### 1. I Use pencil and paper to answer the question.

Write 2 number sentences for finding the area of the shaded part of the rectangle.



### 2. Disc pencil and paper to answer the question.

The area of the rectangle shown below is 91 units<sup>2</sup>.



**a.** Write a number sentence that you can use to find the value of *x*. Number sentence: \_\_\_\_\_

**b.** Solve for *x*. Show your work.

*x* = \_\_\_\_\_ units

ANSWER: **a.** 7(x + 4) = 91 **b.** 9 units

# 3. Disc pencil and paper to answer the question.

Solve each equation. Show your work.

**a.** 9b - 6 = 24 + 14b**b.** 6 - 2t = 54 + 4t

Solution Solution

ANSWER:

**a.** b = -6**b.** t = -8

#### 4. Disc pencil and paper to answer the question.

One formula for converting between Celsius and Fahrenheit temperatures is F = (1.8 \* C) + 32. Convert the following:

**a.** 75°C = \_\_\_\_\_°F

**b.** 68°F = °C

| <sub>ANSWER:</sub> <b>a.</b> 167 | (Setup:) <i>F</i> = (1.8 * <b>75</b> ) + 32 |
|----------------------------------|---------------------------------------------|
| <b>b.</b> 20                     | (Setup:) <b>68</b> = (1.8 * <i>C</i> ) + 32 |

5. The Sixth Grade Pep Squad can use the formula P = 2.45k - 55 to determine the profit earned on the sale of school keychains. Which formula is equivalent to P = 2.45k - 55?

b. <u>*P*</u> = 2.45*k* a. 55P = 2.45kc. P - 55 = 2.45k d. P + 55 = 2.45k

ANSWER: d

6. The mobile shown below is in balance.

The fulcrum of the mobile is the center point of the rod.

Class:



What is the weight of the object to the right of the fulcrum?

\_\_\_\_\_ units

Name:

### 7. Disc pencil and paper to answer the question.

Use the formulas given to solve the problems below. Record the formula you use to solve each problem.

| Area                                                         |                           |  |
|--------------------------------------------------------------|---------------------------|--|
| Parallelogram                                                | A = b * h                 |  |
| Triangle                                                     | $A = \frac{1}{2} * b * h$ |  |
| Circle                                                       | $A = \pi * r^2$           |  |
| Use 3.14 for $\pi$ . Round answers to the nearest hundredth. |                           |  |



### 8. I Use pencil and paper to answer the question.

Use the formulas given to solve the problem below. Use 3.14 for  $\pi$ . Round answers to the nearest hundredth.

Record the formula you use to solve the problem.

| Volun             | ne                            |
|-------------------|-------------------------------|
| Rectangular prism | V = B * h                     |
| Cylinder          | V = B <b>*</b> h              |
| Sphere            | $V = \frac{4}{3} * \pi * r^3$ |





ANSWER: 346.19 cm<sup>3</sup>  $V = B * h (or V = \pi * r^2 * h)$ 

### 9. Se pencil and paper to answer the question.

Use the formulas given to solve the problem below. Use 3.14 for  $\pi$ . Round answers to the nearest hundredth. Record the formula you use to solve the problem.

\_\_\_\_\_

| Volume            |                               |
|-------------------|-------------------------------|
| Rectangular prism | V = B * h                     |
| Cylinder          | V = B * h                     |
| Sphere            | $V = \frac{4}{3} * \pi * r^3$ |



 $V = 400 \text{ ft}^3$ . Find the width.

Formula \_\_\_\_\_

ANSWER: 5 ft V = B \* h (or V = I \* w \* h )

### 10. Discount the second second

\_\_\_\_\_

Figures ABCD and LMJK are similar. Figure ABCD is an enlargement of LMJK.



**a.** The size-change factor that describes the enlargement is \_\_\_\_\_X.

**b.** Find the length of side *x*.

c. Calculate the perimeter of LMJK. Perimeter of LMJK \_\_\_\_\_ units

d. Explain how you can use the size-change factor to find the perimeter of ABCD.

e. Calculate the perimeter of *ABCD*. Perimeter of *ABCD* is \_\_\_\_\_\_ units

ANSWER: **a.** 1.75

- **b.** 63
- **c.** 216

**d.** Sample answer: Because *ABCD* and *LMJK* are similar, multiply the perimeter of *LMJK* by the size-change factor of 1.75. **e.** 378

#### 11. Discourse the second secon

\_\_\_\_\_

Figures ABCD and LMJK are similar. Figure ABCD is an enlargement of LMJK.



**a.** The size-change factor that describes the enlargement is \_\_\_\_\_X.

**b.** Find the length of side *x*.

c. Calculate the perimeter of *LMJK*. Perimeter of *LMJK*\_\_\_\_\_ units

d. Explain how you can use the size-change factor to find the perimeter of ABCD.

ANSWER: a. 2.5

- **b.** 40
- **c.** 98

**d.** Sample answer: Because *ABCD* and *LMJK* are similar, multiply the perimeter of *LMJK* by the size-change factor of 2.5.

