Unit #1: Algebra in Geometry

- 1. Point H is the midpoint of line segment TE. The coordinates of H are (-1, 1) and the coordinates of the one endpoint is (-7,-4). Find the coordinates of the other endpoint. (5,6)
- 2. If the midpoint is (7, 5) and one endpoint is (5, -6), what is the **<u>other endpoint</u>**?

B. $\left(1,\frac{11}{2}\right)$ A. $\left(6, -\frac{1}{2}\right)$ C. (19,4) D. (9,16)

- 3. Find the length of \overline{GO} if G(-1,1) and O(-3,-4). 5.39
- 4. Find the length of BE if B(-3,3) and E(-15,17)18.44
- 5. Find the midpoint of \overline{MS} if M(-4,10) and S(12,8)(4,9)
- 6. Find the midpoint of \overline{AC} if A(-2,3) and C(5,-3). (1.5,0)
- 7. What are the ordered pairs of the points on the graph? F(-3, 5) I(0, 0)S (-6, -2.5) H (5, -5)

9. y = -3

- O is between D and G. If DO = 17.8 and DG = 25.9, what is OG?
 8.1
- 9. B is between A and C. AB = 32 and CB = 23 Find AC. 55

Unit #3: Angles

1. $m \measuredangle ABD = 28^{\circ}$, $m \measuredangle DBC = (5x + 2)^{\circ} m \measuredangle ABC = (9x - 10)^{\circ}$ Find $m \measuredangle DBC$.

 $m \measuredangle \text{DBC} = 52^{\circ}$

2. P is in the interior of $\measuredangle IJK \text{ m} \measuredangle IJP = 17^{\circ} \text{ and } \text{m} \measuredangle PJK = (4x - 4)^{\circ} \text{ and } \text{m} \measuredangle IJK = (6x - 5)^{\circ}$ Find $\text{m} \measuredangle PJK$.

 $m \measuredangle PJK = 32^{\circ}$

C

3. Write an equation showing each of the following definitions:a. Supplementary anglesb. Complementary angles

 $m < 1 + m < 2 = 180^{\circ}$

 $m < 1 + m < 2 = 90^{\circ}$

4. Which of the following equations correctly shows the definition of complementary angles?
A) m ≤ 1+m ≤ 2 = 90
B) m ≤ 1+m ≤ 2 = m ≤ 3

C) <1+<2=905. Find $m \angle 1$ and $m \angle 2$ $m < 1 = 122^{\circ} \& m < 2 = 58^{\circ}$ 6. If $m \angle 1 = (2x + 45)^{\circ}$ and $m \angle 3 = (5x - 45)^{\circ}$, find $m \angle 1$.

7. If $m \measuredangle 1 = (10x+6)^\circ$ and $m \measuredangle 2 = (10x+6)^\circ$, find $m \measuredangle 1$

 $m < 1 = 90^{\circ}$

8. What is the supplement of a 56° angle?

124°

- 9. What is the compliment of a 56° angle?
- 34°

$$m < ABC = 146^{\circ}$$

11. Find $m \not\prec ABD$ if \overrightarrow{BD} is an angle bisector and $m \not\prec ABC = 176^{\circ}$

 $m < ABD = 88^{\circ}$

Unit #4: Logic

Use the conditional statement below to answer questions 1 - 5.

1. Identify the hypothesis:	Today is Sally's birthday
2. Identify the conclusion:	She will eat cake
3. Write the inverse:	If today is not Sally's birthday, then she will not eat cake.
4. Write the converse:	If she will eat cake, then it is Sally's birthday.
5. Write the contrapositive:	If she will not eat cake, then it is not Sally's birthday.

If today is Sally's birthday, then she will eat cake.

Use the conditional statement below to answer questions 6 - 10.

6. Identify the hypothesis:	An animal is a dog
7. Identify the conclusion:	It has a wet nose
8. Write the inverse:	If an animal is not a dog, then it does not have a wet nose.
9. Write the converse:	If an animal has a wet nose, then it is a dog.
10. Write the contrapositive:	If it does not have a wet nose, then it is not a dog.

If an animal is a dog, then it has a wet nose.

The table shows the lengths of five green iguanas after birth and then after 1 year.

11.Estimate the length of a green iguana after 1 year if it was 8 inches long when		Iguana	Length after Hatching (in.)	Length after 1 Year (in.)
it hatched. $= 40$ inches	-40 inches	1	10	36
	= 40 menes	2	9	34
12. Make a conjecture about the average growth of a green iguana during the first year. Grows about 25 in per year		3	11	35
		4	12	35
		5	10	37
		:		

Match each conditional statement with the algebraic property that would be used to prove the conclusion. NOTE: All answer choices will be used, none will be repeated.

.

