syncfs() to the disk and
then drops the journal entries. In this way, FileStore provides
strong consistency.

Having the external journal also brings a performance
benefit as the write speed is improved due to the append-
only logging mechanism. To enhance the Ceph performance
further, many systems employ SSDs as the journal devices.
Theoretically, any local file system can be used for FileStore,
but due to some issues related to extended attributes (xattr),
XFS is the only file system officially recommended by Ceph
developers.

2) KStore

KStore is an experimental storage backend in the Ceph
Jewel version. The basic idea behind KStore is to encapsulate
everything from object data to their metadata as key-value
pairs and put them into key-value stores since key-value stores
are already highly optimized for storing and managing key-
value pairs. Any key-value store can be used for KStore by
interposing a simple translation layer between ObjectStore and
the key-value store. The Ceph Jewel version currently supports
LevelDB, RocksDB and KineticStorage for KStore. In this
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Fig. 1: Experimental Ceph Testbed

paper, we have performed our experiments on LevelDB and
RocksDB.

3) BlueStore

BlueStore is another experimental storage backend that is
being actively developed by Ceph community. It is expected
to be stable in the next upcoming release. The key idea
of BlueStore is effective management of objects avoiding
limitations in FileStore. One problem in FileStore is a double-
write penalty caused by the external journaling. Instead, Blue-
Store saves object data in a raw block device directly, while
managing their metadata with RocksDB. Since BlueStore
bypasses the local file system layer, file system overheads such
as journaling of journal can be avoided. Note that because a
file system is still required to run the RocksDB, BlueStore
internally has a tiny user-level file system named BlueFS.
Moreover, Ceph usually deals with a bunch of objects and
it often has to enumerate all objects in an ordered fashion
for checking consistency and recovering. However, POSIX
does not provide any efficient way to retrieve the objects from
multiple directories. Another benefit of using RocksDB is that
Ceph can simply retrieve and enumerate all objects stored in
the system.

III. MEASUREMENT METHODOLOGY

A. Evaluation Environment

Figure 1 illustrates an organization of our experimental
Ceph testbed. In our experiments, we use one administration
server to run the Ceph monitor daemon (MON). The same
server is also used as a client which generates I/O requests to
the Ceph RBD. We use four storage servers for running the
Ceph OSD daemons. There are two private networks in the
system; one is a public network that connects all the servers
with a 10Gbps Ethernet and the other is a storage network that
connects four storage servers with a 40Gbps InfiniBand.

Each storage server is equipped with four 600GB HGST
SAS HDDs, four 960GB Samsung PM1633 SAS SSDs and
two 400GB Intel 750 NVMe SSDs. We conduct the mea-
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Fig. 2: Workload in Microbenchmark

surement for the Ceph storage backends using SAS HDDs
and SAS SSDs. In our configuration, a storage server runs
four OSD daemons either on four HDDs or on four SSDs
so that each OSD daemon works on a single storage device.
Therefore, there are total 16 OSDs in our Ceph testbed. NVMe
SSDs are used for external journaling in FileStore and WAL
(Write-Ahead Logging) in BlueStore. All experiments are
conducted on the Linux 4.4.43 kernel with the latest Ceph
Jewel LTS version (v10.2.5).

B. Microbenchmark

First, we analyze how WAF changes when we make a single
write request to the RBD under different circumstances. Recall
that the entire RBD space is divided into a set of 4MiB objects
by default. When the replication factor is set to default value
of three, total three copies of each object are distributed over
the available OSDs.

Our microbenchmark is designed to measure the amount of
write traffic in the following cases (cf. Figure 2): (1) when
there is a write to an empty object (denoted as 1ST WRITE),
(2) when there is a write next to the 1ST WRITE (denoted
as 2ND WRITE), (3) when there is a write to the middle of
the object leaving a hole between the 2ND WRITE and the
current write (denoted as 3RD WRITE) and (4) when there
is an overwrite to the location written by the 1ST WRITE
(denoted as OVERWRITE). The microbenchmark repeats the
same experiment by doubling the request size from 4KiB to
4MiB (i.e., 4KiB, 8KiB, 16KiB, . . . , 4MiB). We expect that the
amount of metadata traffic generated by Ceph varies in each
case. To avoid any interference from the previous experiment,
we reinstall Ceph every time for each request size. We use the
ftrace tool in Linux to collect and classify trace results.