### 12. Disc pencil and paper to answer the question.

Solve the equation. Show your work.

3(z+5) = -9

Z=\_\_\_\_\_

ANSWER: -8 Sample Work:

$$3(z+5) = -9$$
  

$$3z + 15 = -9$$
  

$$3z + 15 - 15 = -9 - 15$$
  

$$3z = -24$$
  

$$z = -8$$

### 13. Discrete the second second

Solve the equation. Show your work.

 $6=\frac{1}{2}(f-9)$ 

*f* = \_\_\_\_\_

Sample work:  

$$6 = \frac{1}{2}(f-9)$$

$$2 * 6 = 2 * \frac{1}{2}(f-9)$$

$$12 = 1 * (f-9)$$

$$12 = f-9$$

$$12 + 9 = f-9 + 9$$

$$21 = f$$

### 14. See pencil and paper to answer the question.

Using a trial-and-error-method, find an approximate solution to the equation  $x^2 - 5 = 73$ . Record your results in the table below. Use the suggested number to get started. Stop when your value for  $x^2 - 5$  is within 1 of 73.

| x | x <sup>2</sup> | $x^2 - 5$ | Compare $x^2 - 5$ to 73. |
|---|----------------|-----------|--------------------------|
| 8 | 64             | 59        | 59 < 73                  |
|   |                |           |                          |
|   |                |           |                          |
|   |                |           |                          |
|   |                |           |                          |

ANSWER: Sample answer:

| x   | x <sup>2</sup> | $x^2 - 5$ | Compare $x^2 - 5$ to 73. |
|-----|----------------|-----------|--------------------------|
| 8   | 64             | 59        | 59 < 73                  |
| 8.5 | 72.25          | 67.25     | 67.25 < 73               |
| 8.7 | 75.69          | 70.69     | 70.69 < 73               |
| 8.8 | 77.44          | 72.44     | 72.44 < 73               |
|     |                |           |                          |

15. There are 36 members on the school's track team. Five out of every 6 members were on the team last year. How many members were on the team?

There were \_\_\_\_\_ members last year.

#### 16. Disc pencil and paper to answer the question.

**a.** Without using a protractor, find the measure of each numbered angle. Lines b and d are parallel.



| <i>m</i> ∠1 = 62° | m∠7 =              |
|-------------------|--------------------|
| m∠2 =             | <i>m</i> ∠8 = 111° |
| m∠3 =             | m∠9 =              |
| m∠4 =             | <i>m</i> ∠10 =     |
| m∠5 =             | <i>m</i> ∠11 =     |
| <i>m</i> ∠6 =     | m∠12=              |

**b.** List all angles in the figure above that measure 118°.

c. List all angles that measure 69°.



**a.** 2, 4, 10, 12 **b.** 5 and 7

17. Use order of operations to evaluate the expression.

10 – 15 \* 2 – 11

ANSWER: -31

18. Use order of operations to evaluate the expression. -126 ÷ (12 + 6) + 2<sup>4</sup>

ANSWER: 9

#### 19. Which equation describes the relationship between the numbers in the table below?

| X             | У    |
|---------------|------|
| $\frac{1}{2}$ | -6   |
| 34            | -7.5 |
| -17           | 99   |
| -3            | 15   |

a. 
$$y = 6x - 3$$
 b.  $y = \frac{1}{2}x + 3$  c.  $y = -3x - 6$  d.  $y = -6x - 3$ 

ANSWER: d

#### 20. Disc pencil and paper to answer the question.

.

#### Area of a Decagon

Explain how you would find the area of a regular decagon with sides measuring x feet each. Your explanation should be detailed, clear, and easy to follow. Be sure to include formulas in your explanation.

Name:



ANSWER: Answers vary. Sample answer: Divide the decagon into 10 congruent isosceles triangles. The line that defines the height of  $\triangle AOB$  divides the triangle into 2 equal parts: right triangle **OCA** and right triangle **OCB**.



I know the length of the hypotenuse of the right  $\triangle OCB$  is y ft. One of the legs is  $\frac{x}{2}$  ft. Let z represent the length of the other leg.

Using the Pythagorean Theorem:  $\left(\frac{x}{2}\right)^2 + z^2 = y^2$ .  $\left(\mathbf{CB}^2 + \mathbf{OC}^2 = \mathbf{OB}^2\right)$ So,  $z = \sqrt{y^2 - \left(\frac{x}{2}\right)^2}$ . The height of  $\triangle \mathbf{AOB} = z = \sqrt{y^2 - \left(\frac{x}{2}\right)^2}$  ft. The area of  $\triangle \mathbf{AOB} = \frac{1}{2} * x * \sqrt{y^2 - \left(\frac{x}{2}\right)^2}$ 

(Area =  $\frac{1}{2}$  \* base \* height).

So, to find the area of the decagon, I multiplied that area of  $\triangle AOB$  by 10. (There are 10 congruent triangles in the decagon.)

The area of the decagon is 
$$5x * \sqrt{y^2 - \left(\frac{x}{2}\right)^2}$$
 square feet.