

Unit 1: Atomic Structure & Properties

1.1 Moles & Molar Mass

- 6.02×10^{23} things (Avogadro's Number) (N_A)
- Gram formula mass
- Basic dimensional analysis

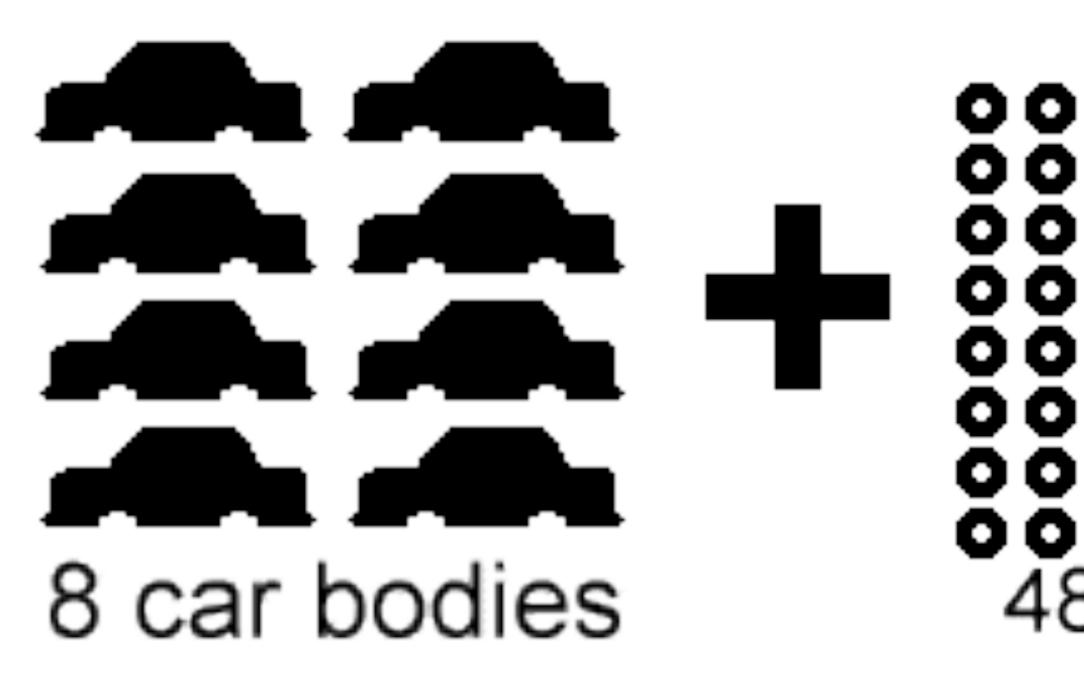
• Grams to moles, moles to grams, grams to molecules, grams to atoms

Example Stoichiometry

Grams to Moles

• How many moles of NaCl are contained in 48 g of NaCl?

Moles to Grams


• How many grams of C_2H_6 are contained in 18.7 moles of C_2H_6 ?

Grams to Molecules

• How many water molecules are contained in 56 g of a pure sample of H₂O?

Grams to Atoms

• How many hydrogen atoms are contained in 56 g of a pure sample of H_2O ?

48 tires

8 cars

plus 16 tires excess

A 2.00 g sample of ammonia is mixed with 4.00 g of oxygen. Which is the limiting reactant and how much excess reactant remains after the reaction has stopped?

1. Create a balanced equation for the reaction: $\underline{\qquad NH_{3(g)} + \underline{\qquad O_{2(g)} \rightarrow \underline{\qquad NO_{(g)} + \underline{\qquad H_2O_{(g)}}}$ 2. Use stoichiometry to calculate how much one product would be produced by each reactant. (NOTE: It does not matter which product you choose for your calculations, but the same product must be used for both reactants so that the amounts can be compared.) 3. Math to follow ...

Sample Limiting Reagent Question

Sample Limiting Reagent Question

If 15 grams of copper (II) chloride react with 20 grams of sodium nitrate, how much sodium chloride can be formed?

What is the limiting reagent for the reaction?

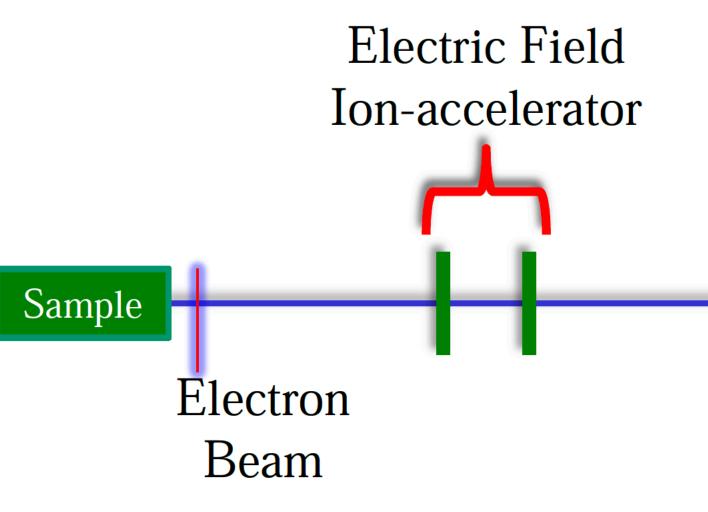
How much of the non-limiting reagent is left over (excess) in this reaction?

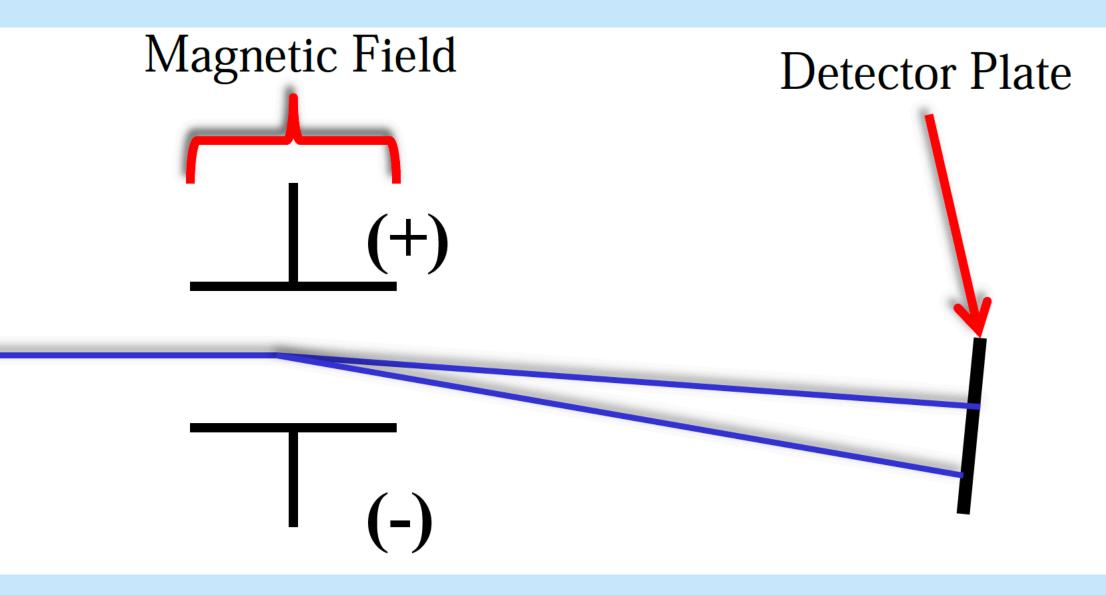
 $__CuCl_2 + __NaNO_3 \rightarrow __Cu(NO_3)_2 + __NaCl_3$

Percent Yield

Error in experiments result in less product obtained than we originally calculated. The amount we get is the Percent Yield.

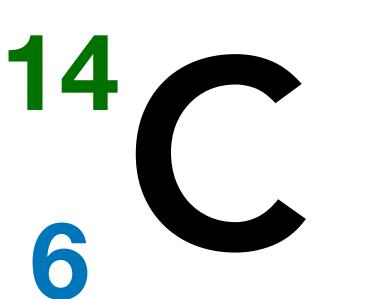
Percent = (Part / Whole) x 100


% Yield = amount you got / amount you should have gotten x 100


Using the maximum yield from the previous problem, if 11.3 grams of sodium chloride are formed in the reaction, what is the percent yield of this reaction?

1.2 Isotopes & Mass Spectroscopy

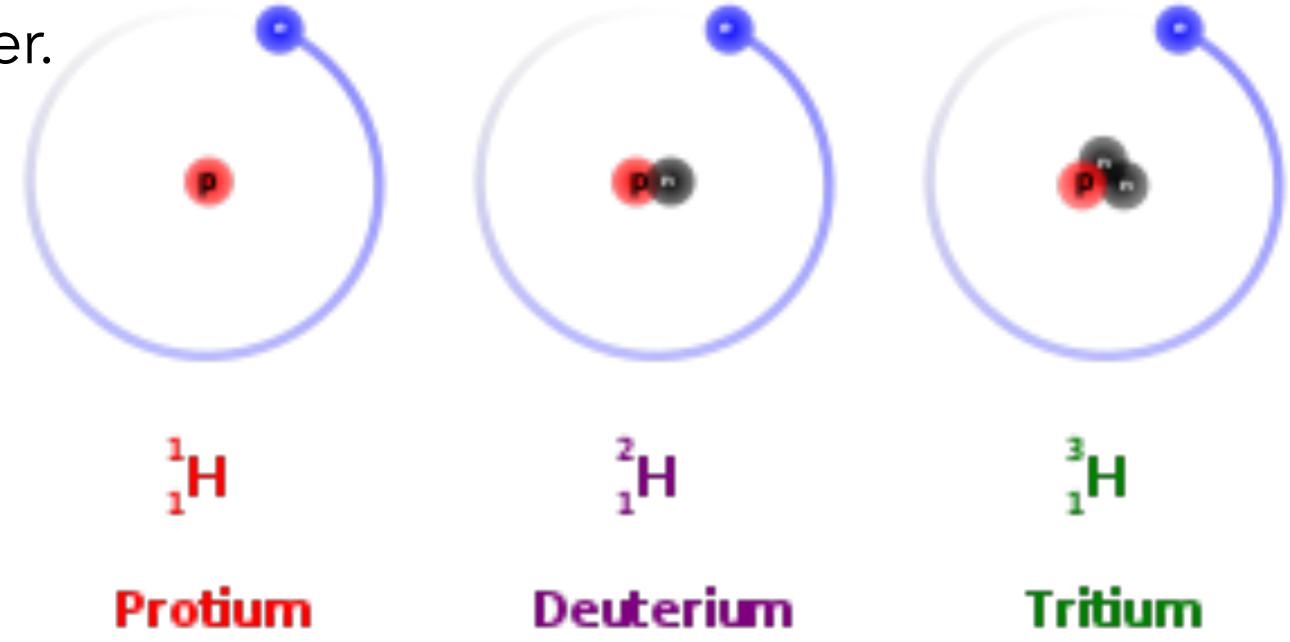
- Used to compare masses of isotopes
- Atoms ionized & accelerated through a magnetic field
- Lighter isotopes deflected more
- Can determine average atomic mass (weighted atomic mass) from the resultant spectrum



Atomic & Mass Numbers

- Mass Number (A)
 - Equal to the number of protons plus the number of neutrons

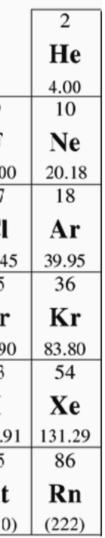
- Atomic Number (Z)
 - Equal to the number of protons (or electrons) in a neutral atom

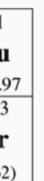


Number of neutrons present in this isotope?

Isotopes

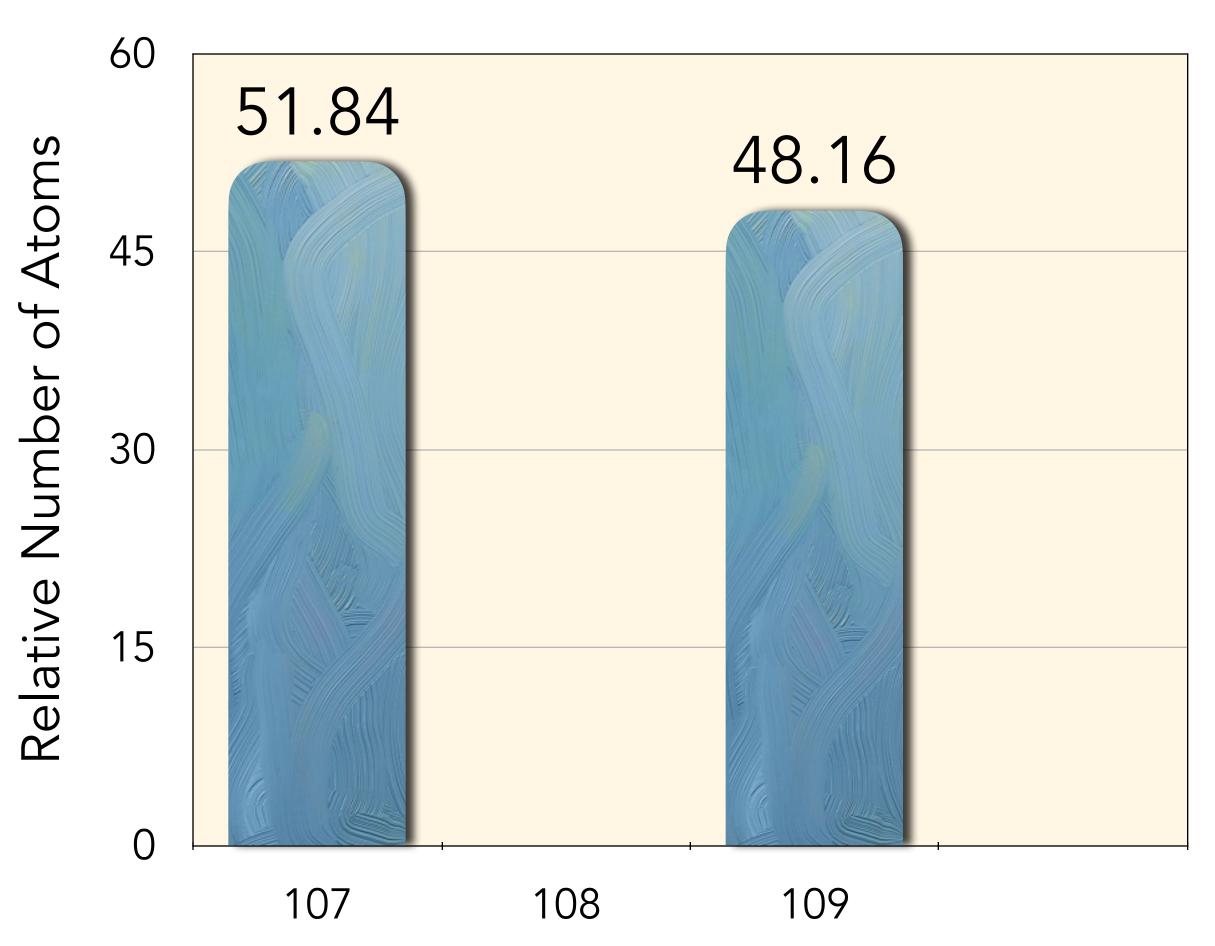
- Isotopes of an element have the same number of protons, but different numbers of neutrons.
- Isotopes have identical chemical behavior
- C-14 and C-12 will both react with Oxygen in exactly the same way (as will H-1 and H-2 with Oxygen to form water.



