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Abstract:  

In this paper we focus on the comparison of unemployment rates forecasting accuracy 

using time-varying parameter models and SARIMA models. We are particularly interested in 

the forecasts of the unemployment rate of eight Central and Eastern European first-wave 

accession countries: Estonia, Latvia, Lithuania, Czech Republic, Poland, Slovakia, Hungary 

and Slovenia within 1999-2015 years. We use a rolling short-term forecast experiment in 

order to obtain out-of-sample test of forecast accuracy. Moreover, we examine also the 

dynamic asymmetries in unemployment rates and the forecasting performance of different 

models. We find that the forecasting ability of the models depends not only on the forecasting 

horizon, but also on the direction of the movement in unemployment rates. The empirical 

evidence derived from our investigation suggests that there is no best single model, however 

SARIMA models although not including a “cyclical” component tend to perform better than 

others for a longer forecasts horizons.  
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Introduction 

An important question in forecasting of time series is which model is the best one. For more 

or less forty years ARMA-type models have been used for modelling and forecasting  

economic time series. This approach has a certain feature: all shocks, coming either from the 

cycle or from other sources, are included in these model’s innovations. Simultaneously in the 

last years the unobserved component models seem to become very promising tool in 

forecasting different economic series as it allows to separate time series components. In this 

paper we compare the forecasting accuracy of few unobserved component models and few 

specifications of seasonal autoregressive integrated moving average (SARIMA) models. We 

are interested in comparison of different models of unemployment rates series in several 

Central and Eastern European (CEE) countries..   

Neftci [1984] indicate that some macroeconomic series display asymmetric behaviour. 

In case of the unemployment rates they have a tendency to rise suddenly, but fall gradually 

(Koop and Potter 1999). In this paper we are interested if there are the differences of the 

unemployment rates’ forecasts accuracy at the time of increase and decrease of these rates. 

For the purpose of forecasting we use linear models: in case of structural time series 

modelling level, trend, seasonality and cyclical components are included, allowing for the 

coefficients on each predictor to be either time variable or constant over time. In the case of 

SARIMA models we consider two different specifications. The forecasting performance of 

different models is compared in different horizons and different times in order to indicate the 

best model.  

A number of research papers have used time series models for forecasting 

unemployment rates. These works are devoted either to single unemployment rate, where 

clearly the most popular is the US unemployment rate (e.g. Montgomery et al. 1998, 

Altissimo and Violante 2001, Caner and Hansen 2001, Proietti 2003, Koop and Potter 1999) 

or a comparison of models used in forecasting unemployment rates from different economies, 

eg. OECD countries (Skalin and Teräsvirta 2002, U.S., U.K., Canada, and Japan (Milas and 

Rothman 2005), G7 countries (Teräsvirta et al. 2005) and the Baltic States (Będowska-Sójka 

2015).  

Many works are devoted to comparison of different models. Montgomery, Zarnowitz, 

Tsay and Tiao [1998] in a rolling forecasts experiment for the US quarterly unemployment 
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rates show that non-linear models performed better than the linear ARMA model in terms of 

forecasting errors when the unemployment increased rapidly but not elsewhere. Stock and 

Watson [1999] used a large data set of U.S. macroeconomic time series, including the 

monthly unemployment rate, and showed that linear models have better forecasting accuracy 

than nonlinear ones. Oppositely, Teräsvirta et al. [2005] find that the nonlinear LSTAR model 

turns out to be better than the linear or neural network models when modelling unemployment 

rates in G7 countries. 

Marcellino (2002) generated forecasts of three key economic variables: the growth 

rate of industrial production, the unemployment rate and the inflation. He showed that best 

forecast for industrial production was obtained within linear models, whereas for the 

unemployment rate the non-linear models generate better forecasts. Proietti [2003] 

investigated the out-of-sample performance of linear and nonlinear structural time series 

models of the seasonally adjusted US unemployment rate. Generally linear models are said to 

perform significantly better than nonlinear models, but a nonlinear specification outperforms 

the selected linear model at short lead times in periods of slowly decreasing unemployment 

rate. 

