\qquad KEY - TEACHER'S

Fall Semester Summary

Unit \#1: Algebra in Geometry

1. Point H is the midpoint of line segment TE . The coordinates of H are $(-1,1)$ and the coordinates of the one endpoint is $(-7,-4)$. Find the coordinates of the other endpoint.
$(5,6)$
2. If the midpoint is $(7,5)$ and one endpoint is $(5,-6)$, what is the other endpoint?
A. $\left(6,-\frac{1}{2}\right)$
B. $\left(1, \frac{11}{2}\right)$
C. $(19,4)$
D. $(9,16)$
3. Find the length of $\overline{G O}$ if $G(-1,1)$ and $O(-3,-4)$.

$$
5.39
$$

4. Find the length of BE if $B(-3,3)$ and $E(-15,17)$
5. Find the midpoint of $\overline{M S}$ if $M(-4,10)$ and $S(12,8)$ $(4,9)$
6. Find the midpoint of $\overline{A C}$ if $A(-2,3)$ and $C(5,-3)$.

7. What are the ordered pairs of the points on the graph?

F $(-3,5)$
I $(0,0)$
S (-6, -2.5)
H $(5,-5)$

8. $y=\frac{1}{2} x+3$

9. $y=-3$

10. $y=-\frac{2}{3} x-1$

11. Sketch a line for each of the following slopes:
a. Negative
b. Positive
C. Undefined
D. Zero

\qquad

Unit \#2: Notations and Segments

1. Find LM.

$$
\mathrm{LM}=8
$$

A) 8
B) 9
C) 10
D) 20
3. Name the Plane in all ways possible.
$\mathrm{ADC}, \mathrm{ABC}, \mathrm{DBC}$, and \mathscr{P}

4. Which of the following incorrectly names the given plane?
A) WAC
B) ACR
C) \mathfrak{P}
D) TAC

5. Given the line segment, solve for y.
 $y=3$
6. E is the midpoint of $\overline{\mathrm{DF}}, \mathrm{DE}=2 \mathrm{x}+4$, and $\mathrm{EF}=3 \mathrm{x}-1$. Find DE, EF and DF .
$\mathrm{DE}=14, \mathrm{EF}=14, \mathrm{DF}=28$
7. E bisects $\overline{D F}, \mathrm{DE}=2 y$, and $\mathrm{EF}=8 y-3$. Find DE, EF, and DF .
$\mathrm{DE}=1, \mathrm{EF}=1, \mathrm{DF}=2$
8. O is between D and G . If $\mathrm{DO}=17.8$ and $\mathrm{DG}=25.9$, what is OG ?
8.1
9. B is between A and $\mathrm{C} . \mathrm{AB}=32$ and $\mathrm{CB}=23$ Find AC .

Unit \#3: Angles

1. $m \measuredangle \mathrm{ABD}=28^{\circ}, m \measuredangle \mathrm{DBC}=(5 \mathrm{x}+2)^{\circ} m \measuredangle \mathrm{ABC}=(9 \mathrm{x}-10)^{\circ}$ Find $m \measuredangle \mathrm{DBC}$. $m \measuredangle \mathrm{DBC}=52^{\circ}$

2. P is in the interior of $\measuredangle I J K \mathrm{~m} \measuredangle I J P=17^{\circ}$ and $\mathrm{m} \measuredangle P J K=(4 \mathrm{x}-4)^{\circ}$ and $\mathrm{m} \measuredangle I J K=(6 \mathrm{x}-5)^{\circ}$ Find $\mathrm{m} \Varangle P J K$.
$\mathrm{m} \measuredangle P J K=32^{\circ}$

3. Write an equation showing each of the following definitions:
a. Supplementary angles
b. Complementary angles
$\mathrm{m}<1+\mathrm{m}<2=180^{\circ}$

$$
\mathrm{m}<1+\mathrm{m}<2=90^{\circ}
$$

4. Which of the following equations correctly shows the definition of complementary angles?
A) $m \Varangle 1+m \Varangle 2=90$
B) $m \Varangle 1+m \Varangle 2=m \Varangle 3$
C) $\Varangle 1+\Varangle 2=90$
D) $m \Varangle 1+m \Varangle 2=180$
5. Find $m \angle 1$ and $m \angle 2$
$\mathrm{m}<1=122^{\circ}$ \& $\mathrm{m}<2=58^{\circ}$

6. If $m \angle 1=(2 \mathrm{x}+45)^{\circ}$ and $m \angle 3=(5 \mathrm{x}-45)^{\circ}$, find $m \angle 1$.

$\mathrm{m}<1=105^{\circ}$
7. If $m \measuredangle 1=(10 x+6)^{\circ}$ and $m \measuredangle 2=(10 x+6)^{\circ}$, find $m \angle 1$ $\mathrm{m}<1=90^{\circ}$

8. What is the supplement of a 56° angle?
124°
9. What is the compliment of a 56° angle?
10. Find $m \angle A B C$ if $\overrightarrow{B D}$ is an angle bisector.