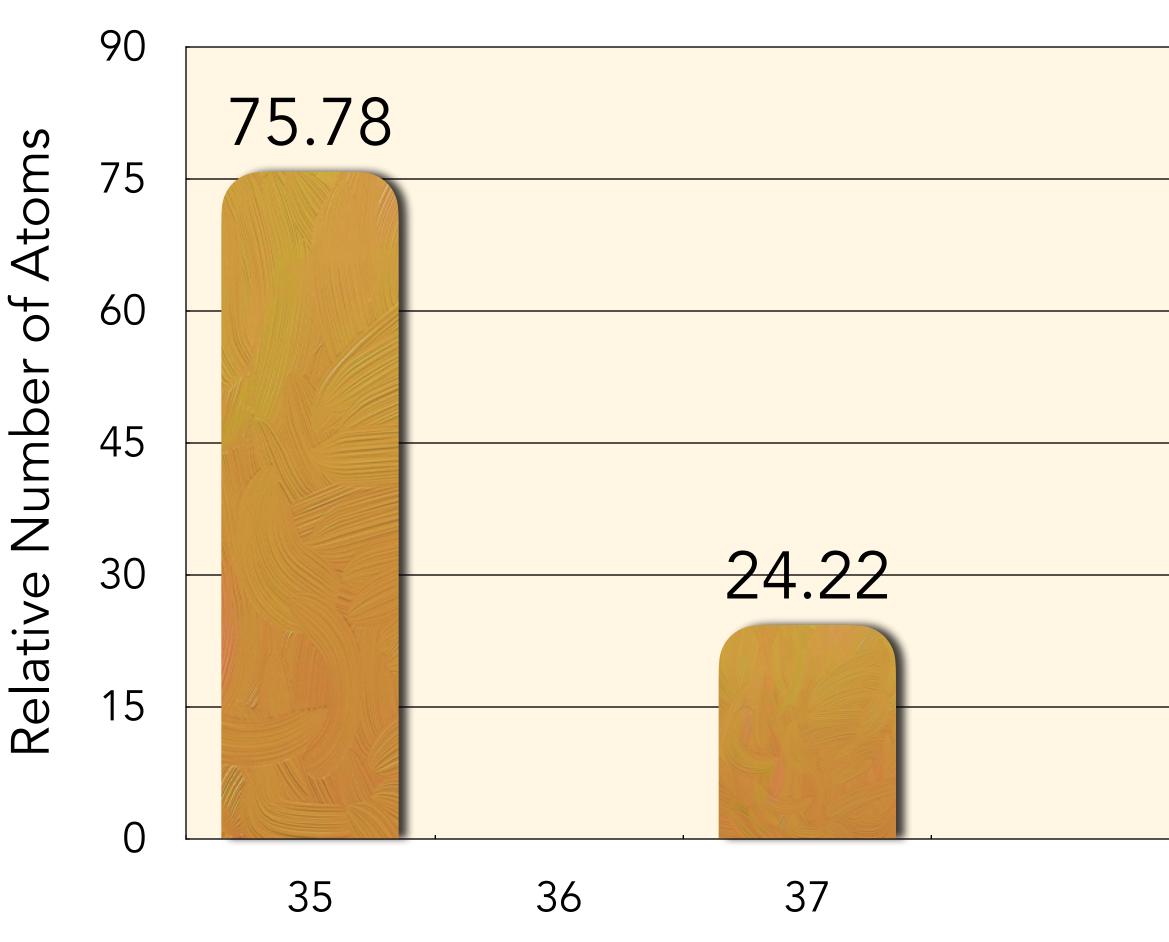

Average Atomic Mass

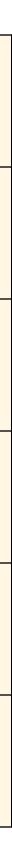
- Atomic Mass given on the PToE is a weighted average of all naturally occurring isotopes of the element.
 - The ratio of the isotopes is always the same.
 - Mass Spectroscopy can be used to calculate average mass.

1	1			PE	RIO	DIC	TAL	BLE	OF '	ГНЕ	EL	EMI	ENT	S		
Н																
1.008																
3	4]										5	6	7	8	9
Li	Be											B	C	N	0	F
6.94	9.01											10.81	12.01	14.01	16.00	19.00
11	12]										13	14	15	16	17
Na	Mg											Al	Si	P	S	CI
22.99	24.30		_	_	_	-	-			_	_	26.98	28.09	30.97	32.06	35.4
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.9
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210
87	88	89	104	105	106	107	108	109	110	111						
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg						
(223)	226.02	227.03	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)]					
			58	59	60	61	62	63	64	65	66	67	68	69	70	71


	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*Lanthanide Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
†Actinide Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Average Atomic Mass Example


A pure sample of silver was vaporized and injected into a mass spectrometer. The data was plotted. The mass value for Ag-109 is 108.90476 amu. Find the mass of Ag-107.


Mass Number

Another Example

Use the mass spectrum data to find the average atomic mass of the element in question and identify the element. The exact mass values of the isotopes are 34.969 amu and 36.966 amu.

Mass Number

1.3 Elemental Composition of Pure Substances 1.4 Composition of Mixtures

- Pure Samples
- Law of Definite Proportions
 - Mass Percent
- **Empirical & Molecular Formulas**

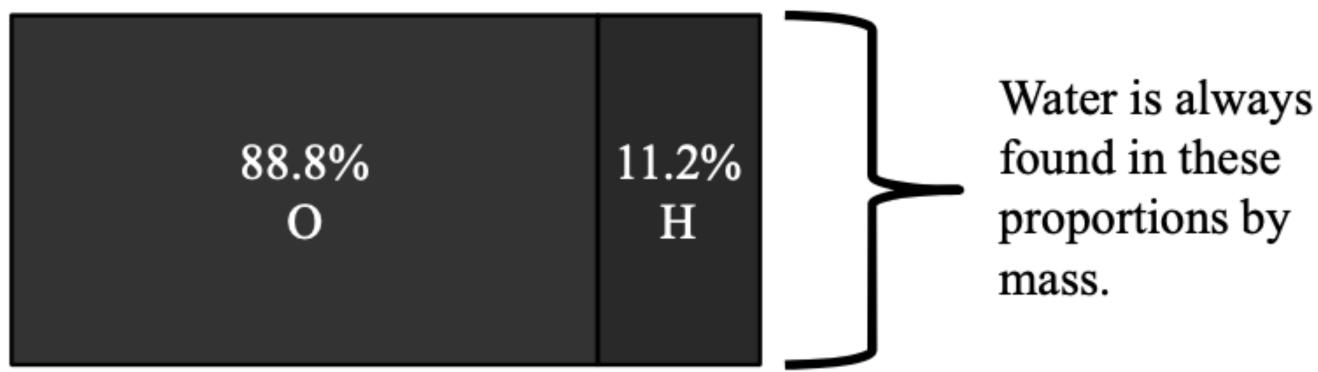
Pure Samples & Mixtures

Pure Sample

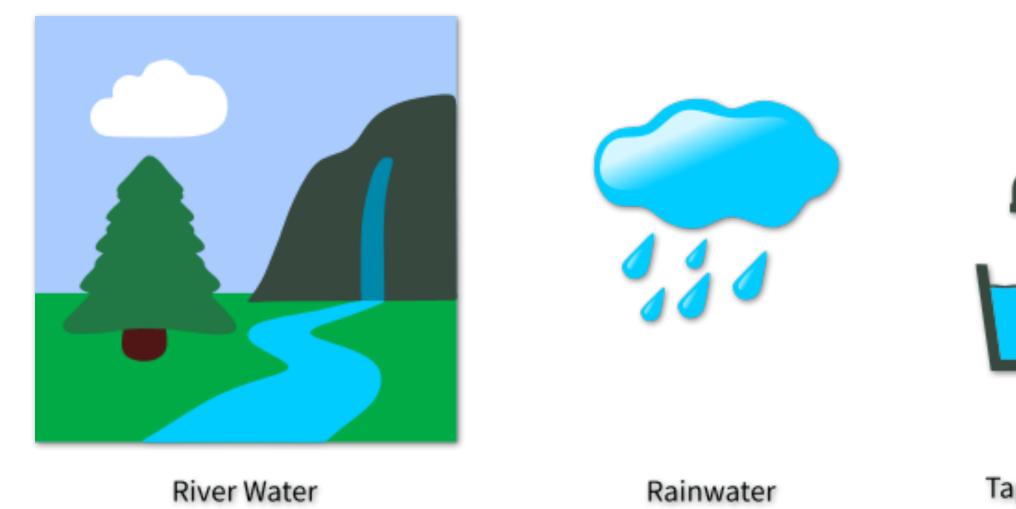
 Contains particles from one typ an ionic solid such as NaCl)

<u>Mixture</u>

Contains particles from more the molecule


Contains particles from one type of atom, molecule or formula unit (e.g.

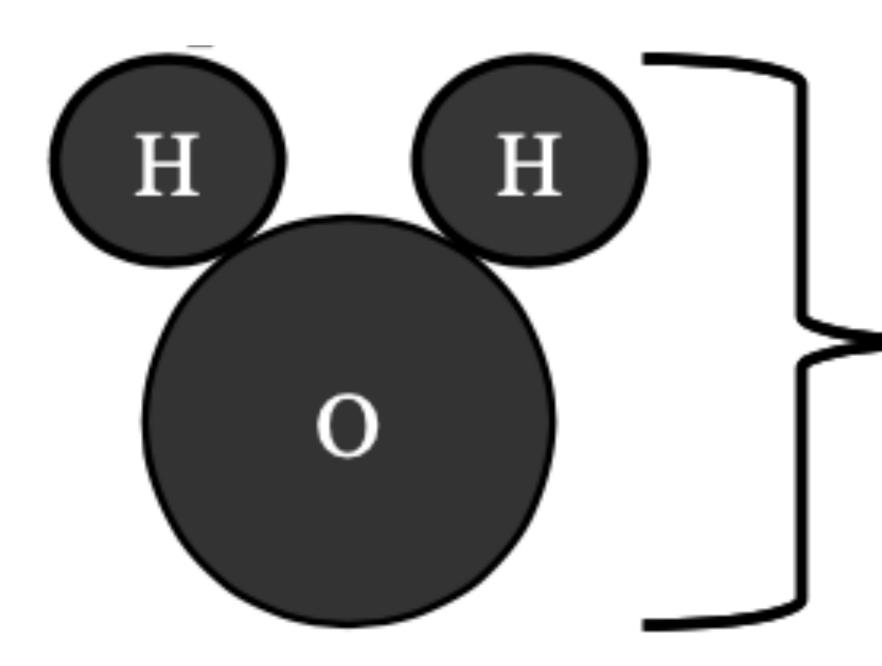
• Contains particles from more than one type of atoms, formula unit or


The History of the Atom

Joseph Proust (1754-18-26)

- The Law of Definite Proportions
- proportions of each element by mass.
 - Water is always 88.8% oxygen and 11.2% hydrogen by mass.

• Different pure samples of the same compound always contain the same



The History of the Atom

John Dalton (Billiard Ball Model)

- tiny invisible particles a particular compound would always be composed of equal numbers of each type of element.
- same thing as Proust...

Water is always composed of the same number of hydrogen atoms and the same number of oxygen atoms.

- or a component in a substance.
- Last year we showed this as Mass% = Part/Whole x 100
 - Same thing this year!

What is the mass % of Iron in a pure sample of FeTiO₃?

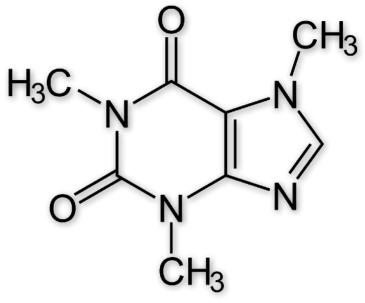
Mass Percent

The percentage by mass of an element in a pure sample of a compound

A tablet contains 0.025 mg of vitamin D. The entire table has a mass of 0.115 g. Calculate the mass percent of vitamin D in the tablet.

Empirical & Molecular Formulas

- Empirical Formula lowest whole number ratio of elements in a compound.
- Empirical formulas can be determined via 2 methods:
 1. %composition by element
 2. Combustion Analysis (*POGIL*)
 - Z. COMBUSTION ANALYSIS (7 C)
- Molecular Formula based on the Empirical Formula and the gram formula mass of the compound. Actual number of each type of atom in molecule.


Example: Empirical Formula

A sample of caffeine was found to contain 49.5% carbon, 28.9% nitrogen, 16.5% oxygen and 5.1% hydrogen by mass. Find the empirical formula for caffeine.

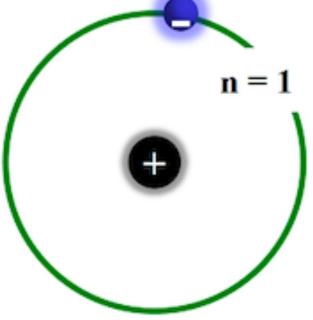
Nolecular Formula

The molar mass (gram formula mass) of caffeine is 194.2 g/mol. Find the molecular formula for caffeine.