The main purpose of this paper is to compare an accuracy of unemployment rate 

forecast’s obtained from different linear models, namely structural time series models and 

SARIMA models. Our approach is much in the same spirit of Proietti (2003) and Będowska-

Sójka (2015) as it concentrates on the comparison of forecasting models on the basis of the 

short-term forecasts. With respect to Proietti (2003) paper we focus on seasonally unadjusted 

data from several countries and use linear structural time series models only. In Będowska-

Sójka (2015) few unobserved component models are compared from the perspective of 

forecasts generated for unemployment rates of the three Baltic states: Lithuania, Latvia and 

Estonia. In that paper it is shown that models which contain cyclical components perform 

better than other unobserved component models (Będowska-Sójka 2015). 

Our sample data consists of seasonally unadjusted monthly unemployment rates of the 

eight CEE countries that joined European Union in 2004 in the first-wave accession. These 

countries are: Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia, and 

Slovenia. The sample starts in January 1999 and ends in March 2015 (with some exceptions 

described below). The forecasts of unemployment rates are generated from the rolling 

forecasts experiment where seasonality effects are built directly into the forecasting 

procedure. In this paper we consider all forecasts origin starting from January 2008 and 
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ending in March 2014. The forecasts are set to horizons from one month to one year. As the 

rolling window generally consists of 108 observations we obtain 75 forecasts for each series 

and each models. In order to compare forecasts from different models, we use common 

forecasting error measures. To the best of our knowledge this is the first study that compares 

unemployment rate forecasts within these eight CEE countries. 

Our contribution is as follows: first in six out of eight cases seasonal ARIMA models 

offered better forecasting accuracy than the unobserved component models. Second, when 

comparing models across all countries in the sample, there are substantial differences between 

their forecasting abilities; the lowest mean percentage forecasting error for 12-month horizon 

is 1.82% in case of Slovakian unemployment rate and the highest is 8.67% for the Estonian 

one. In case of Estonian, Latvian and Slovenian unemployment rates shocks that increase 

unemployment rates tend to have greater negative impact on the model’s forecasting ability 

than shocks that lower unemployment rate. Finally, the differences in forecasting errors 

obtained from different methods are generally not serious.  

The plan of the paper is as follows. Next section describes the methodology used in 

the empirical study. Then data are presented and empirical results of the comparison of 

forecasts are shown. In the last section the conclusions are presented. 

 

Methodology 

Our paper aims to compare forecasts from two alternative specifications that are used 

to represent the dynamic properties of series, namely unobserved component models (UC) 

and seasonal ARIMA models. When the disturbances are independent, identically distributed 

and Gaussian, an ARIMA model with restrictions in the parameters is the reduced form of an 

unobserved component model [Harvey 1989]. There is one aggregated disturbance within the 

specification of ARIMA models, whereas unobserved component models include component 

disturbances. Thus, the latter may allow to discover the characteristics, that are not observed 

in the reduced form of ARIMA model. In this paper we try examine which of these two 

classes of the models is more appropriate when forecasting the unemployment rates.  

The theory of structural time series models and ARIMA models is presented by 

Harvey [1989] – below a short presentation of the models used in the study is given.  

Within ARIMA models we use two specifications:  

I. Seasonal ARIMA(0,1,1)(0,1,1) – henceforth SARIMA1 
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II. Seasonal ARIMA(2,1,0)(0,1,1) – henceforth SARIMA2. 

When unobserved component models are taken into account, the general structural 

model is written as [Harvey 1989]: 

ttttty                    Ttt ...,,1),0(~ 2  NID    (1) 

where ty  represents the time series to be modelled and forecast, t is the trend component, t  

is the seasonal component, t  is the cyclical component, t  represents the irregular 

component and NID denotes Normally and Independently Distributed. All of these 

components are assumed to be unobserved. We use three specifications of UC models:  

III. Basic Structural Model (BSM) 

tttty              

),0(~ 2

11  NIDttttt          

),0(~ 2

1  NIDtttt        (2) 

where t  represents the stochastic level of the trend and t  represents the stochastic slope of 

the trend. It is also assumed that t , t  and t  are independent variables. Additionally, t  is 

trigonometric seasonal component described as: 
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where sjj /2   is the frequency and tj , , *

,tj , the seasonal disturbances, are mutually 

uncorrelated ( ),,0(~ 2

, jtj  NID ),0(~ 2*

, *
j

tj 
 NID ) and uncorrelated with t . 

As the unemployment rate tends to move in a countercyclical way [Montgomery et al. 

1998], we expect that a cyclical component might improve unemployment rates forecasts. 