C. Long-term workload

To perform experiments under a long-term workload, we
use the fio tool in Linux to generate 4KiB random writes
to the Ceph RBD, periodically measuring IOPS and WAF
from FileStore, KStore (with LevelDB and RocksDB) and
BlueStore. For each storage backend, we classify all write
requests into several categories and calculate WAF for each
category. As mentioned before, the Ceph RBD is widely used
to provide large, reliable and high-performance storage for
virtual machines. In this VDI (Virtual Desktop Infrastructure)
environment, it is well known that the patterns of write
requests are mostly random, with their sizes ranging from
4KiB to 8KiB [9][10]. This is why we focus on 4KiB random
writes in this paper.
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Each long-term experiment is performed in the following
order:

1) Install Ceph and create an empty 64GiB krbd partition.
2) Drop page cache, call sync and wait for 600 seconds to

flush all the dirty data to the disk.
3) Perform 4KiB random writes with the queue depth of

128 (QD=128) using fio to the krbd partition until the
total write amount reaches 90% of the capacity (i.e.,
57.6GiB).

All experiments are conducted with 16 HDDs first and they
are repeated on 16 SSDs later. According to our experiments,
a single write thread with QD=128 is enough to saturate OSD
servers on HDDs, but not on SSDs. Therefore, we perform
the experiments on SSDs with two write threads (each with
QD=128).

As the purpose of this paper is to analyze WAF, we keep
track of the amount of written sectors for each disk. We also
measure IOPS and latency distribution since they are tradition-
ally important metrics in storage performance analysis. During
the long-term experiment, we observe that the ftrace over-
head affects our experimental results, degrading the overall
IOPS by up to 5%. In order to eliminate this overhead, we
did not use ftrace in the long-term experiment. Instead, we
have modified the Linux kernel so that it collects the amount
of written sectors for each category and then exports them via
the /proc interface. At runtime, we periodically read those
values from the /proc file system. The sampling period is
set to 15 seconds for HDDs, but it is shortened to 3 seconds
for SSDs as SSDs are much faster than HDDs. The detailed
setting and write traffic classification scheme for each storage
backend are described below. Unless otherwise specified, we
use default configurations of Ceph. In all experiments, the
replication factor is set to three.

1) FileStore

We create a single partition in each disk and mount it with
the XFS file system. This partition is dedicated to a Ceph OSD
daemon as the main data storage. Since FileStore needs an
additional Ceph journal partition for its write-ahead journaling,

we use two NVMe SSDs in each storage server. An NVMe
SSD is divided into two partitions, each of which is assigned
to a Ceph OSD daemon as the Ceph journal partition.

As shown in Figure 3(a), we classify write traffic into the
following categories in FileStore:

• Ceph data: Replicated client data written by Ceph OSD
daemons.

• Ceph metadata: Data written by Ceph OSD daemons
other than Ceph data.

• Ceph journal: Data written to the Ceph journal partition
by Ceph OSD daemons.

• File system metadata: File system metadata written by
XFS (e.g. inodes, bitmaps, etc.).

• File system journal: File system journal written by XFS.

Inside the kernel, it is very difficult to separate Ceph data
from Ceph metadata unless there is an explicit hint from the
Ceph layer. Instead, we first calculate the amount of Ceph
data by multiplying the replication factor to the amount of
data written by the client. And then we obtain the amount
of Ceph metadata by subtracting the amount of Ceph data
from the total amount of data written by XFS for regular files
and directories. Thus, Ceph metadata also includes any data
written to LevelDB by Ceph OSD daemons.

2) KStore

In KStore, we use only one partition per Ceph OSD daemon
which is mounted with the XFS file system. Since the write
requests from the client are 4KiB in size, we set the stripe size
of key-value pairs (kstore_default_stripe_size) to
4096 instead of the default value of 65536.