A. Reflexive

D. Substitution

B. Symmetry

E. Transitive

-

C. Distributive

- E Addition
 - F. Addition

- G. Subtraction
- H. Multiplication
- I. Division

 $\begin{array}{c} \underline{E} \\ 13. & \text{If } 7 = A \text{ and } A = X, \text{ then } 7 = X \\ \underline{A} \\ 14. & \text{If } Y, \text{ then } Y = Y \\ \underline{F} \\ 15. & \text{If } 2x - 4 = 20, \text{ then } 2x = 24 \\ \underline{C} \\ 16. & \text{If } 3(x - 7) = 11, \text{ then } 3x - 21 = 11 \end{array}$

-

- $_C__16$. If 3(x 7) = 11, then 3x 21 = 1 $_I__17$. If 5x = 100, then x = 20
- $_1__17$. If 3x = 100, then x = 20 $_B__18$. If BG = PL, the PL = BG

19. Given $6(x-2) = 12$, Then $x = 4$	Statements	Reasons
	6(x-2) = 12	Given
	6x - 12 = 12	Distribute
	6x = 24	Addition
	x = 4	Division

20. Given: CO = OL

Conclusion: $\overline{CO} \cong \overline{OL}$

Statements	Reason
CO = OL	Given
$\overline{CO} \cong \overline{OL}$	Definition of Congruence

- 21. Given: $\measuredangle 2$ is the supplement to $\measuredangle 3$
 - Conclusion: $m \measuredangle 2 + m \measuredangle 3 = 180^{\circ}$

Statements	Reason	
$\measuredangle 2$ is the supplement to $\measuredangle 3$	Given	
$m\measuredangle 2 + m\measuredangle 3 = 180^{\circ}$	Definition of Supplementary Angles	

Unit #5: Parallel Lines and Transversals

Use the given picture to answer the following questions.

- 1. $\angle 2$ and $\angle 3$ are vertical angles.
- 2. $\angle 5$ and $\angle 1$ are corresponding angles.
- 3. $\angle 3$ and $\angle 6$ are alternate exterior angles.
- 4. $\angle 8$ and $\angle 7$ or 5 are a linear pair.
- 5. $\angle 7$ and $\angle 1$ are alternate interior angles.
- 6. $\angle 8$ and $\angle 1$ are same-side interior angles.
- 7. $\angle 5$ and $\angle 3$ are same-side exterior angles.

8. Given that line s || t, and $m \angle 2 = 112^{\circ}$ find the measures of each angle.

- a. $m \angle 1 = 68^{\circ}$ e. $m \angle 5 = 68^{\circ}$
- b. $m \angle 2 = 112^{\circ}$ f. $m \angle 6 = 112^{\circ}$
- c. $m\angle 3 = 68^{\circ}$ g. $m\angle 7 = 68^{\circ}$
- d. $m \angle 4 = 112^{\circ}$ h. $m \angle 8 = 112^{\circ}$

Use the picture to name the following

- 9. $\overline{AD} \perp \overline{DH}$ or \overline{DC} or \overline{AB} or \overline{AE}
- 10. $\overline{AD} \parallel \overline{BC} \text{ or } \overline{EH}$
- 11. \overline{AD} is skew to \overline{BF} or \overline{CG} or \overline{HG} or \overline{EF}

12. Plane ADB is parallel to plane EFH or FHG or EFG or EHG

13. Which of the following is always congruent:a) Vertical Anglesb) Corresponding Angles

c) Linear Pairs

Unit #6: Congruent Triangles

- In isosceles triangle ABC, the vertex is 80°. The measures of all three interior angles of triangle ABC would be? 80°, 50°, 50°
- In isosceles triangle ABC, the vertex is 110°. The measures of all three interior angles of triangle ABC would be? 110°, 35°, 35°

For 3-8 Tell whether or not the triangles can be proved congruent and if the triangles are congruent, give the reason for your answer (SSS, HL, SAS, AAS, ASA)

R

E

A

Unit #7: Triangle Properties

13. Tell whether a triangle can have sides with lengths 3.2, 4.7, and 7.2. EXPLAIN Yes, because 7.9>7.2

14. Ray wants to place a chair so it is 15 ft. from his television set. Can the other two distances shown be 6 ft and 3 ft? EXPLAIN.

Unit #8: Right Triangles and Radicals

1. A 15 foot ladder is 5 feet from the base of a building. At what height does it touch the building? x = $10\sqrt{2}$ = 14.14

2. An 10 ft. ladder is leaning up against a building. The top of the ladder hits the building at 7 ft. above the ground. How far away from the building is the bottom of the ladder? $x = \sqrt{51} = 7.14$

For 3-4, find the missing side of the right triangle. Put answer in SIMPLEST RADICAL FORM.

Divide and Rationalize

11.
$$\frac{\sqrt{75}}{\sqrt{3}}$$
 5 12. $\frac{\sqrt{32}}{4}$ $\sqrt{2}$ 13. $\frac{5}{\sqrt{12}}$ $\frac{5\sqrt{3}}{6}$

Find the missing side of the special right triangles. All answers should be in simplified radical form.(8 pts each)

20. A kite string is 220 feet long from the kite to the ground. The string makes a 45° angle with the ground. About how high off the ground is the kite?

 $x = 110\sqrt{2} = 155.56$