Therefore the next model is: 

IV. Structural Model Plus Cycle (SMC)  

ttttty   ,  ttt   1  

In the model the statistical specification of a cycle, t , is defined by: 
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where: c  is the frequency (in radians),   c0 ,   is a damping factor, 10    and 

*, tt   are mutually uncorrelated white noise disturbances with zero means and common 

variance 2

 .  

 The last model included in the study is:  

V. Autoregressive Structural Model (ARSM)  

ttttt yy   1 , ttt   1    ),0(~ 2

 NIDt   (6) 

where t  represents the stochastic level of the trend , t  is trigonometric seasonal component 

described in equations (3) and (4), t  represents the irregular component (as in equation 1). 

As the primary use of time series models is forecasting, it seems that mean square 

error MSE would be adequate criterion in judging the models performance [Montgomery et 

al. 1998]. We use out-of-sample forecasts to assess which model gives the better accuracy. 

These forecasts are generated in a rolling forecasts window: for the given origin the model is 

estimated and forecasts are generated. Next, this step is repeated for each model and each 

series – hence we obtain 75 forecasts from one-step ahead till twelve-step ahead for each 

series. The only exception is the series of unemployment rates of Slovakia, where the data 

starts in 2006 – in this case we roll the forecasts one step at a time forward, each time re-

estimating the model by extending the estimation window.  

Finally, for all series and forecasts we calculate different forecasting errors and 

identify the models with the lowest errors. We also divide whole forecasts origin into 

increases and decreases in unemployment rates and examine if there are any differences 

between forecasting errors in these two states.     

 

Data 

Our sample data consists of monthly unemployment rates from eight first-wave 

accession Central and Eastern European countries that joined European Union in May 2004. 

There are (in alphabetical order): Czech Republic (CZ), Estonia (EE), Hungary (HU), Latvia 

(LA), Lithuania (LIT), Poland (PL), Slovenia (SI) and Slovakia (SK). We consider logarithms 

of monthly seasonally unadjusted series. The seasonality is included in the models: in the 

unobserved component models seasonal component is modelled as a stochastic one.  
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The data source is CEIC database (www.ceic.com).The sample starts in January 1999 

and ends in March 2015 with some minor exceptions. The data for Estonian unemployment 

rate starts in 2001, for Slovenia starts in 2000, and for Slovakia in 2006 (in all cases the first 

month of the available data is January). In case of the series that are available since January 

1999 starting from that date each model is estimated and forecasts from 1 month till 12 

months are computed. The process is repeated until the end of sample is reached. In case of 

Estonian and Slovenian unemployment rate the pre-forecasts period is extended until it 

reaches 108 observations and then the rolling window procedure is applied. The experiment 

provides in total 75 forecasts for horizons from one-month to one-year for each model and 

each series. In case of unemployment rate of Slovakia pre-forecasts period is extended each 

time with a new information till March 2014 when the last forecast are generated.  

The forecasts origin consists of the period of more or less rapid increase in the 

unemployment rates as well as the gradual decrease what give the possibility of observing the 

forecasting accuracy in different business cycle phases. 

Figure 1 Unemployment rates in the first-wave EU accession CEE countries within 1999.01-

2015.03 

 

CZ stands for Czech Republic, EE for Estonia, HU for Hungary,  LV for Latvia,  LIT for Lithuania, 

PL for Poland, SI for Slovenia and SK for Slovakia. 
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The calculations and graphics are done in OxMetrics STAMP7 [Koopman, Harvey, 

Doornik and Shephard 2006, Doornik and Hendry 2005].  

Figure 1 shows how unemployment rates changes within the sample period. There is 

no single tendency for the unemployment rates in the region at that time, but some common 

features are recognizable. At the beginning of the sample some unemployment rates are 

increasing and some decreasing. Starting from 2001 the unemployment rates in the region are 

decreasing (with Hungarian rate as the exception). There is also a visible change in all series 

as they start to increase sharply in the beginning or the mid of 2008 and start to decrease in 

the mid 2010 (with the exception of Slovenia). Zooming it the single series behave 

differently, some having huge differences between the lowest and the highest point. In the 

whole sample the highest unemployment rate was observed in Poland in March 2003 and the 

lowest in Estonia in December 2006. The common feature is the dynamic asymmetry which is 

observable in all series: the decrease in unemployment rates is rather gradual, whereas the 

increase is very steep.   