In KStore, write traffic is classfied into the following
categories as shown in Figure 3(b):

• Ceph data: Replicated client data written by Ceph OSD
daemons.

• Ceph metadata: Data written by Ceph OSD daemons
other than Ceph data.

• Compaction: Data written by LevelDB or RocksDB
during compaction.



• File system metadata: File system metadata written by
XFS.

• File system journal: File system journal written by XFS.

Note that Ceph data and Ceph metadata are obtained in
the same way as in FileStore. In KStore, Ceph metadata
includes other key-value pairs in LevelDB or RocksDB written
by Ceph OSD daemons. Since LevelDB or RocksDB runs
on the XFS file system, KStore also generates File system
metadata and File system journal.

3) BlueStore

For BlueStore, each local disk is separated into two parti-
tions. One is a tiny partition for some notifications such as
fsid and keyrings that are not in the data path. The other
is for object data that BlueStore directly manages. BlueStore
also requires additional partitions for RocksDB and RocksDB
WAL. As in FileStore, we make two OSD daemons share one
NVMe SSD to run RocksDB.

As depicted in Figure 3(c), write traffic is classified into the
following categories in BlueStore:

• Ceph data: Replicated client data written to the raw
partition directly by Ceph OSD daemons.

• Ceph metadata: Data written to RocksDB and RocksDB
WAL by Ceph OSD daemons.

• Compaction: Data written by RocksDB during com-
paction.

• Zero-filled data: Data filled with zeroes by Ceph OSD
daemons.

In BlueStore, the raw partition is allocated and managed in
chunks of bluestore_min_alloc_size which is 64KiB
by default. The unwritten area in each chunk are filled with
zeroes when it is written to the raw partition. Zero-filled data
represents the amount of data writes for filling those holes.

IV. MICROBENCHMARK EXPERIMENT ANALYSIS

Figure 4 illustrates microbenchmark results on each Ceph
storage backend. Generally, the larger the request size, the
smaller WAF except for the case of KStore (RocksDB). With
the request size of 4KiB, WAF varies from 9.000 to 67.375,
which means that when a client writes only a single 4KiB data,
Ceph issues 36KiB to 269.5KiB sized data into the storage. A
more detailed analysis for each storage backend is discussed
below.

A. FileStore

Figure 4(a) displays a microbenchmark result in FileStore.
When the request size is 4KiB, WAF is very large ranging
from 41.375 to 67.375. To understand this, let us examine
what happens when a client writes a single 4KiB data to
krbd. First, the client knows which OSD server is responsible
for the primary copy of the corresponding object in constant
time with the help of the CRUSH algorithm and sends a write
request to the OSD server. The primary OSD server delivers
the write request to the other two secondary OSD servers
to make replicas. Internally, the primary and secondary OSD

servers encapsulate the incoming write request as a transac-
tion consisting of key-value pairs to be stored in LevelDB,
object metadata and object data itself. This transaction is then
passed to the underlying FileStore. Receiving the transaction,
FileStore conducts write-ahead journaling and this is where
Ceph journal traffic comes in. After writing to the journal
completes, FileStore re-writes the transaction to the XFS file
system and LevelDB, which generates additional file system
metadata and file system journal traffic.

As the request size becomes larger, WAF decreases rapidly.
This is because the amount of object metadata, key-value
pairs, file system metadata and file system journal becomes
relatively smaller compared to the request size. Eventually,
WAF converges to six as the request size grows to 4MiB; the
data replication to three OSD servers triples WAF and another
write-ahead journaling in each OSD server doubles it.