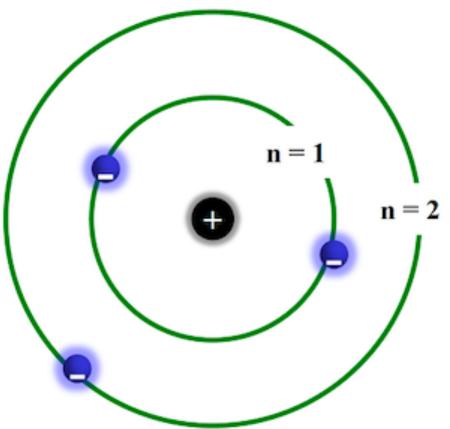
Empirical Formula_{caffeine} = $C_4H_5N_2O$

1.5 Atomic Structure & Electron Configuration 1.6 Photoelectron Spectroscopy

Shell Model of an Atom


Coulomb's Law Shielding Effect

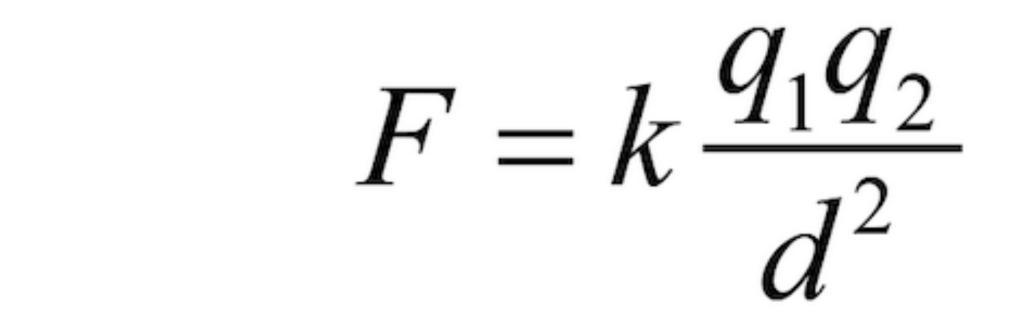
1st Ionization Energy Electron Configuration

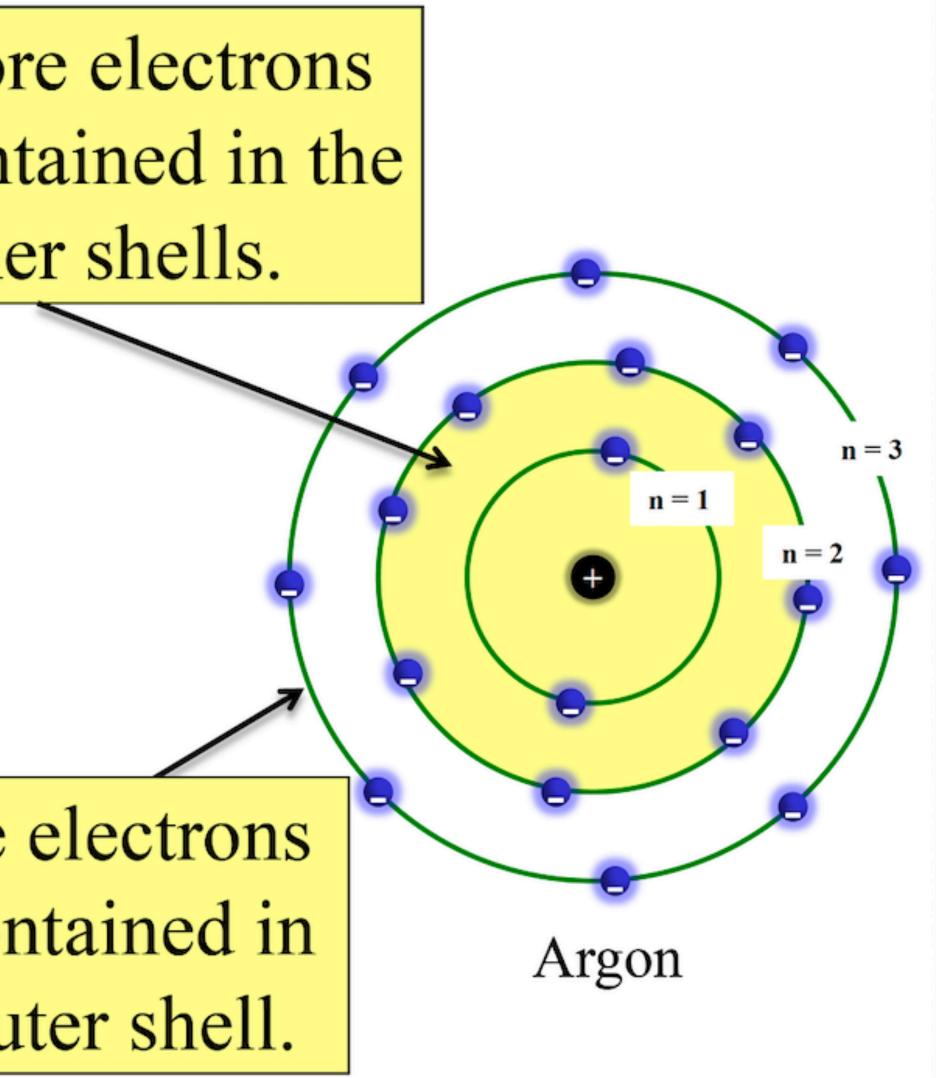


The Shell Model of the Atom

- Electrons move around the positively charged nucleus in circular orbits.
- Only certain orbits (shells) are allowed, and each orbit is a fixed distance from the nucleus.
- An electron within a shell has a set, quantized energy level.
- Forces of attraction between the electrons and the nucleus result from opposite charges.

Hydrogen




Coulomb's Law

- f = Force of attraction
- k = Constant
- q = Magnitude of charge associated with a particle protons or electrons *d* = Distance between charged particles

The force of attraction decreases as the distance between the outermost electron and the protons increases.

Inner Core & Valence Electrons Inner core electrons are contained in the inner shells. n = 3n = 3 n = 1 n = 2Valence electrons are contained in Sodium Argon the outer shell.

Shielding Effect / First Ionization Energy

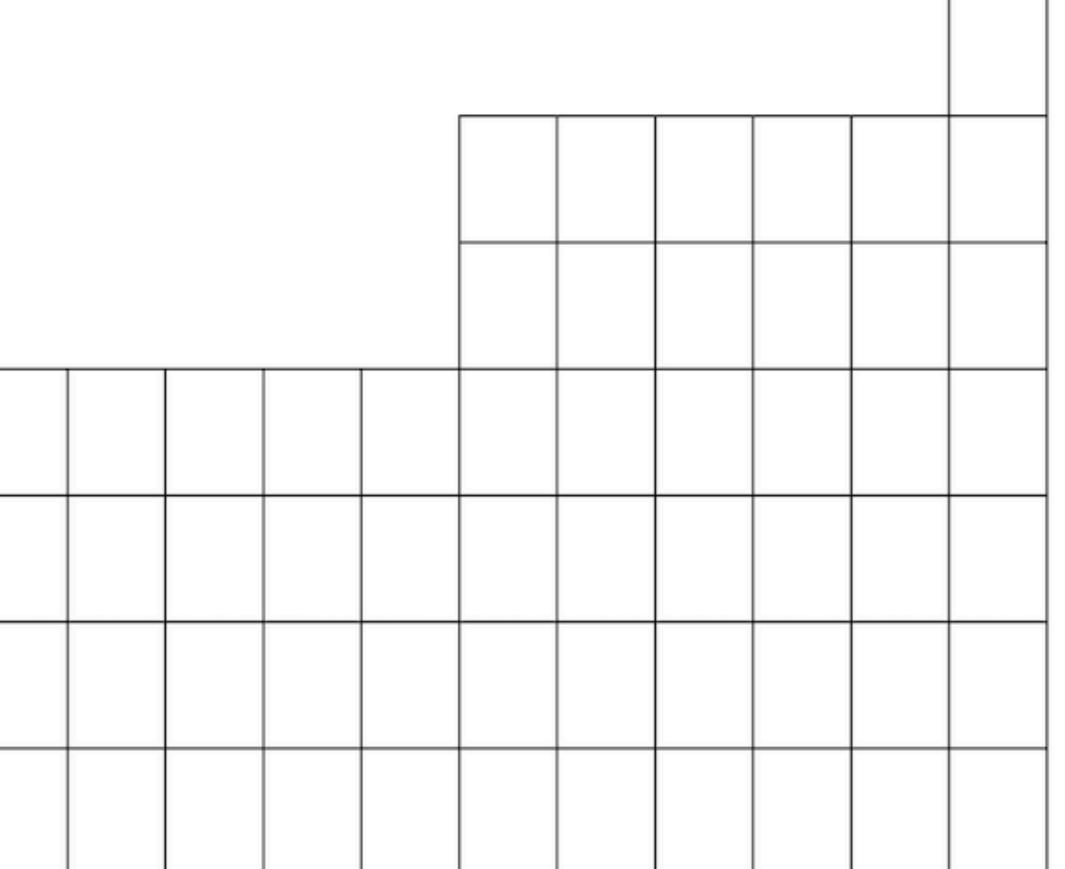
- core electrons.
- electrostatic attractions between the outer electrons and the nucleus.
- tightly held electron from an atom in the gas phase.

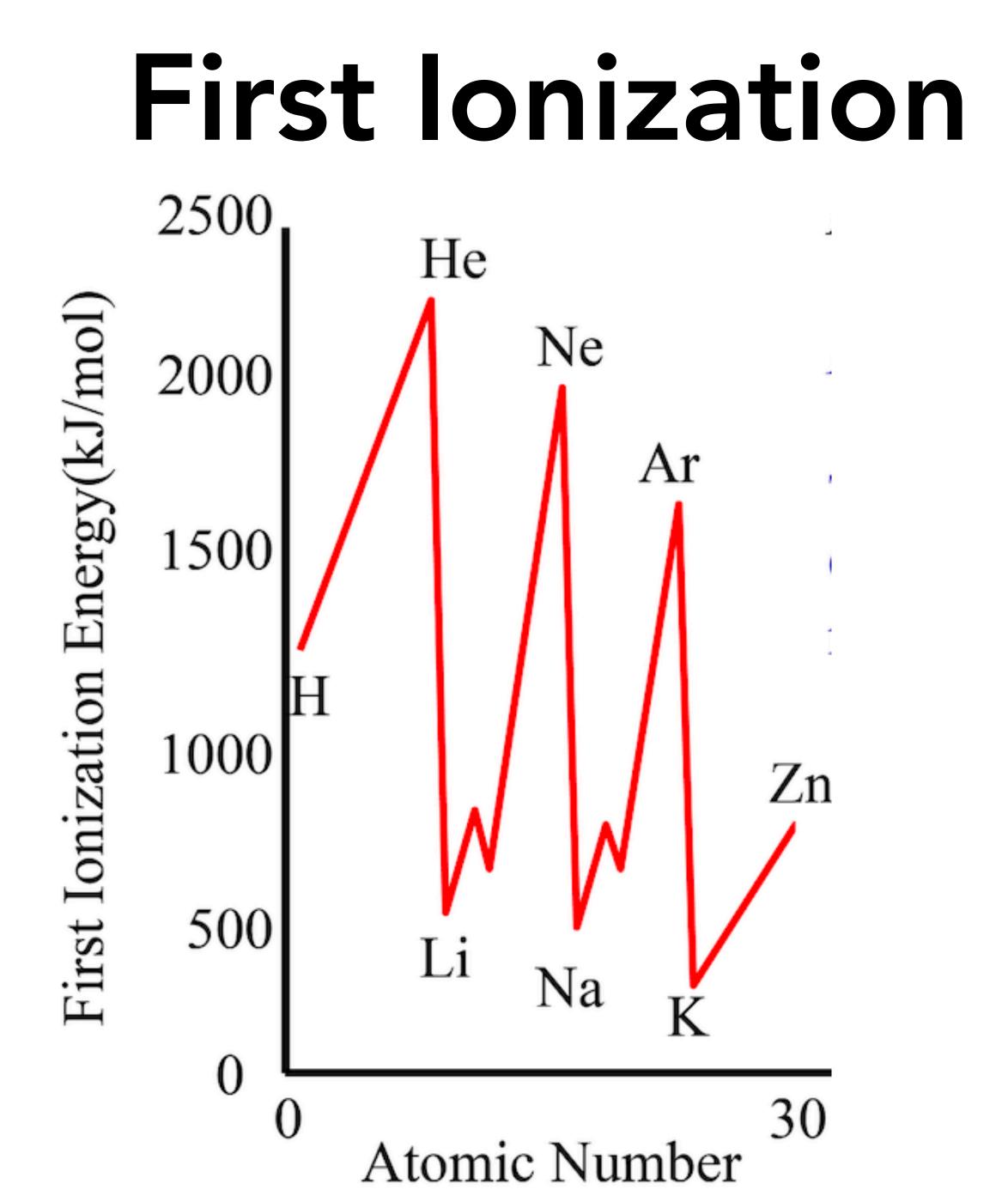
$$A(g) \rightarrow$$

• The electrons that are furthest from the nucleus are partly 'shielded' by the inner

• This shielding effect (electrostatic repulsion from the inner core electrons) reduces

• IE - the minimum amount of energy that is required to remove and outermost, least