Empirical results 

The comparative performance of a rolling forecast experiment is presented in three 

steps. In the first one an out-of-sample test of forecast accuracy for the whole forecasts origin 

is shown. Then we compare the forecasts errors in two cases: increase and decrease in the 

series. In the third step, the errors are depicted together with the series in order to illustrate in 

which periods we observe the biggest and the lowest errors. 

We report comparative performance of the rolling forecasts in the models used in the 

study and described earlier. Tables 1 presents the different forecasting errors for each series 

whereby: 
tlt

y


~  is the l-ahead forecast for a given model, the Mean Error (ME) is obtained as 

an average of forecasts errors, 
tltt yy


 ~ , the Mean Square Forecast Error (MSFE) is 

calculated as square root of averages of 2)~(
tltt yy


 , and the Mean Absolute Percentage 

Error, MAPE, is obtained as an average of %100*/~
ttltt yyy


 . These errors are reported for 

1-month and 1-year horizon.  
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Table 1.  Comparison of forecasts performance in the test period 2008.1-2015.3 for unemployment rates CEE countries 

 
CZ EE HU LA 

1 month ME RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME RMSE MAPE 

SARIMA1 0.0058 0.0206 1.0120 0.0080 0.0364 2.1943 -0.0020 0.0151 0.6683 0.0022 0.0272 1.1926 

SARIMA2 0.0020 0.0210 1.0257 0.0043 0.0211 1.3709 -0.0029 0.0151 0.6684 0.0002 0.0183 0.8225 

BSM -0.0029 0.0220 1.0781 -0.0009 0.0206 1.1983 0.0021 0.0157 0.6962 -0.0011 0.0192 0.8552 

SMC -0.0019 0.0228 1.1146 -0.0001 0.0223 1.2923 0.0025 0.0152 0.6728 0.0001 0.0203 0.9006 

ARSM -0.0029 0.0220 1.0781 -0.0009 0.0206 1.1932 0.0021 0.0157 0.6961 -0.0011 0.0192 0.8539 

12 months             

SARIMA1 0.0831 0.1100 4.5645 -0.0411 0.3245 13.8566 -0.0518 0.0911 3.4156 0.0210 0.2244 7.9093 

SARIMA2 0.0309 0.1270 5.2363 0.0248 0.2329 9.8575 -0.0558 0.0880 3.2697 0.0085 0.1793 6.3304 

BSM -0.0327 0.1716 7.0297 0.0556 0.2197 8.6889 0.0251 0.0904 3.4197 -0.0035 0.1885 6.6558 

SMC -0.0007 0.1798 7.3484 0.1326 0.2729 10.9082 0.0366 0.0840 3.1354 0.0151 0.2016 7.0545 

ARSM -0.0316 0.1725 7.0636 0.0560 0.2193 8.6662 0.0250 0.0904 3.4184 -0.0033 0.1888 6.6646 

             

 LIT PL SI SK 

1 month ME RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME RMSE MAPE 

SARIMA1 0.0052 0.0326 1.4241 0.0044 0.0116 0.4765 0.0034 0.0133 0.5862 -0.0030 0.0110 0.4269 

SARIMA2 0.0046 0.0276 1.1976 0.0008 0.0091 0.3698 0.0006 0.0111 0.4842 -0.0006 0.0097 0.3759 

BSM 0.0002 0.0274 1.1946 -0.0008 0.0103 0.4230 -0.0003 0.0126 0.5497 0.0003 0.0115 0.4695 

SMC 0.0007 0.0261 1.1086 -0.0008 0.0099 0.4051 -0.0008 0.0124 0.5364 -0.0001 0.0113 0.4369 

ARM 0.0012 0.0268 1.1757 -0.0008 0.0103 0.4247 -0.0003 0.0126 0.5503 0.0003 0.0116 0.4771 

12 months             

SARIMA1 0.0002 0.2193 7.5631 0.0669 0.0805 2.8133 0.0461 0.0927 3.4312 -0.0504 0.0544 1.8580 

SARIMA2 0.0301 0.1992 7.0236 0.0267 0.0612 2.1209 0.0129 0.0962 3.4656 -0.0319 0.0542 1.8284 

BSM 0.0721 0.2190 7.3663 -0.0179 0.0821 2.8268 -0.0086 0.1122 4.0394 -0.0079 0.1210 4.0687 

SMC 0.0677 0.2000 6.5930 -0.0176 0.0761 2.6076 0.0010 0.1138 4.0938 0.0227 0.0699 2.3577 

ARSM 0.0687 0.2181 7.3264 -0.0177 0.0827 2.8453 -0.0083 0.1124 4.0467 -0.0066 0.1218 4.0972 
The bolded values are the lowest in a given horizon. 
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In most cases the lowest forecasts errors are obtained from the same model for 1 