11. Find $m \Varangle A B D$ if $\overrightarrow{B D}$ is an angle bisector and $m \Varangle A B C=176^{\circ}$

$$
\mathrm{m} \angle \mathrm{ABD}=88^{\circ}
$$

Unit \#4: Logic

Use the conditional statement below to answer questions $1 \mathbf{- 5}$.
If today is Sally's birthday, then she will eat cake.

1. Identify the hypothesis:	Today is Sally's birthday
2. Identify the conclusion:	She will eat cake
3. Write the inverse:	If today is not Sally's birthday, then she will not eat cake.
4. Write the converse:	If she will eat cake, then it is Sally's birthday.
5. Write the	
contrapositive:	If she will not eat cake, then it is not Sally's birthday.

Use the conditional statement below to answer questions 6-10.

If an animal is a dog, then it has a wet nose.

6. Identify the hypothesis:	An animal is a dog
7. Identify the conclusion:	It has a wet nose
8. Write the inverse:	If an animal is not a dog, then it does not have a wet nose.
9. Write the converse:	If an animal has a wet nose, then it is a dog.
10. Write the contrapositive:	If it does not have a wet nose, then it is not a dog.

The table shows the lengths of five green iguanas after birth and then after 1 year.
11.Estimate the length of a green iguana after 1 year if it was 8 inches long when it hatched.
$=40$ inches
12. Make a conjecture about the average growth of a green iguana during the first year.

Grows about 25 in per year

Iguana	Length after Hatching (in.)	Length after 1 Year (in.)
1	10	36
2	9	34
3	11	35
4	12	35
5	10	37

ar

Match each conditional statement with the algebraic property that would be used to prove the conclusion. NOTE: All answer choices will be used, none will be repeated.
A. Reflexive
D. Substitution
G. Subtraction
B. Symmetry
E. Transitive
H. Multiplication
C. Distributive
F. Addition
I. Division 13. If $7=A$ and $A=X$, then $7=X$
_A 14. If Y, then $Y=Y$
_F 15. If $2 x-4=20$, then $2 x=24$
_C 16. If $3(x-7)=11$, then $3 x-21=11$
_I 17. If $5 x=100$, then $x=20$
_B 18. If $\mathrm{BG}=\mathrm{PL}$, the $\mathrm{PL}=\mathrm{BG}$

19. Given $6(x-2)=12$, Then $x=4$	Statements	Reasons
	$6(x-2)=12$	Given
	$6 x-12=12$	Distribute
	$6 x=24$	Addition
	$x=4$	Division

20. Given: $\mathrm{CO}=\mathrm{OL}$

Conclusion: $\overline{C O} \cong \overline{O L}$

Statements	Reason
$\mathrm{CO}=\mathrm{OL}$	Given
$\overline{C O} \cong \overline{O L}$	Definition of Congruence

21. Given: $\measuredangle 2$ is the supplement to $\measuredangle 3$

Conclusion: $m \measuredangle 2+m \measuredangle 3=180^{\circ}$

Statements	Reason
$\measuredangle 2$ is the supplement to $\measuredangle 3$	Given
$m \measuredangle 2+m \measuredangle 3=180^{\circ}$	Definition of Supplementary Angles

Unit \#5: Parallel Lines and Transversals

Use the given picture to answer the following questions.

1. $\angle 2$ and $\angle 3$ are vertical angles.
2. $\angle 5$ and $\angle 1$ are corresponding angles.
3. $\angle 3$ and $\angle 6$ are alternate exterior angles.
4. $\angle 8$ and $\angle 7$ or 5 are a linear pair.
5. $\angle 7$ and $\angle 1$ are alternate interior angles.
6. $\angle 8$ and $\angle 1$ are same-side interior angles.
7. $\angle 5$ and $\angle 3$ are same-side exterior angles.

8. Given that line $\mathrm{s} \| \mathrm{t}$, and $m \angle 2=112^{\circ}$ find the measures of each angle.
a. $m \angle 1=68^{\circ}$
b. $m \angle 2=112^{\circ}$
c. $m \angle 3=68^{\circ}$
d. $m \angle 4=112^{\circ}$
e. $m \angle 5=68^{\circ}$
f. $m \angle 6=112^{\circ}$
g. $m \angle 7=68^{\circ}$
h. $m \angle 8=112^{\circ}$

Use the picture to name the following

9. $\overline{A D} \perp \overline{D H}$ or $\overline{D C}$ or $\overline{A B}$ or $\overline{A E}$
10. $\overline{A D} \| \overline{B C}$ or $\overline{E H}$
11. $\overline{A D}$ is skew to $\overline{B F}$ or $\overline{C G}$ or $\overline{H G}$ or $\overline{E F}$

12. Plane ADB is parallel to plane EFH or FHG or EFG or EHG
13. Which of the following is always congruent:
a) Vertical Angles
b) Corresponding Angles
c) Linear Pairs
14. In the figure, $\mathrm{m} \measuredangle 1=(3 w+37)^{\circ}$ and the $\mathrm{m} \measuredangle 2=(7 w-13)^{\circ}$. Find the $\mathrm{m} \measuredangle 1$.
$\mathrm{m}<1=74.5^{\circ}$
15. Find the value of x.
$x=20$

Use the picture at the right to answer \# 16-17
$38^{\circ} 16$. If $m \measuredangle 13=38^{\circ}$, find $m \measuredangle 4$.
$33^{\circ} 17$. If $m \measuredangle 6=147^{\circ}$, find $m \measuredangle 12$.