B. KStore

As shown in Figure 4(b) and 4(c), KStore exhibits overall
graphs similar to FileStore’s. The main difference is that WAF
now converges to three as the request size increases. Note that
both LevelDB and RocksDB are based on the LSM-tree (Log-
Structured Merge-tree). In the LSM-tree, the incoming key-
value pairs are first logged in the WAL (write-ahead logging)
device. After logging, the key-value pairs are not immediately
written to the storage. Instead, they are temporarily put into the
memory buffer known as memtable. Only when the memtable
becomes full, the entire contents are written into the storage
in bulk. The write-ahead logging in LSM-tree is conceptually
similar to the Ceph journal, hence the ideal WAF for KStore
also should be six as in FileStore. In most cases, however,
the write amount of our microbenchmark is too small to be
flushed from the memtable. This is why WAF converges not
to six, but to three in KStore.

The sudden jumps in RocksDB when the request size
is larger than 512KiB are also due to the memtable flush.
We have repeated same experiments several times, but WAF
has changed very irregularly in this region. We suspect that
RocksDB has a very sophisticated memtable flush policy. In
the long run, the data in the memtable will be eventually
flushed and those flushed data also should be compacted peri-
odically. Hence, WAF in KStore will be increased significantly
in the real environment. We take this effect into account in the
long-term workload.

C. BlueStore

The result of BlueStore is somewhat interesting, as it shows
a different trend from FileStore’s and KStore’s. First, WAF
of the 3RD WRITE, which creates a hole in the middle of an
object, is significantly higher than those of the 1ST WRITE and
the 2ND WRITE at the request sizes of 4KiB, 8KiB and 16KiB.
This is because the default configuration of the minimum
chunk size in BlueStore is set to 64KiB. If a new chunk needs
to be allocated, BlueStore fills the unused space in the current
chunk with zeroes and then writes the chunk to the storage.
When the request size is 32KiB, the entire chunk is filled with
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Fig. 4: Results of Microbenchmark Experiments

data due to the 1ST WRITE and the 2ND WRITE and there is
no more need to fill the hole.

Second, when the request size is smaller than 64KiB, WAF
caused by the OVERWRITE is higher than that by the 1ST
WRITE. This is because BlueStore tries to maintain data
consistency against sudden power-off by writing the data into
the WAL device if the request needs to overwrite the existing
chunk partially. If the partial overwrite were performed to the
existing chunk directly, we would not recover the original data
in case the write operation were interrupted.

Finally, BlueStore shows much better WAF compared to
the other storage backends. Since no local file system is used
to store object data, BlueStore can make write traffic slim.
In addition, unlike FileStore and KStore, BlueStore has no
double-write issue as long as the request is not a partial
overwrite. These make WAF converge to three in BlueStore
when the request size is larger than or equal to the chunk size
(e.g., 64KiB).

V. LONG-TERM EXPERIMENT ANALYSIS

Figure 5, 6, 7 and 8 present the results of our long-
term experiments in FileStore, KStore with LevelDB, KStore
with RocksDB and BlueStore, respectively. Each graph shows
changes in the amount of data written to the storage for each
category with IOPS measured on the client side. Note that,

in FileStore, we did not distinguish the amount of Ceph data
from that of Ceph metadata clearly, as it is difficult to track
whether the data written to the Ceph journal has been also
written to the original location at a certain sampling point.

At first glance, we can see that each Ceph storage backend
has unique patterns and the performance varies significantly
among the backends. Table I summarizes the contribution of
each category to the overall WAF in each storage backend.
Note that the values in Table I are obtained by measuring
the amount of write traffic in all Ceph OSD servers. In
the following subsections, we first analyze the results of the
long-term experiments on two different disk configurations
(e.g., HDDs and SSDs) for each Ceph storage backend. In
Section V-D, we summarize our findings and discuss the
lessons learned from the long-term experiments.