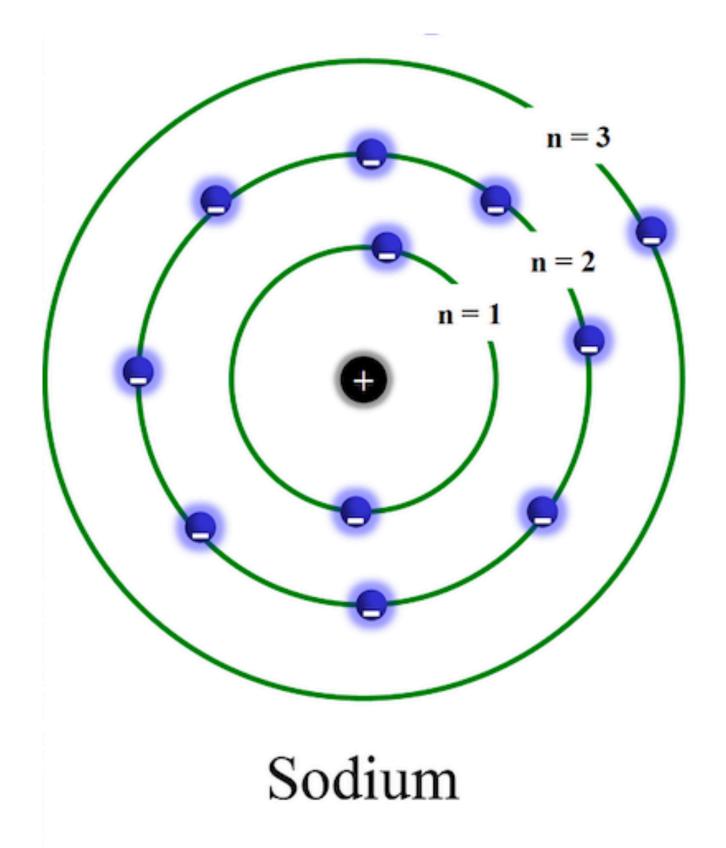

$A^{+}(a) + e^{-}$

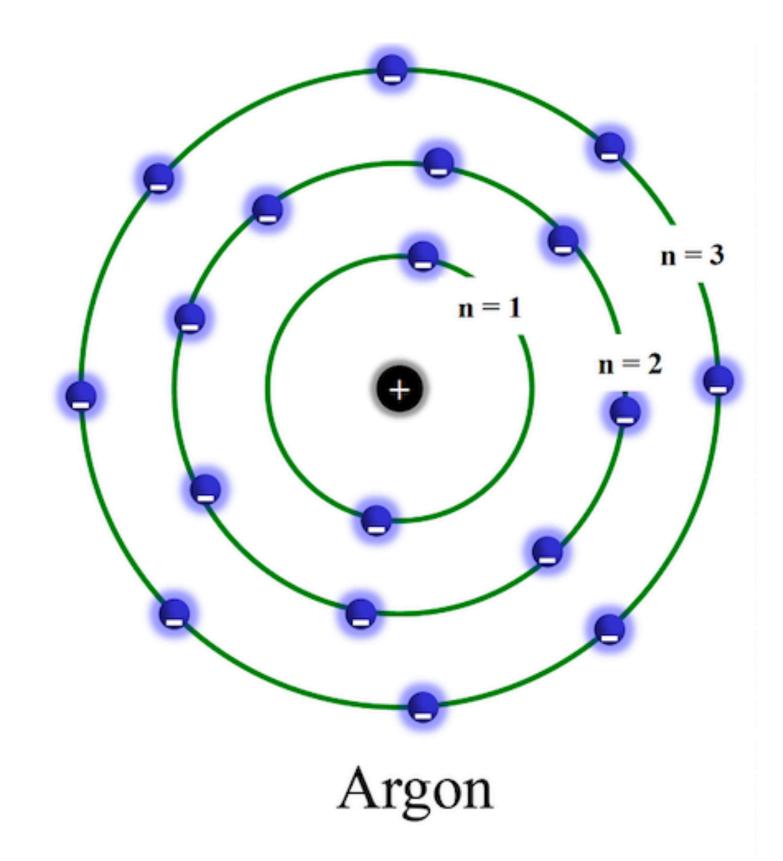


First Ionization Energy (Trends)

Increases

Generally Increases


Distance from the nucleus increases from H to Li

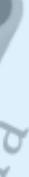

ĸ

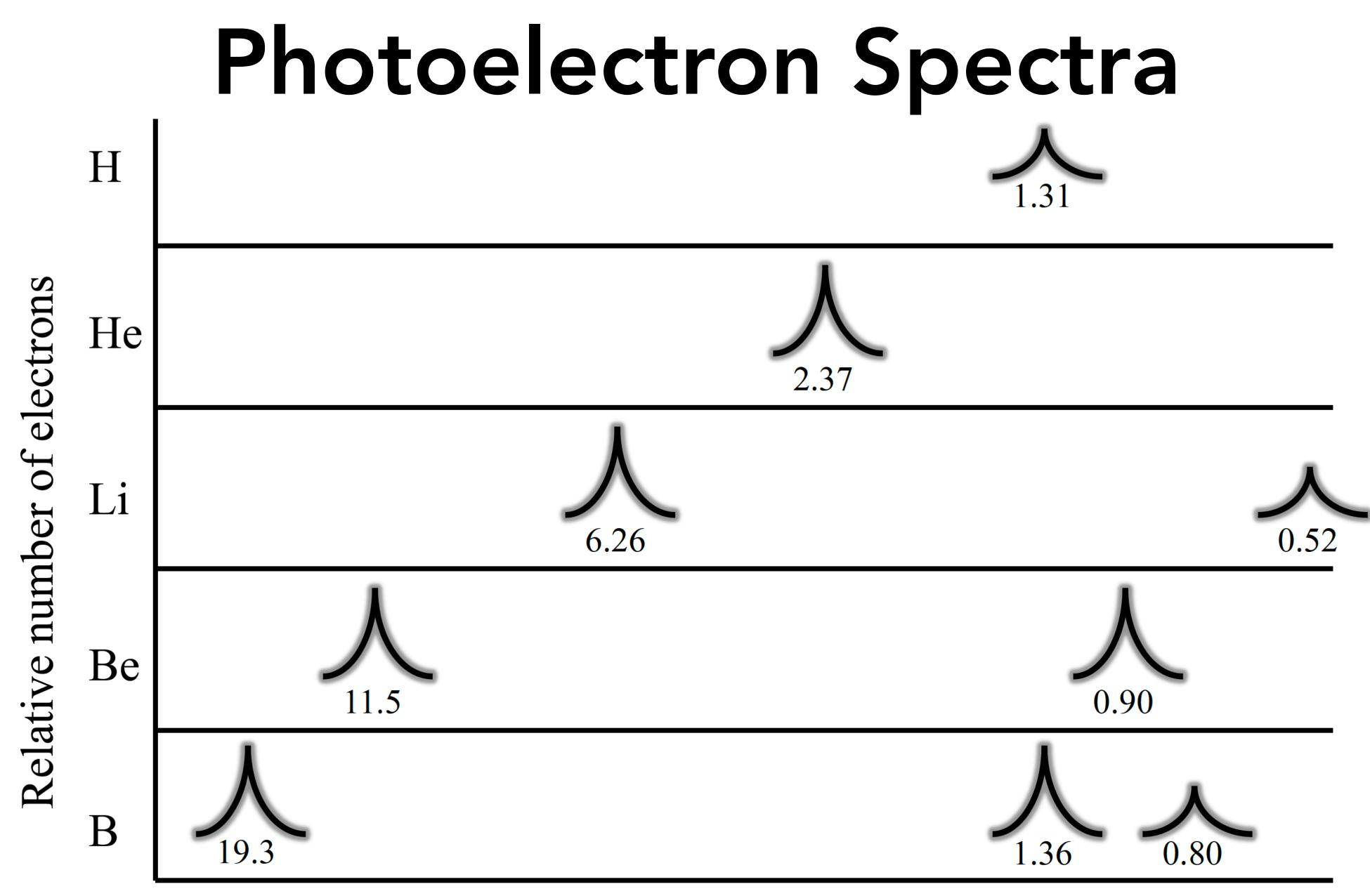
Evidence of the Shell Model

Ionization data suggests that electron are arranged in shells.

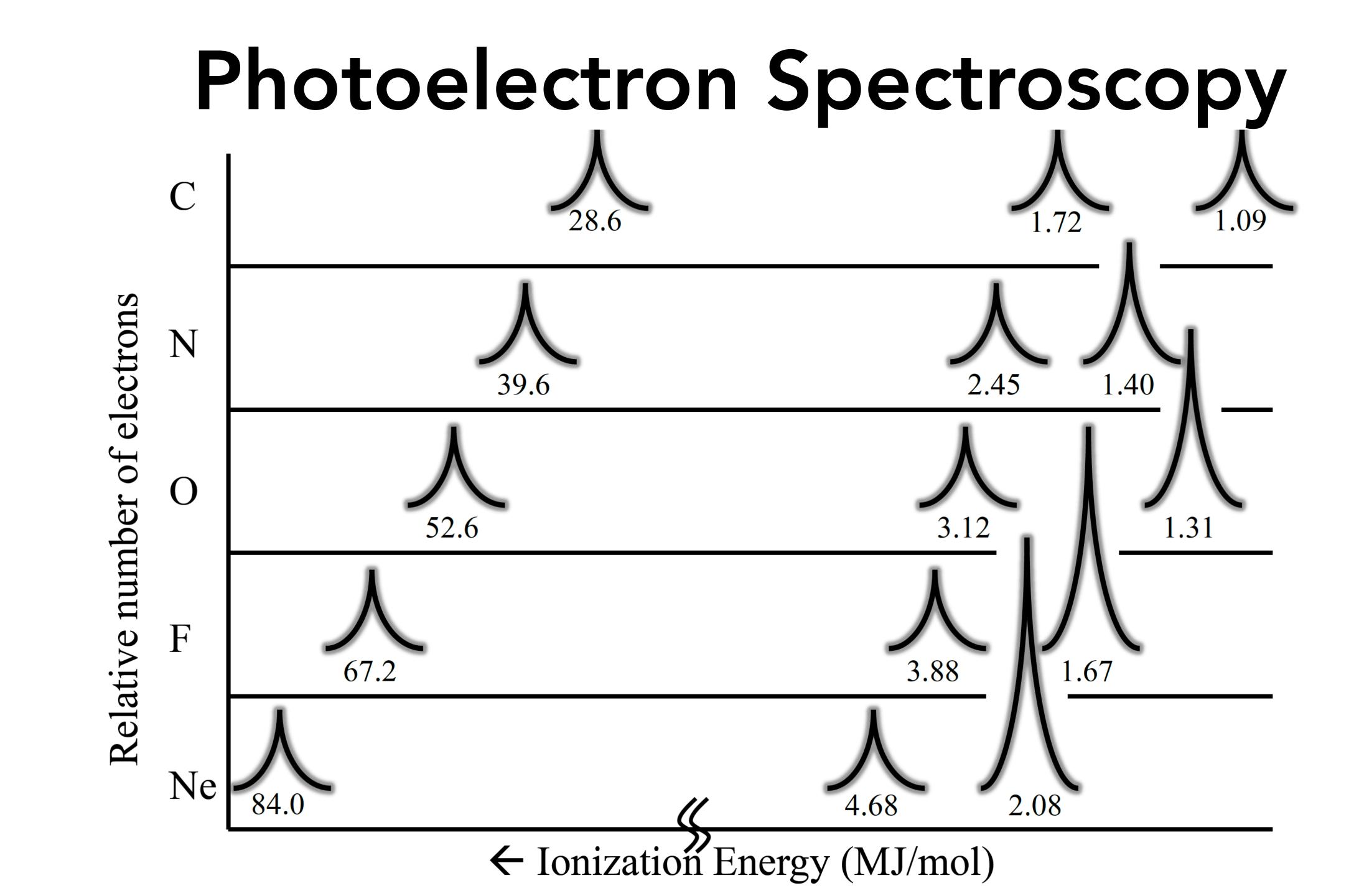
The Shell Model & the Periodic Table The 1st row of the periodic table has 2 elements and n = 1 can hold 2 electrons. The 2nd row of the periodic table has 8 elements and n = 2 can hold 8 electrons. n = 3 The 3rd row of the periodic table has 8 elements and n = 3 can hold at least 8 electrons.

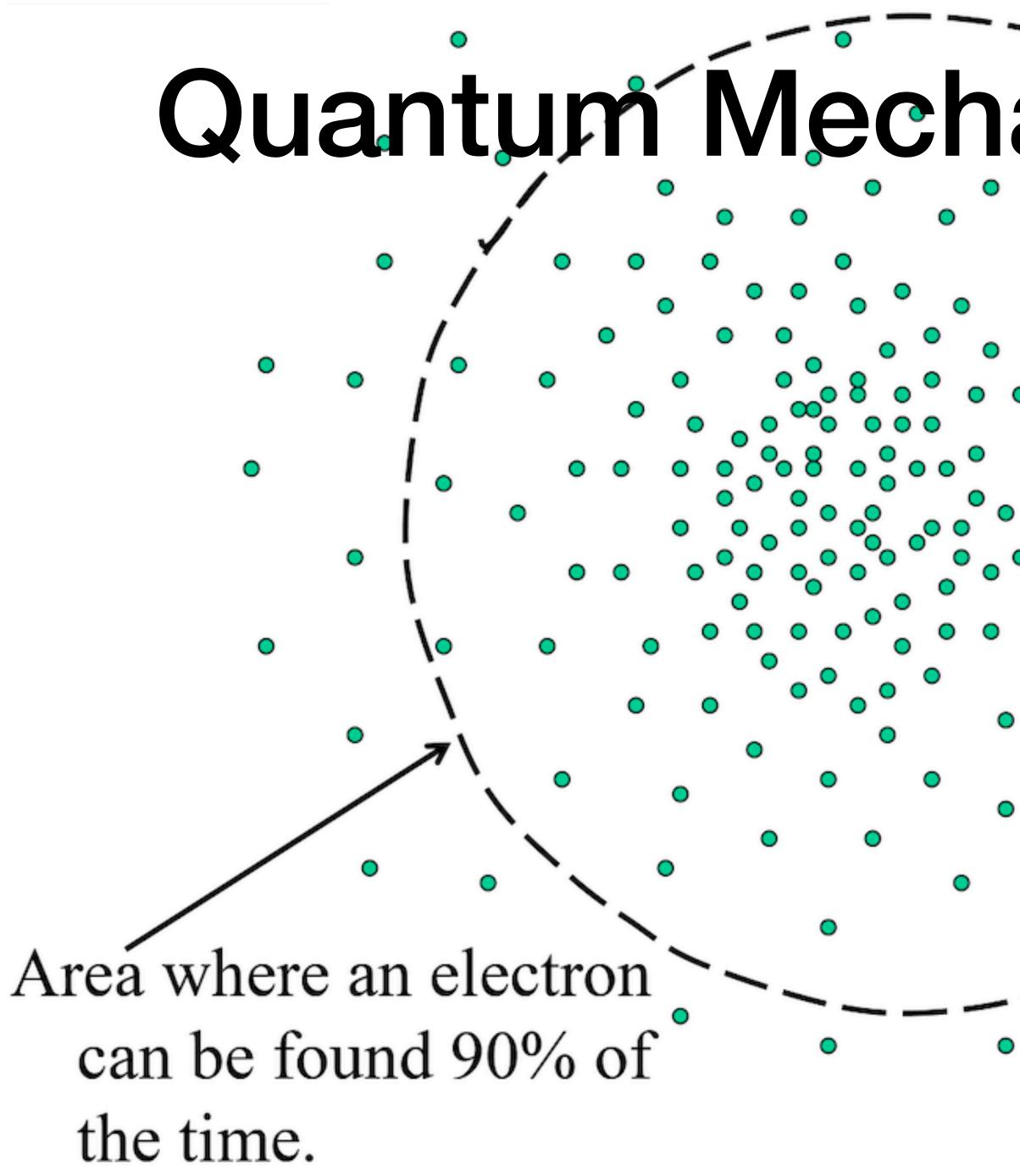
n = 3 can actually hold 18 electrons, as we will see in the next part of this lesson.