Unit \#6: Congruent Triangles

1. In isosceles triangle ABC , the vertex is 80°. The measures of all three interior angles of triangle $A B C$ would be?

$$
80^{\circ}, 50^{\circ}, 50^{\circ}
$$

2. In isosceles triangle ABC , the vertex is 110°. The measures of all three interior angles of triangle $A B C$ would be?

For 3-8 Tell whether or not the triangles can be proved congruent and if the triangles are congruent, give the reason for your answer (SSS, HL, SAS, AAS, ASA)
3)

SSS
4)

5)

YES
NO
AAS
7)

YES
NO
HL
8)

YES
NO
SAS
9. Find AB in the given isosceles triangle with $\overline{A B} \cong \overline{B C}$ $\mathrm{AB}=72$

For 10 \& 11: Use the diagram at the right to answer both.
10)-. Write the triangle congruency of the given diagram?

$$
\triangle M S U \cong \triangle C S I
$$

11. Which of the given statements is NOT true based on the given information?

A) $\measuredangle U \cong \measuredangle I$
B) $\measuredangle M \cong \measuredangle C$
C) $\overline{S U} \cong \overline{S C}$
D) $\overline{M U} \cong \overline{C I}$
12. Find $x \quad x=3$ $(5 x+6)$

13. Write the triangle congruency of the given triangles. $\triangle C A R \cong \triangle G E O$

Unit \#7: Triangle Properties

1. Given the diagram at the right, find each:
$m \measuredangle A=91^{\circ}$
$m \measuredangle A C P=24^{\circ}$

2. Given the diagram at the right, find each:

$$
m \measuredangle A=76^{\circ}
$$

$$
m \measuredangle A C P=55^{\circ}
$$

3. Given that the $m \measuredangle A B D=21^{\circ}$.

What is the $m \measuredangle A B C ? 42^{\circ}$

4. Given that the $m \measuredangle A B D=34^{\circ}$. What is the $m \measuredangle A B C ? 68^{\circ}$

5. Given that $\mathrm{EF}=12.5, \mathrm{EH}=3.4$, and $F G=12.5$, find $E G$.
6.8

6. Given that $\mathrm{EF}=11.5, \mathrm{EH}=5,8$ and $F G=11.5$, find $E G$.
11.6

7. If Z is the circumcenter, what is the measure of ZJ ?
$Z \mathbf{J}=19.9$

8) If G is the centroid and $\mathrm{PZ}=72$ what is the measure of ZG?
$Z G=48$

9) If D is the incenter and $\mathrm{DF}=9.2$ what is DE ?
$\mathrm{DE}=9.2$

10. If Z is the circumcenter, what is the measure of ZH ?

$$
\mathrm{ZH}=19.9
$$

12. If D is the incenter and $\mathrm{DF}=7.8$ what is DE ?

$$
\mathrm{DE}=7.8
$$

11) If G is the centroid and $\mathrm{PZ}=63$ what is the measure of ZG?
$Z G=42$

13. Tell whether a triangle can have sides with lengths 3.2, 4.7, and 7.2. EXPLAIN Yes, because 7.9>7.2
14. Ray wants to place a chair so it is 15 ft . from his television set. Can the other two distances shown be 6 ft and 3 ft ? EXPLAIN.

No, because 9 is not bigger than 15

15. Find ED 13

Unit \#8: Right Triangles and Radicals

1. A 15 foot ladder is 5 feet from the base of a building. At what height does it touch the building? $\mathrm{x}=10 \sqrt{2}=14.14$
2. An 10 ft . ladder is leaning up against a building. The top of the ladder hits the building at 7 ft . above the ground. How far away from the building is the bottom of the ladder?
$\mathrm{x}=\sqrt{51}=7.14$

For 3-4, find the missing side of the right triangle. Put answer in SIMPLEST RADICAL FORM.

4. $3 \sqrt{7}$

Simplify
5. $-\sqrt{144}$
6. $\sqrt{18}$
$3 \sqrt{2}$
7. $5 \sqrt{45} \quad 15 \sqrt{5}$

Multiply
8. $(\sqrt{3})(\sqrt{15})$
$3 \sqrt{5}$
9. $-2 \sqrt{3} \cdot \sqrt{25}$
$-10 \sqrt{3}$
10. $(\sqrt{7})^{2}$

Divide and Rationalize
11. $\frac{\sqrt{75}}{\sqrt{3}} \quad 5$
12. $\frac{\sqrt{32}}{4} \quad \sqrt{2}$
13. $\frac{5}{\sqrt{12}} \frac{5 \sqrt{3}}{6}$

Find the missing side of the special right triangles. All answers should be in simplified radical form.(8 pts each)
14.

15. 3

16.

17.

18.

19.

20. A kite string is 220 feet long from the kite to the ground. The string makes a 45° angle with the ground. About how high off the ground is the kite?

$$
x=110 \sqrt{2}=155.56
$$