A. FileStore

From 5(a) and 5(b), we can observe an interesting fact in
common; the IOPS curves (denoted as a solid line) closely
follow write traffic to the Ceph journal. This is because the
client receives acknowledgments of the write requests right
after three replicated transactions are journaled by FileStore
in each Ceph OSD server. If we assume that the CRUSH
algorithm uniformly distributes the write requests over the
entire OSD servers, the number of completed write requests
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Fig. 5: Results of Long-Term Experiment in FileStore
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Fig. 6: Results of Long-Term Experiment in KStore (LevelDB)
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Fig. 7: Results of Long-Term Experiment in KStore (RocksDB)
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Fig. 8: Results of Long-Term Experiment in BlueStore



TABLE I: Results of WAF for Long-Term Experiments

Ceph data
Ceph metadata Ceph

journal
Compaction

Zero-filled
data

File system
metadata

File system
journal

SumFiles RocksDB RocksDB
WAL

FileStore HDD 3.000 1.332 - - 6.026 - - 1.944 2.256 14.558
SSD 3.000 0.702 - - 5.994 - - 0.419 3.635 13.750

KStore
(LevelDB)

HDD 3.000 4.206 - - - 23.301 - 0.098 0.645 31.250
SSD 3.000 5.012 - - - 19.362 - 0.040 2.236 29.650

KStore
(RocksDB)

HDD 3.000 6.307 - - - 60.240 - 0.258 1.229 71.034
SSD 3.000 7.006 - - - 52.572 - 0.111 3.036 65.725

BlueStore HDD 3.000 - 1.656 5.869 - 4.192 3.127 - - 17.844
SSD 3.000 - 1.615 7.436 - 4.165 2.865 - - 19.081

on the client side will be proportional to the amount of write
traffic in the Ceph journal.

However, there is a notable difference between the two
cases; a pattern of write traffic in HDDs is totally different
from that in SSDs. In the case of HDDs, IOPS stays at nearly
4000 ops/sec for about 1000 seconds, but afterward, it is
decreased to below 3000 ops/sec until the experiment ends.
This performance drop is mainly due to the slow speed of
HDDs and throttling mechanisms used in FileStore. At the
beginning of the experiment when FileStore is fresh, the client
can get acknowledgments quickly as the Ceph journal first
absorbs the incoming write transactions. As FileStore keeps
writing the Ceph journal to NVMe SSDs in an append-only
manner, the speed of re-write to HDDs cannot catch up the
speed of the Ceph journaling. To prevent latency hiccups,
FileStore checks the number of journal entries that have not yet
flushed to HDDs and throttles other transactions from the up-
per layer if the number of unflushed journal entries hits certain
thresholds (journal_throttle_low_threshold and
journal_throttle_high_threshold). After the suf-
ficient number of transactions are written to HDDs, throttling
is released and the high-performance Ceph journal quickly
absorbs write requests again until it reaches the throttling
thresholds. As these routines are repeated, the amount of write
traffic continues to oscillate within a short time range. Because
write transactions are frequently throttled, the IOPS curve also
fluctuates.

Unlike in HDDs, the amount of write traffic in SSDs seems
to be completely stable as depicted in Figure 5(b). The amount
of the Ceph journal written at the beginning of the experiment
is almost the same as that written at the end of the experiment
and there is quantitatively little change during the whole
experiment. It means that the underlying SSDs on which the
XFS file system is mounted can process queued transactions
as fast as the Ceph journal writes.

The above two rows in Table I are the results for FileStore.
Since FileStore relies on the external Ceph journaling, the
conventional wisdom is that it doubles WAF due to the
redundant write of data to the Ceph journal. However, Table I
shows that the Ceph journal contributes to WAF by about six
on both HDDs and SSDs, indicating that the Ceph journal
actually does not double, but triples write traffic in each Ceph
OSD server. This is because FileStore writes not only data but

also other metadata and attributes to the Ceph journal.
Also, we can see that the journaling of journal problem

exists in FileStore. Apart from Ceph metadata and Ceph
journal, another file system metadata and file system journal
increase the total WAF by almost four. This implies that the
amount of file system metadata and file system journal is even
larger than the actual data size in each OSD server.

B. KStore

As we can see in Figure 6 and 7, the huge amount of
compaction traffic (denoted by yellow color) is responsible
for most of WAF. When we focus on the cases with HDDs,
KStore results based on two different key-value stores are
almost similar. In both cases, the amount of write traffic
due to compaction increases as time goes on, while IOPS is
decreasing slightly.