1.6 Photoelectron Spectroscopy analyze


photon source

- High energy photons remove electrons from any shell, not just the valence shell.
- KE of ejected electrons is determined
- Frequency of photons is recorded
- Ionization energy for any electron is calculated:


$IE = h_V - KE$



← Ionization Energy (MJ/mol)

The Shell Model & PES

- Does the shell model still work?? Could it be refined??
- Bohr postulated that all electrons are in a given shell at the same energy level.
- PES data suggest otherwise...2 subshells in n=2 and 3 subshells in n=3
- QUANTUM MECHANICAL MODEL (electron cloud, orbital model)

Quantum Mechanical (QM) Model

0

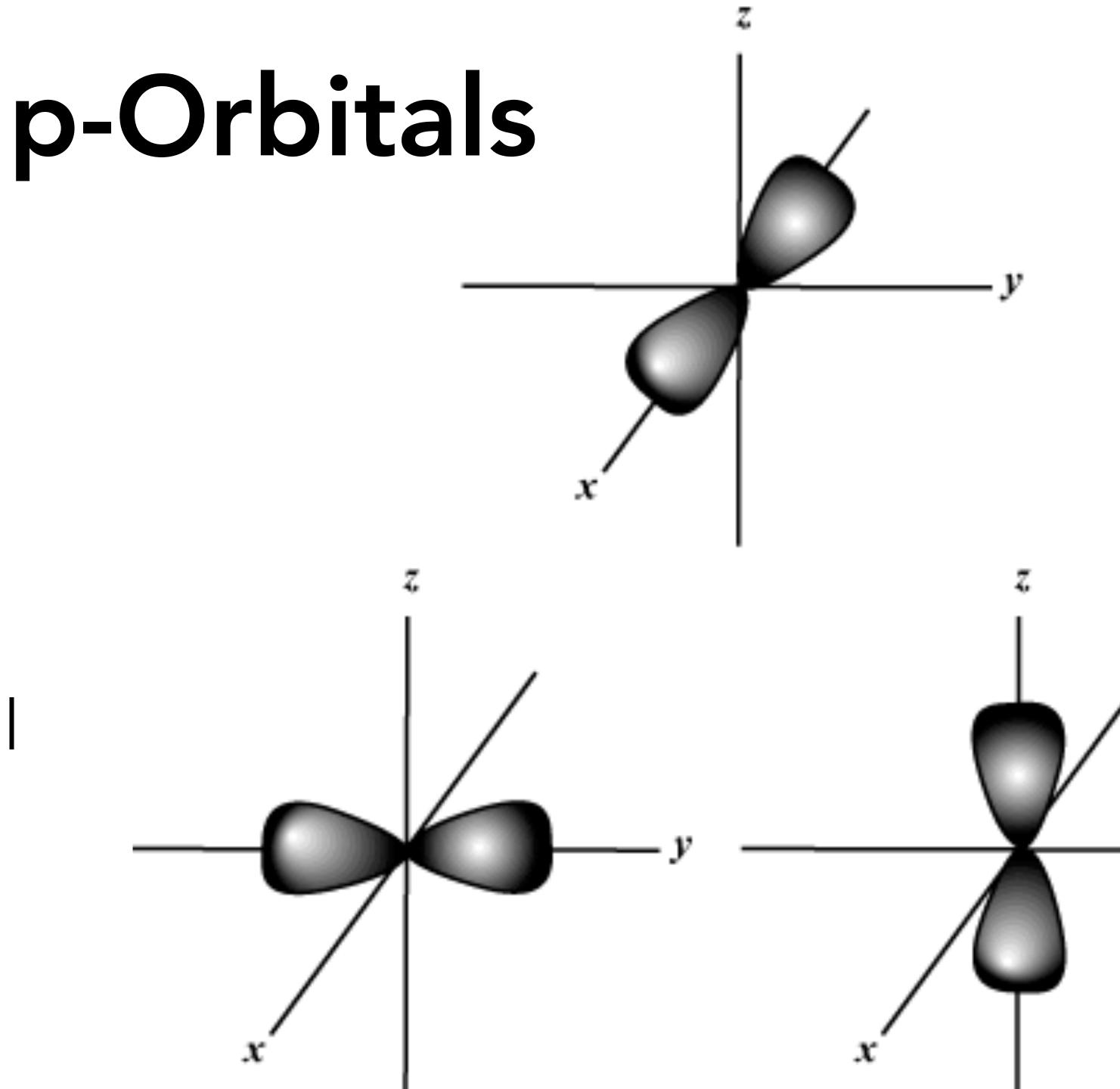
 $^{\circ}$

Electrons do not follow orbits. A wave function describes an electron's possible positions in 3D space, and is often call an **orbital**.

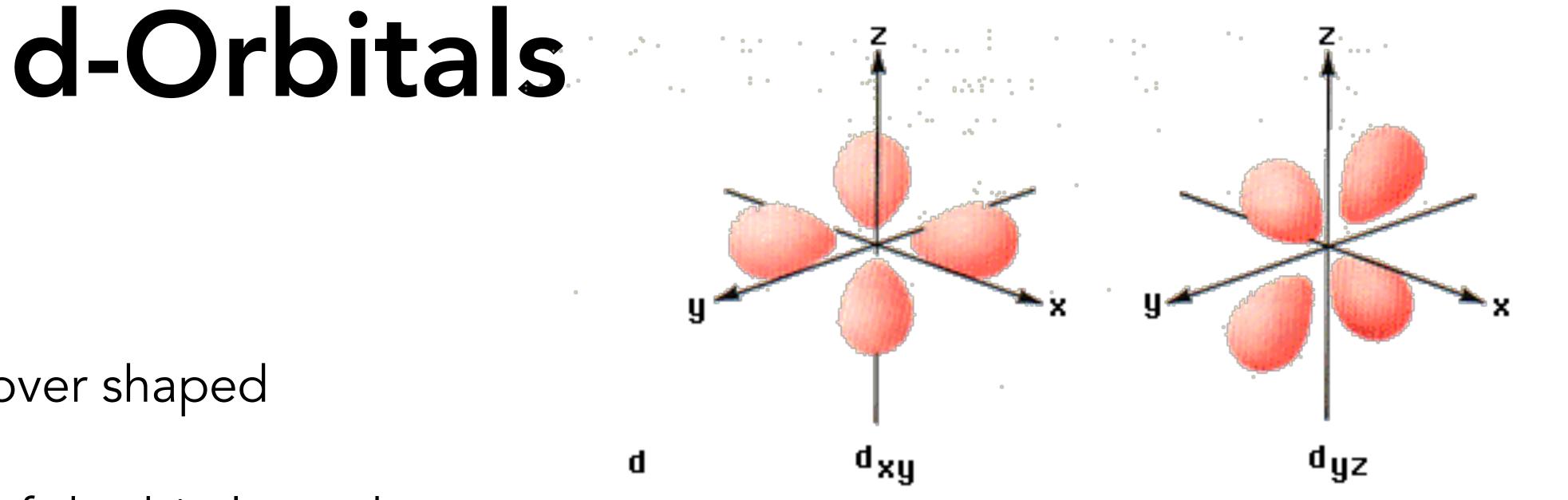
 A graphical representation of the space an electron will occupy 90% of the time (conceptual, not a physical structure).

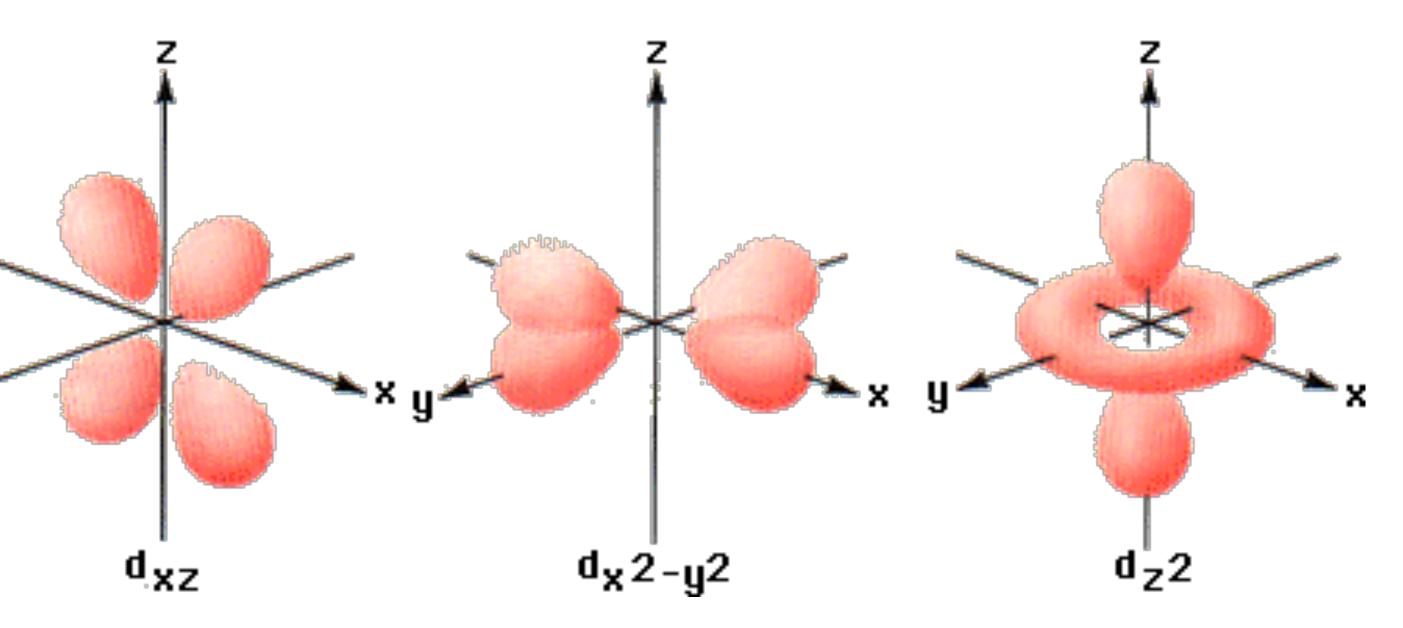
s-Orbitals

- Each orbital can only hold <u>2</u> electrons, each with opposite <u>spins</u>
- Pauli Exclusion Principle


Electrons fill orbitals lowest energy first

S orbitals are spherical in shape and holds only 2 e⁻ total.


• (x, y, z) are dumbbell shaped • Each holds 2 e⁻

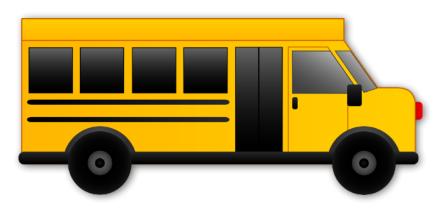

hold up to 6 e⁻ total

- 4-leaf clover shaped
- 5 types of d-orbitals; each holding 2 electrons
- total of 10 e-'s

Subshells

n = 1 contains one subshell - 1s (1s can hold a maximum of 2 electrons)

n = 2 contains two subshells - 2s and 2p (2s can hold a maximum of 2 electrons) (2p can hold a maximum of 6 electrons)


n = 3 contains 3 subshells - **3s**, **3p** and **3d** (3s can hold a maximum of 2 electrons) (3p can hold a maximum of 6 electrons) (3d can hold a maximum of 10 electrons)

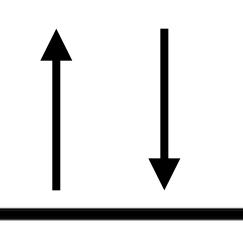
Filling Orbitals with Electrons - Hund's Rule

- electrons.
- energy to highest energy level.
- •All seats get filled with one person each first, then they double up.

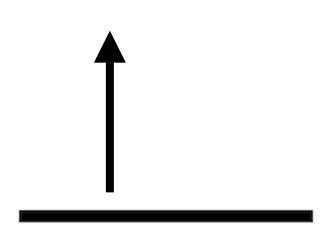
Principal quantum number

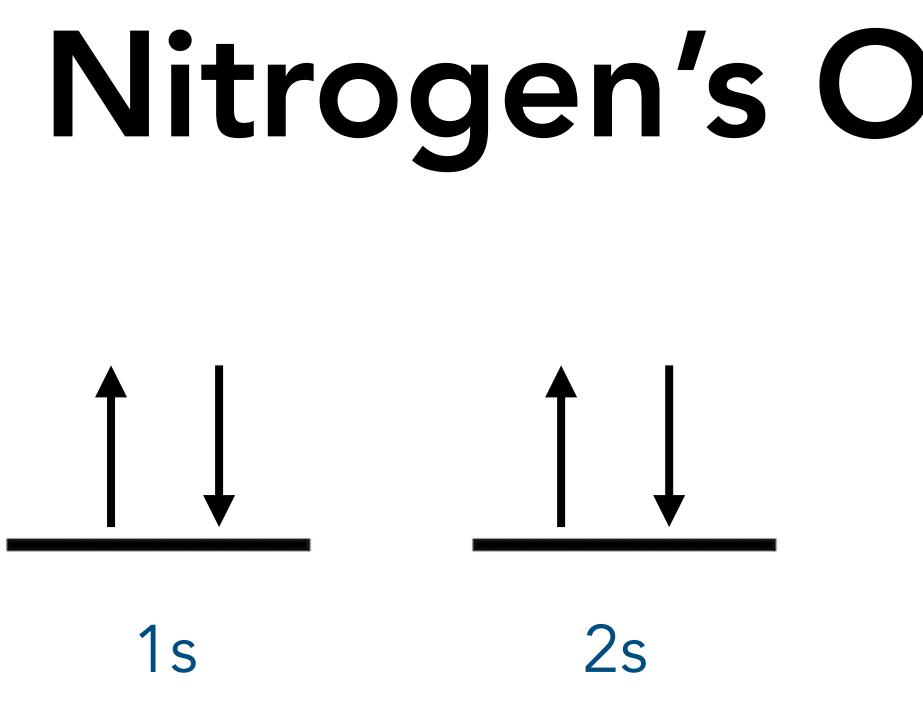
Orbital type

• Sub-shells (s, p, d) are most stable when they are <u>half full</u> or <u>completely filled</u> with


• Electrons fill orbitals one electron at a time (because they repel) from lowest

Number of electrons in that subshell LD




Aufbau Principle - Orbital Filling

- Each orbital can hold a maximum of 2 electrons that will spin in opposite directions.
- Hund's Rule When you have more than one orbital in a sub shell (including p, d and f subshells), a single spin up electron is aded to each orbital before you start adding spin down electrons.