month and 12 months horizon. The average difference between forecasting errors from 

different models are rather small. In terms of considered forecasting errors, the greatest 

accuracy is provided by one of the seasonal ARIMA models (for CZ, LA, PL, SI and SK for 

both horizons, whereas for HU for 1 month horizon). On aggregate the seasonal ARIMA 

models outperform unobserved component models. The empirical evidence speaks strongly 

against BSM model as it is the only one which is outperformed by other models for all series. 

There is a trade-off between a Mean Error and the Mean Square Forecast Error or Mean 

Absolute Percentage Error: the  lowest forecasts’ bias measured by Mean Error is observed 

for the models that have higher forecasts’ variability.  

In the next step the forecasts origin is divided into two subsamples depending on 

increase or decrease (or remaining at the same level) of unemployment rates. The formerly 

described errors are calculated separately for these two states. Table 2 presents the results of t-

test of equality of two sample means [Snedecor and Cochran 1989]. 

 

Table 2 Two-sample t-Test for equal means of errors in time of unemployment rates’ increase or decrease 

  CZ EE HU LA LIT PL SI SK 

1 month -0.6726 -3.0655 1.1359 -2.4533 -1.1712 -1.6840 -3.3242 -0.4870 

12 months -1.8739 -4.8674 0.7862 -2.9217 -1.7194 0.2594 -1.4220 -0.2920 
Bolded values are statistically significant at significance level α = 0.05. The statistics are presented for seasonal 

ARIMA(2,1,0)(0,1,1) model and MAPE errors, however the results of the statistical interference are not changed 

for other models as well as for ME or MSFE.  

 

According to the numbers presented in Table 2, in case of Estonian, Latvian and 

Slovenian one-month forecasts of unemployment rates, errors coming from the forecasts 

generated for the time of increase in unemployment rates are systematically higher than errors 

obtained in case of decrease in unemployment rates. This result holds also for Estonian and 

Latvian 12-month forecasts.  

We also present one-step ahead Mean Absolute Percentage Error from SARIMA2 

model for one month and 12 months horizon in 75 consecutive periods in forecasts origin 

together with the unemployment series. Figure 2 shows that the forecasting accuracy scores 

better in periods of gradual decrease or increase in unemployment rates and deteriorates in the 

beginning of the periods of rapid increase or decrease in the series. Similar behavior, although 

not presented here, characterizes the MAPE of multistep forecasts and other errors taken into 
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account in the study (ME and MSFE). It is contrary to what was found in Proietti (2003) with 

respect to US unemployment rate.  

  

Figure 2 Unemployment rates and one month MAPE for eight first-wave EU accession CEE 

countries within 1999.01-2015.03 

 

 

CZ stands for Czech Republic, EE for Estonia, HU for Hungary,  LV for Latvia,  LIT for Lithuania, 

PL for Poland, SI for Slovenia and SK for Slovakia. 

 

 

Conclusion 

In this paper we have examined the out-of-sample performance of two alternative 

specifications that are used to represent the dynamic properties of time series, namely linear 

models for unemployment rates of eight CEE countries that have accessed European Union in 

May 2004. As the main interest is to select the best forecasting models according to their 

post-sample performance, we have used rolling forecasts experiment and examine, which 
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model generated the best forecasts. Starting in January 1999 and ending in March 2015 our 

sample consists of the periods of decrease and increase in unemployment rates.  

We find that for the monthly data in majority of cases seasonal ARIMA models 

perform better than unobserved component models considered in the study. The forecasting 

ability across different series is surprisingly differential. Generally speaking ARIMA models 

prove to be a very useful forecasting tool, both for 1 month and 12 months horizon. Only for 

two series in the sample, the Estonian and the Hungarian unemployment rates, the structural 

time series models give better forecasts.  

When periods of increases and decreases in the unemployment rates are considered 

separately, forecasting errors for these two states are significantly different only in three 

cases. Last but not least the forecasting accuracy deteriorates in periods of rapid upward and 

downward movement and improves in periods of gradual change in the unemployment rates.   
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