If we look into the cases with SSDs, we can observe the
continuous oscillation in WAF and IOPS during the whole
experiment. Especially in Figure 6(b), the amount of Ceph
data is measured to zero, meaning that the client is not
receiving any acknowledgments during the sampling period
(i.e., 3 seconds).

The results of KStore shown in Table I can be summarized
as follows. First, the total WAF in KStore ranges from 29.650
to 71.034. This high level of WAF is unusual and infeasible in
practice. From Table I, we can see that compaction is respon-
sible for 65.3% ∼ 84.8% of the total WAF. Second, comparing
the two key-value stores, RocksDB performs compaction more
aggressively; RocksDB increases the amount of writes issued
during compaction by more than 2.6x compared to LevelDB.

C. BlueStore

Figure 8(a) and 8(b) show the results when BlueStore is
used as a storage backend. The overall trends in both graphs
are similar. One notable difference in BlueStore from FileStore
and KStore is that there is a large amount of zero-filled data
traffic as soon as the experiment starts. As we explained in
Section IV-C, the requests for zero-filled data are triggered
when BlueStore needs to fill unused space of the current chunk
with zeroes. The amount of zero-filled data decreases over time
since the zero-filling operation is performed only once for each
chunk.

Since BlueStore allocates chunks sequentially to the raw
block device, writing zero-filled data at the beginning of the



TABLE II: Overall Results of Experiments Based on HDDs

FileStore KStore
(LevelDB)

KStore
(RocksDB)

BlueStore

IOPS (ops/sec) 1851 1008 796 1657
WAF 14.56 31.25 71.03 17.84

Avg latency (ms) 69.20 126.88 160.72 77.21
99.99th latency (ms) 7176.19 3523.00 3621.00 334.00

TABLE III: Overall Results of Experiments Based on SSDs

FileStore KStore
(LevelDB)

KStore
(RocksDB)

BlueStore

IOPS (ops/sec) 38739 11324 8861 34556
WAF 13.75 29.65 65.73 19.08

Avg latency (ms) 6.61 22.60 28.88 7.42
99.99th latency (ms) 50.99 5997.00 2868.00 51.46

experiment can be done quickly even on slow HDDs. However,
continuous 4KiB random writes to already allocated chunks
incur fully random accesses to HDDs and this makes IOPS
suffer on HDDs. Unlike the case of FileStore, the IOPS curve
is relatively more stable when using HDDs.

When BlueStore runs on SSDs, it is interesting that IOPS
slightly increases after the initial phase of the experiment. This
is because, unlike in the case of HDDs, the random writes
after the initial phase do not become a bottleneck as SSDs
have superior random write performance to HDDs. Instead,
IOPS increases a little as the amount of additional writes due
to zero-filled data diminishes.

When SAS SSDs are used as main storage for BlueStore, we
find that NVMe SSD used as RocksDB and RocksDB WAL
devices can be bottlenecked, as the performance difference
between SAS SSDs and NVMe SSDs is not significant.
Especially, our additional experiments show that IOPS drops
by about 15% when a single NVMe SSD is shared by all four
OSD servers for RocksDB and RocksDB WAL in a storage
server.

Table I shows a breakdown of WAF for each category in
BlueStore. In both HDDs and SSDs, the total traffic caused
by RocksDB (RocksDB + RocksDB WAL + Compaction) is
huge which is responsible for 65.7% ∼ 69.3% of the total
WAF. In particular, we can see that the write traffic caused by
RocksDB WAL is relatively dominant. The reason is that most
of 4KiB random writes will be converted to partial overwrites
to the existing chunks which require BlueStore to log data in
the RocksDB WAL.