1s

 Place one unpaired electron in each degenerate (same energy level) orbital that all spin in the same direction

Lower energy system.

Nitrogen's Orbital Notation 2p

before adding electrons that spin in the opposite direction.

1s ¹	S ¹ Orbital Filling															1s²	
2s ¹	2s ²											2p ¹	2p ²	2p ³	2p ⁴	2 p ⁵	2p ⁶
3s ¹	3s ²											3p ¹	3 p ²	3 p ³	3 p ⁴	3 p ⁵	3p ⁶
4s ¹	4s ²	3d ¹	3d ²	3d ³	3d ⁴	3d ⁵	3d ⁶	3d ⁷	3d ⁸	3d ⁹	3d ¹⁰	4p ¹	4p ²	4p ³	4p ⁴	4p ⁵	4p ⁶
5s ¹	5s ²	4 d ¹	4 d ²	4 d ³	4d ⁴	4d ⁵	4d ⁶	4 d ⁷	4d ⁸	4d ⁹	4d ¹⁰	5 p ¹	5 p ²	5 p ³	5 p ⁴	5 p ⁵	5p ⁶
6s ¹	6s ²	5 d ¹	5 d ²	5 d ³	5d ⁴	5d ⁵	5d ⁶	5 d ⁷	5d ⁸	5d ⁹	5d ¹⁰	6p ¹	6 p ²	6 p ³	6 p ⁴	6 p ⁵	6p ⁶
7s ¹	7s ²	-6d ¹	6d ²	6d ³	6d ⁴	6d ⁵	6d ⁶	6d ⁷	6d ⁸	6 d ⁹	6d ¹⁰	7 p ¹	7 p ²	7 p ³	7 p 4	7 p ⁵	7p ⁶
								1					1		1	1	<u>I</u>
			\backslash	4f ¹	4f ²	4f³	4f ⁴	4f⁵	4f ⁶	4f ⁷	4f⁸	4f ⁹	4f ¹⁰	4f ¹¹	4f ¹²	4f ¹³	4f ¹⁴
				5 f ¹	5 f ²	5 f ³	5f ⁴	5 f ⁵	5f ⁶	5f ⁷	5f ⁸	5f ⁹	5f ¹⁰	5f ¹¹	5f ¹²	5f ¹³	5f ¹⁴

Filling Orbitals (Examples)

- Boron $\rightarrow 1s^22s^22p^1$ or [He]2p¹ (using noble gas abbreviation)
- Carbon \rightarrow 1s²2s²2p² or [He]2p² (no longer using 2-4)
- Nitrogen →
- Oxygen →
- Fluorine \rightarrow
- Neon →
- Sodium →

1s ¹																
2s ¹	2s ²											2p ¹	2p ²	2p ³	2p ⁴	
3s ¹	3s ²											3p ¹	3p ²	3p ³	3 p ⁴	
4s ¹	4s ²	3 d ¹	3 d ²	3d ³	3d ⁴	3d ⁵	3d ⁶	3d ⁷	3d ⁸	3 d ⁹	3d ¹⁰	4p ¹	4p ²	4 p ³	4p ⁴	4
5 s ¹	5s ²	4 d ¹	4d ²	4 d ³	4 d ⁴	4d ⁵	4d ⁶	4d ⁷	4d ⁸	4d ⁹	4d ¹⁰	5p ¹	5p ²	5 p ³	5p ⁴	5
6s ¹	6s ²	5 d ¹	5 d ²	5 d ³	5d ⁴	5 d ⁵	5d ⁶	5 d ⁷	5d ⁸	5d ⁹	5d ¹⁰	6p ¹	6p ²	6 p ³	6p ⁴	6
7s ¹	7s ²	6d ¹	6d²	6d ³	6 d ⁴	6d ⁵	6 d ⁶	6d ⁷	6d ⁸	6d ⁹	6d ¹⁰	7 p ¹	7 p ²	7 p ³	7p ⁴	7
	1			1		I	I	1				I			<u> </u>	
			\backslash	4f ¹	4f ²	4f ³	4f ⁴	4f ⁵	4f ⁶	4f ⁷	4f ⁸	4f ⁹	4f ¹⁰	4f ¹¹	4f ¹²	4
			\													

5f⁴

5 f^1 **5** f^2 **5** f^3

5f⁵ 5f⁶ 5f⁷ 5f⁸

5f⁹

5f¹⁰ 5f¹¹

Electron Configurations of lons

- Na \rightarrow 1s²2s²2p⁶3s¹ or [Ne]3s¹
- Na⁺ \rightarrow 1s²2s²2p⁶ or [Ne]

- CI \rightarrow 1s²2s²2p⁶3s²3p⁵ or [Ne]3p⁵
- CI- \rightarrow 1s²2s²2p⁶3s²3p⁶ or [Ne]3p⁶

lons are elements that have lost or gained valence electrons to acquire the electron configurations of noble gases.

Isoelectronic Species

- different radii.
- those electrons increases.

Write the electron configurations for the following (Ar, Cl-, S²⁻, Ca²⁺, and K⁺

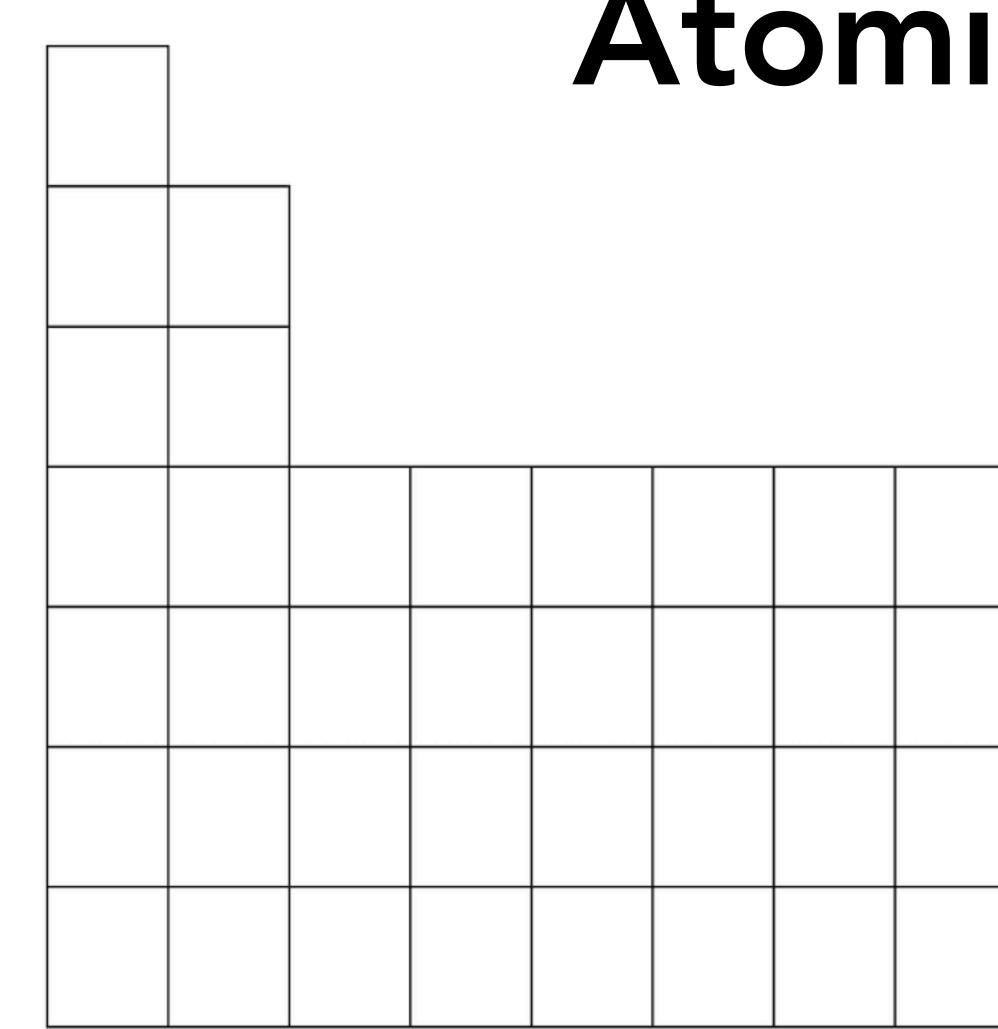
Isoelectronic species share the same electronic configurations, but have

• As the ratio of protons to electrons increases, the forces of attractions on

d-block Cations

losing from their d-sublevel.

Iron


- Fe [Ar] 4s²3d⁶
- Fe²⁺ [Ar] 3d⁶ (lost two electrons from 4s)

These elements lose electrons from their highest sublevel first before

• Fe³⁺ [Ar] 3d⁵ (lost two electrons from 4s and one from 3d)

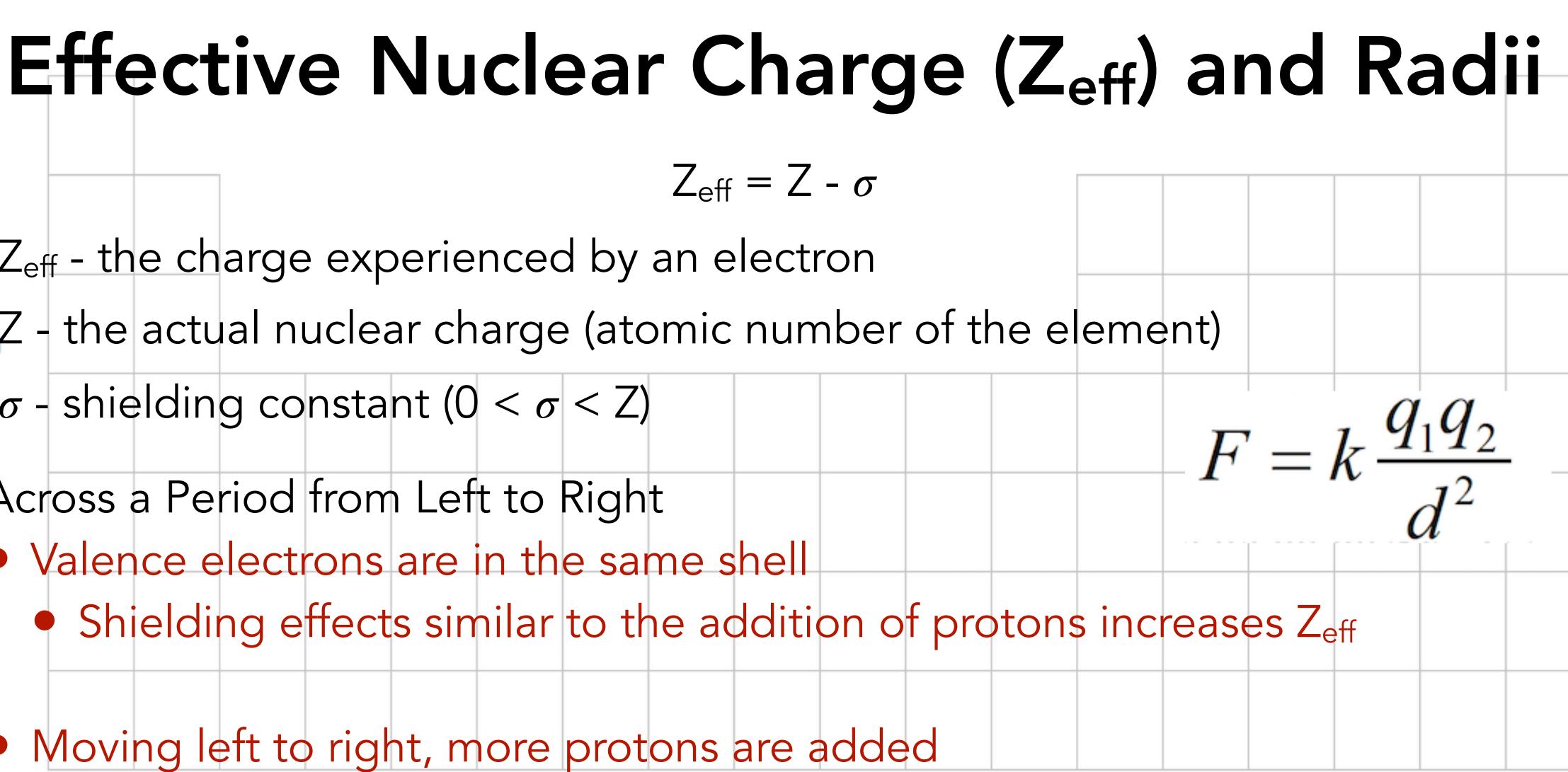
1.7 Periodic Trends Atomic & Ionic Radii **Ionization Energy Electron Affinity** Electronegativity

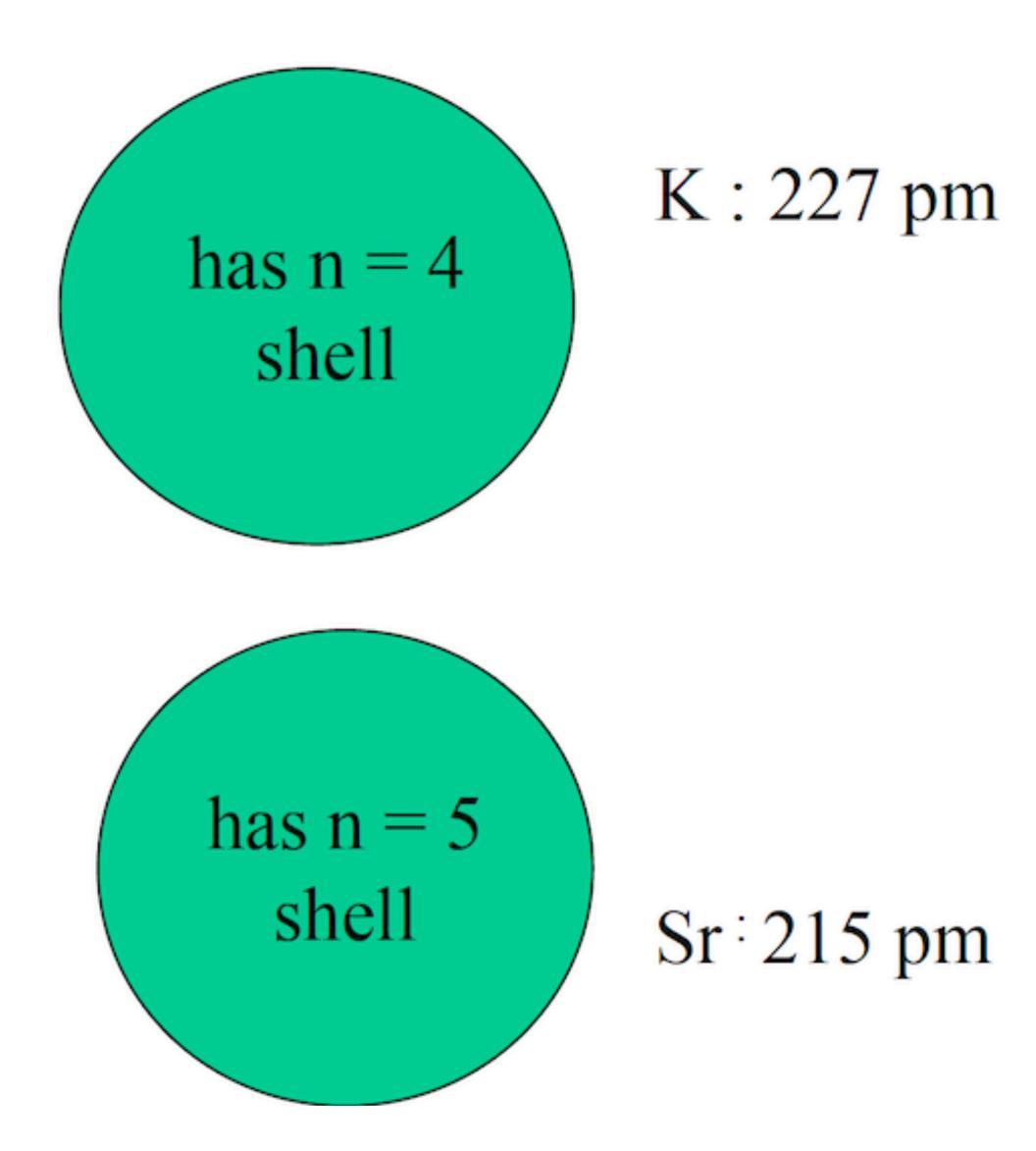
Increases

Atomic Radius

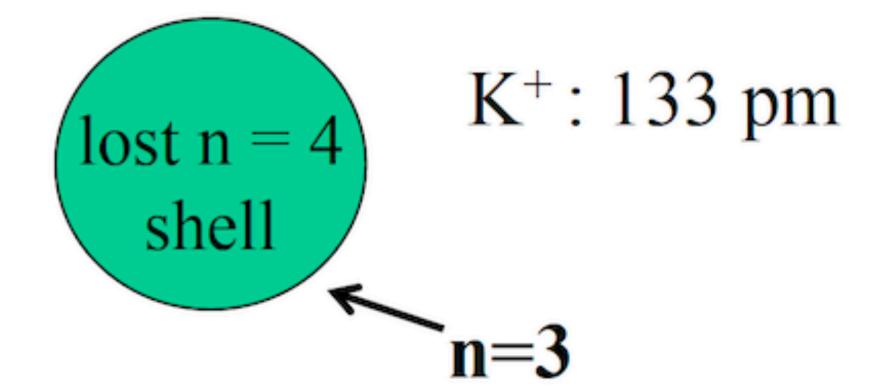
Decreases

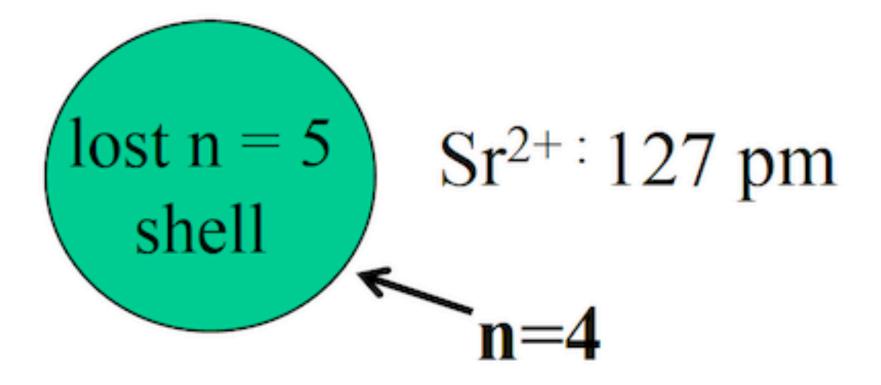
Z_{eff} - the charge experienced by an electron

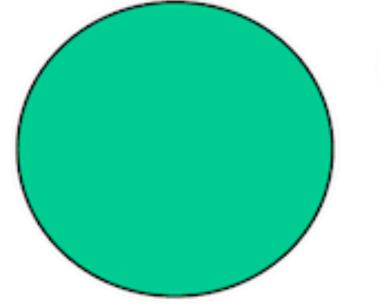

Z - the actual nuclear charge (atomic number of the element)

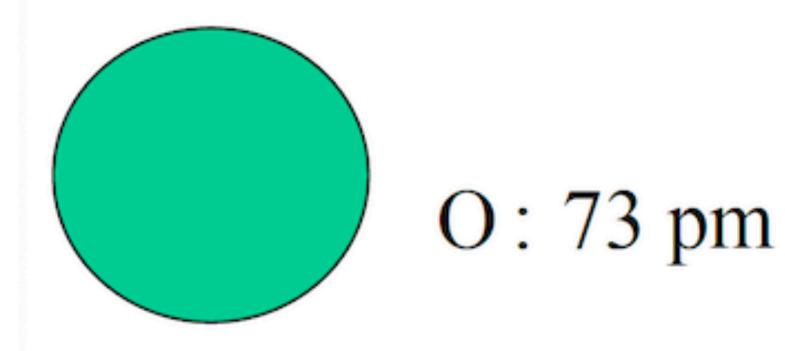

 σ - shielding constant (0 < σ < Z)

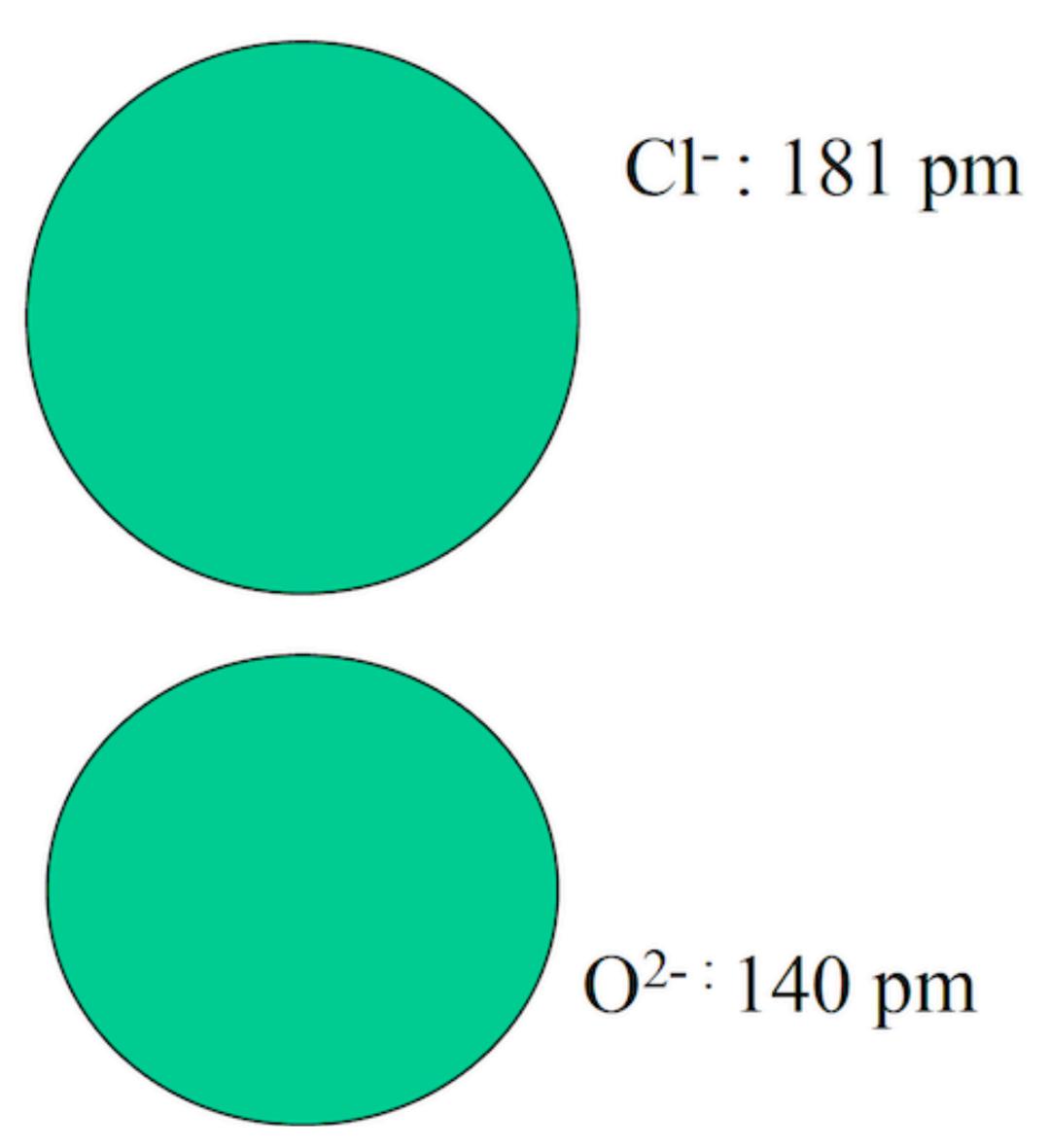
Across a Period from Left to Right

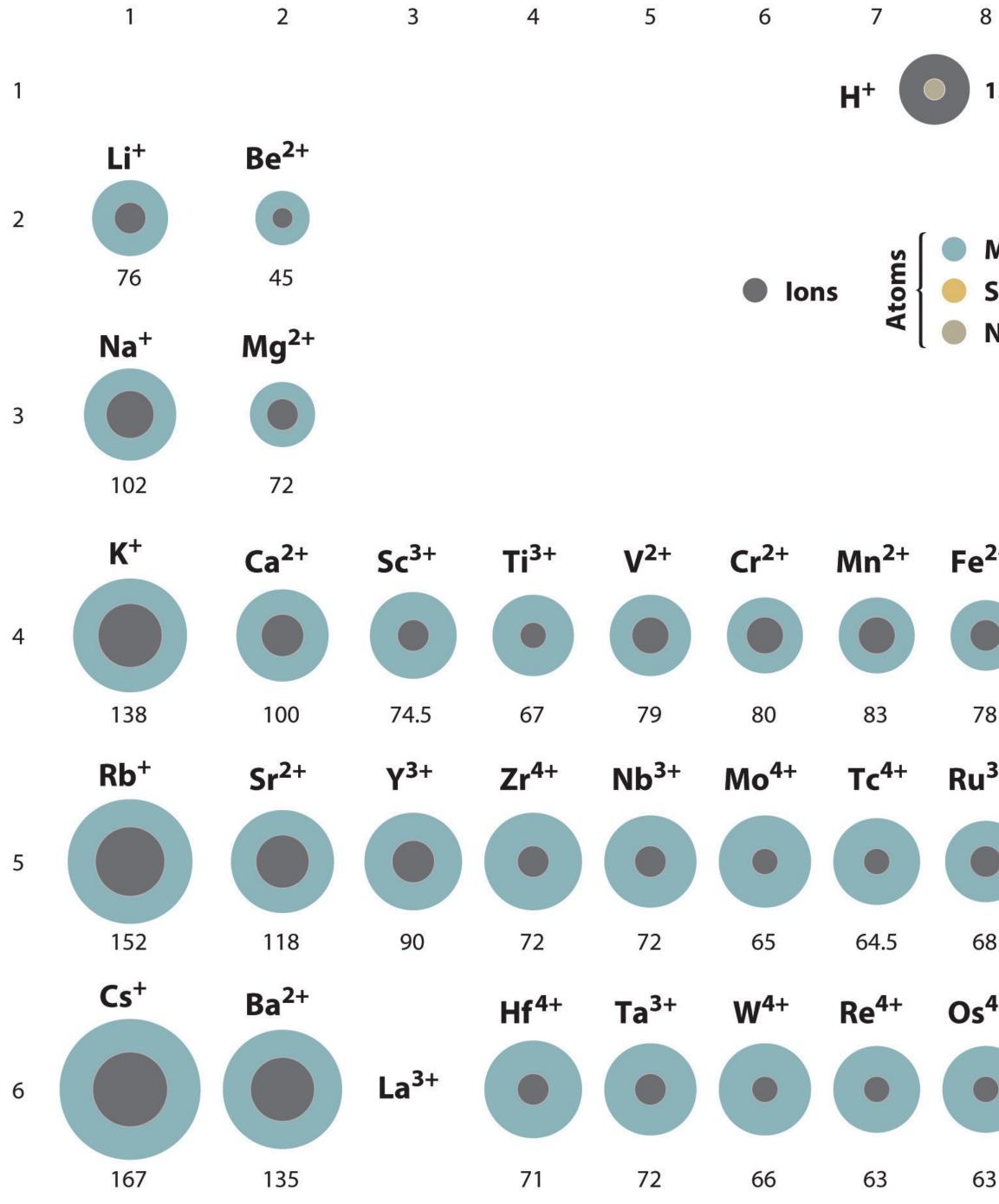

 Valence electrons are in the same shell Shielding effects similar to the addition of protons increases Z_{eff}


 Moving left to right, more protons are added • Increase in positive charge increases forces of attraction, decreasing the Decreases radius