D. Overall Results

Table II summarizes the overall results of four tests when
using HDDs as main storage. First, we can see that no
matter which Ceph storage backend we choose, Ceph has the
high WAF ranging from 14.56 to 71.03. Considering that the
replication factor is three, the total amount of data written to
the storage device is amplified by 4.85x ∼ 23.68x in each
storage server when a single 4KiB data is written. Second,
FileStore performs the best among four storage backends in
terms of IOPS and the average latency. However, the 99.99th

tail latency of FileStore is extremely bad; the time for the
client to receive an acknowledgment for a single 4KiB data
can be prolonged up to 7.3 seconds. Third, although IOPS and
the average latency in BlueStore are slightly worse than those
of FileStore, the 99.99th tail latency of BlueStore is much
better (i.e., 334.0 ms). Fourth, despite one of the motivations
of BlueStore is to avoid separate Ceph journaling in FileStore,
it has the larger WAF than FileStore’s. It is because BlueStore
still performs write-ahead logging in the RocksDB WAL to
prevent data loss if the size of the write request is smaller than
the minimum chunk size. Finally, KStore based on key-value
stores such as LevelDB and RocksDB suffers from compaction
overhead, showing the worst IOPS and WAF.

The results on SSDs are summarized in Table III. Compar-
ing them each other, FileStore seems to be the best storage
backend on SSD-based Ceph systems. Unlike the case of
HDDs, FileStore outperforms not only in IOPS and the average
latency, but also in the 99.99th tail latency. As can be seen
in Figure 5, this is due to that the write speed of the main
SSD is fast enough to catch up the speed of the Ceph journal
write. In most cases, the client receives acknowledgments as
soon as writing to the Ceph journal completes, which also
helps in reducing latency in FileStore. BlueStore performs a
little behind FileStore, and KStore again performs the worst,
resulting in very long tail latencies even on SSDs.

According to our results, BlueStore seems to be the most
promising storage backend under the latency-critical situation
especially when HDDs are used as the main storage media.
When running Ceph on SSDs, FileStore is still the storage
backend of choice with BlueStore being a close competitor to
FileStore.

VI. RELATED WORK

Since Ceph is publicly announced in 2006 by Weil et al. [1],
the initial work has been centered around Ceph file system
which provides file-level service to clients [11], [12], [13].
Gudu et al. investigate performance and scalability of Ceph
RADOS RBD [14]. However, their work is conducted on
an earlier version of Ceph (Emperor version) and the major
evaluation metric is the client-side throughput.

As SSD has been popular as high-performance storage
devices, several approaches have been proposed to optimize
the performance of Ceph block storage on SSDs. Samsung
compares the performance of Ceph block storage using their
own NVMe SSDs with varying the number of OSDs per SSD
and the number of SSDs per OSD [15]. Oh et al. point out
performance bottlenecks in FileStore of the Ceph Hammer
version and propose several optimizations under the all-flash
environment consisting of NVRAM and SSDs [6]. Moreover,
there has been an attempt to get the maximum performance
from the Ceph by tuning some kernel parameters such as MTU
(Maximum Transmission Unit) and file system mount options
as well as Ceph configurations [4].

However, none of the previous work has focused on the
characteristics of the Ceph storage backends and their impli-
cations on performance and WAF. We believe this paper is



the first study to compare write behaviors of the Ceph storage
backends with a focus on WAF.

VII. CONCLUSION

This paper mainly analyzes write behaviors and the perfor-
mance of Ceph storage backends focusing on WAF. Through
extensive experiments with a microbenchmark and a long-term
workload, we have shown the particular write patterns that
each Ceph storage backend generates and compared them with
each other on two types of storage devices, HDDs and SSDs.

We find that IOPS is closely related to WAF and writes
are amplified by more than 13x in Ceph regardless of the
storage backend used. FileStore actually triples the write traffic
due to its own external Ceph journaling. In addition, there
exists the journaling of journal problem with the amount of
file system metadata and file system journal exceeding the
original data size. KStore suffers the overhead of compaction
performed in the underlying key-value stores, showing the
worst IOPS and WAF among all storage backends. BlueStore
does not have the journaling of journal problem since data
are stored in the raw block device directly bypassing the file
system layer. BlueStore also avoids external Ceph journaling,
although small-sized requests are still logged in the RocksDB
WAL. Overall, FileStore performs the best among all storage
backends on SSDs, but BlueStore is still very promising as it
performs reasonably well on both HDDs and SSDs, showing
good average and tail latency even on HDDs.
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