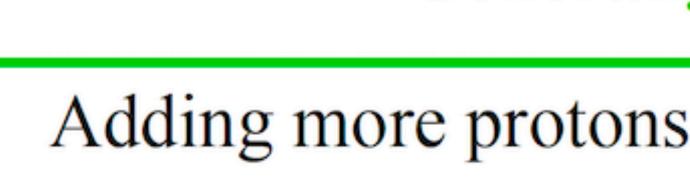


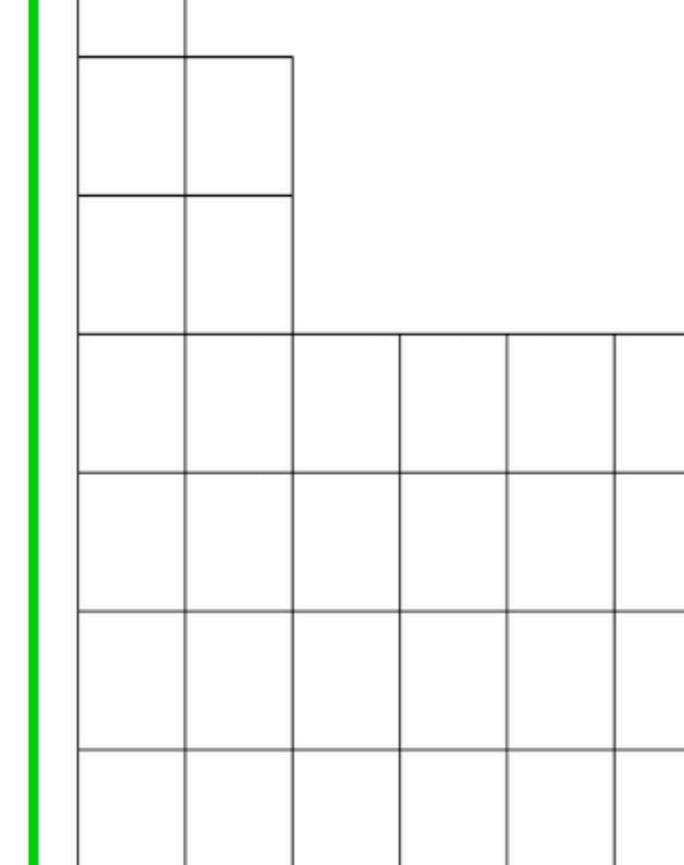




Cl:99 pm

8	9	10	11	12	13	14	15	16	17
154									
					1		N ³⁻	0 ²⁻	F ⁻
Meta	als				B	C			
Sem	imetals					1	146	140	133
Non	metals				Al ³⁺	Si ⁴⁺	P ³⁻	S ²⁻	CI ⁻
						•			
					53.5	40	212	184	181
e ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺	Ga ³⁺	Ge ⁴⁺	As ³⁺	Se ²⁻	Br ⁻
						•			
78	74.5	69	73	74	62	53	58	198	196
u ³⁺	Rh ³⁺	Pd ²⁺	Ag ⁺	Cd ²⁺	In ³⁺	Sn ⁴⁺	Sb ³⁺	Te ²⁻	Ι-
								Se ^{2–} 198 Te ^{2–}	
68	66.5	86	115	95	80	69	76	221	220
4.	- 21	- 21		21		- 4	21		
								Ро	At
63	68	80	137	102	88.5	77.5	103		





Generally Increases

Increases

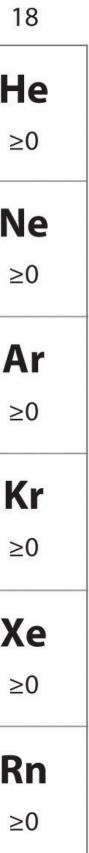
Ionization Energy

Adding more protons to the same energy level

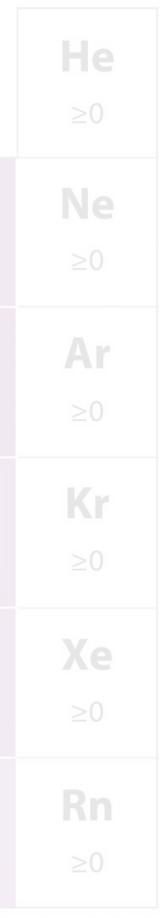
Ionization Energy

- 2nd ionization potential will always be larger.
 - Radius reduced after first electron removed, increasing the ratio of protons to electrons.
- All elements have one extreme energy
 - When electron configuration drops a principal quantum number (n=5 to n=4), which causes a more drastic decrease in radius.

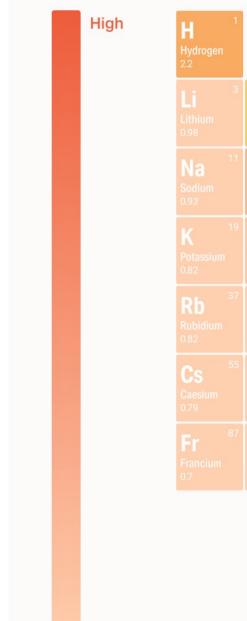
All elements have one extremely large increase in ionization

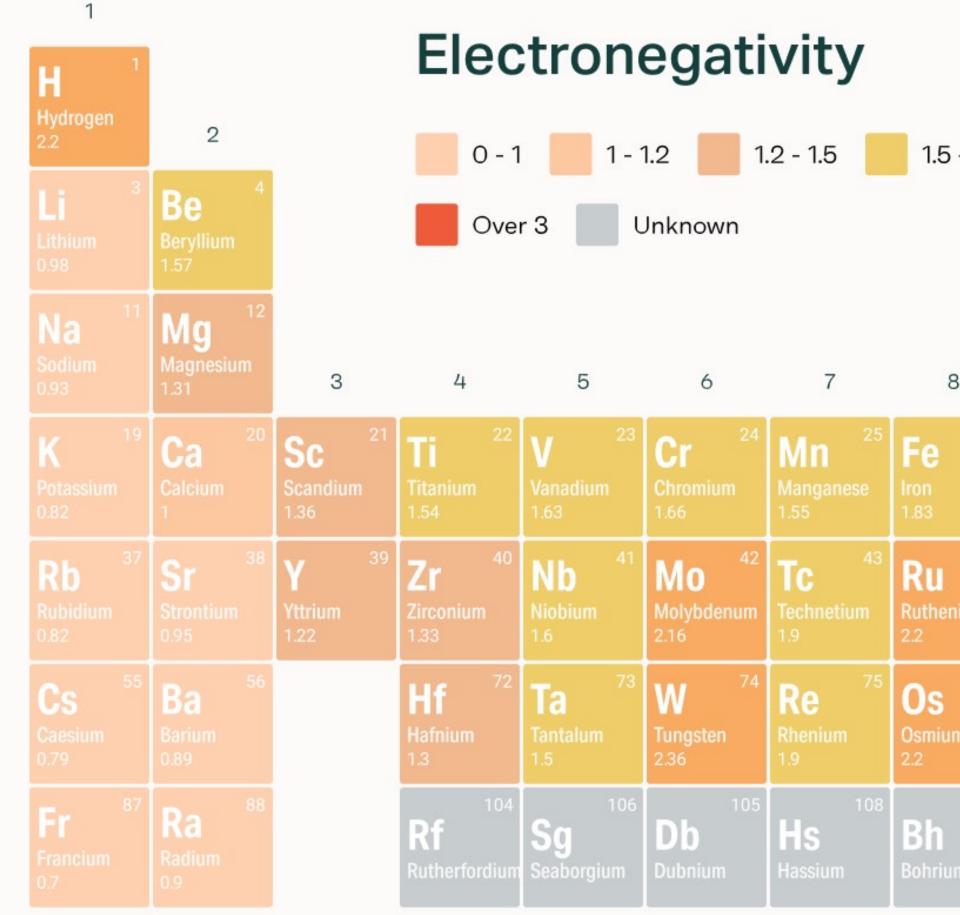

Electron Affinity

- form a negative ion.
- Measure of how much an elements wants to accept another electron.
- Negative value (exothermic) Wants to accept the electron
- Positive value (endothermic)
 - Does not want to accept the electrons


Energy change that occurs when an electron is added to a gaseous atom to

	1																	18
1	H -72.8	2			≥0 kJ	/mol			-34	48.6 kJ/mol			13	14	15	16	17	He ≥0
2	Li - 59.6	Be ≥0											B -27.0	C -121.8	N ≥0	O -141.0	F -328.2	Ne ≥0
3	Na - 52.9	Mg ≥0	3	4	5	6	7	8	9	10	11	12	Al -41.8	Si -134.1	P -72.0	S -200.4	Cl -348.6	Ar ≥0
4	K -48.4	Ca -2.4	Sc −18	Ti -8	V -51	Cr -65.2	Mn ≥0	Fe 15	Co -64.0	Ni -111.7	Cu -119.2	Zn ≥0	Ga -40	Ge -118.9	As -78	Se -195.0	Br -324.5	Kr ≥0
5	Rb -46.9	Sr -5.0	Y −30	Zr -41	Nb -86	Mo -72.1	Tc −60	Ru -101.0	Rh -110.3	Pd -54.2	Ag -125.9	Cd ≥0	In -39	Sn -107.3	Sb -101.1	Te -190.2	 -295.2	Xe ≥0
6	Cs -45.5	Ba 14.0	La -45	Hf ≥0	Ta −31	W -79	Re -20	Os -104.0	lr 150.9	Pt -205.0	Au -222.7	Hg ≥0	TI -37	Pb -35	Bi -90.9	Po -180	At -270	Rn ≥0
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
																1		
	Lanthanides 6			Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Actinides 7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	


H 72.8 Li 59.6	2 Be ≥0			≥0 kJ/r		ec	tro	Dn	18.6 kJ		ini	ty -27.0	14 C -121.8	15 N ≥0	16 0 -141.0	17 F -328.2
Na - 52.9	Dow	n ₃ a	Grou	Jp (t	op 1	to ₇ b	ottoi	m)	10		12					
							arge									
	• EA	valu	les g	ener	<u>ally</u>	dec	rease	<u>e</u> be	cause	e the	e for		fattr	racti	on	
	be	etwee	enth	e nu	cleu	is an	dthe	e ad	ded	elec	ctron	isw	eake	er. ^{101.1}		
		to R														
	• Ef	fectiv	Rf /e nu	iclea	r ch	Bharge	.Hs incr	Mt ease	Ds S							
		ore p	oroto	ns a	re a	ddeo	d, de	crea	sing	ato	mic	radii				
	• EA	valu	les g	ener	ally	incre	ease									
		Actinides														



Electronegativity

- Element's ability to attract electrons in a chemical bond.
- Electron density higher around more electronegative elements in a chemical bond.

1			Elec	tron	egati	vity											18 He
	2		0 - 1	1-	1.2 1	.2 - 1.5	1.5 - 2	2 - 2.5	5 2.5	5 - 3		13	14	15	16	17	Helium 0
	Be Beryllium 1.57		Ove		Jnknown							B Boron 2.04	C Carbon 2.55	N Nitrogen 3.04	0 Oxygen 3.44	9 F Fluorine 3.98	Neon 0
	Mg Magnesium 1.31	3	4	5	6	7	8	9	10	11	12	AI Aluminium 1.61	Silicon 1.9	P Phosphorus 2.19	S Sulphur 2.58	CI Chlorine 3.16	Ar Argon 0
	Ca Calcium	Scandium 1.36	Ti Titanium 1.54	V Vanadium 1.63	Cr Chromium 1.66	25 Mn Manganese 1.55	Fe Iron 1.83	28 Nickel 1.91	Co Cobalt 1.88	Cu Copper 1.9	Zn ^{Zinc} 1.65	Ga Gallium 1.81	Ge Germanium 2.01	As Arsenic 2.18	Se Selenium 2.55	Br Bromine 2.96	Kr Krypton
	38 Strontium 0.95	Y Yttrium 1.22	40 Zr Zirconium 1.33	Niobium 1.6	42 Mo Molybdenum 2.16	43 TC Technetium 1.9	44 Ruthenium 2.2	Rh Rhodium 2.28	Pd Palladium 2.2	Ag Silver 1.93	Cd Cadmium 1.69	49 In Indium 1.78	50 Sn Tin 1.96	Sb Antimony 2.05	52 Te Tellurium 2.1	53 Iodine 2.66	Xe Xenon 2.6
	Ba Barium 0.89		Hf Hafnium 1.3	Ta Tantalum 1.5	Tungsten 2.36	75 Re Rhenium 1.9	Osmium 2.2	77 Ir Iridium 2.2	Pt Platinum 2.28	79 Gold 2.54	Hg Mercury 2	81 Thallium 1.62	Pb Lead 2.33	Bi Bismuth 2.02	Po Polonium 2	At Astatine 2.2	Rn Radon 2.2
	Ra Radium 0.9		104 Rf Rutherfordium	106 Sg Seaborgium	105 Db Dubnium	108 HS Hassium	107 Bh Bohrium	109 Mt Meitnerium	111 Rg Roentgenium	110 DS Darmstadtium	112 Cn Copernicium	113 Nh Nihonium	114 Fl Flerovium	115 MC Moscovium	116 LV Livermorium	117 Ts Tennessine	11 Og Oganesson
		La Lanthanum	Ce Cerium	Pr Praseodymiun	Nd Neodymium	Promethium	Samarium	Eu Europium	Gd 64 Gadolinium	Tb Terbium	Dy 66 Dysprosium	Ho Holmium	Er Erbium	Tm ⁶⁹ Thulium	Yb Ytterbium	Lu ⁷¹ Lutetium	

57 La Lanthanum 1.1	Ce Cerium 1.12	59 Pr Praseodymium 1.13	60 Nd Neodymium 1.14		Sm Samarium 1.17	Eu Europium 1.2	64 Gadolinium 1.2	Tb Terbium 1.1	66 Dy Dysprosium 1.22	Ho Holmium 1.23	Er Erbium 1.24	69 Tm Thulium 1.25	Yb Ytterbium 1.1	Lu 71 Lutetium 1.27
Actinium 1.1	90 Th Thorium 1.3	91 Pa Protactinium 1.5	92 Uranium 1.38	93 Np Neptunium 1.36	Pu Plutonium 1.28	95 Am Americium 1.3	96 Curium 1.28	Bk Berkelium 1.3	98 Cf Californium 1.3	99 Es Einsteinium 1.3	Fermium 1.3	Md ¹⁰¹ Mendelevium 1.3	No Nobelium 1.3	103 Lawrencium 1.3

Low

High

.5 - 2	2 - 2.5	5 2.5	i - 3		13	14	15	16	17	He 0
					5 Boron 2.04	C Carbon 2.55	7 Nitrogen 3.04	8 Oxygen 3.44	9 Fluorine 3.98	N Ne
8	9	10	11	12	AI Aluminium 1.61	Silicon 1.9	P Phosphorus 2.19	S Sulphur 2.58	CI Chlorine 3.16	A r 0
26	28 Ni Nickel 1.91	Co Cobalt 1.88	Cu Copper 1.9	Zn Zinc 1.65	Ga ³¹ Gallium 1.81	Ge Germanium 2.01	As Arsenic 2.18	Se Selenium 2.55	Br Bromine 2.96	Kr 3
44 Inenium	Rh Rhodium 2.28	Pd Palladium 2.2	47 Ag Silver 1.93	Cd Cadmium 1.69	49 Indium 1.78	Sn Tin 1.96	Sb Antimony 2.05	Te Tellurium 2.1	53 Iodine 2.66	Х Хе 2.6
76 S nium	77 Iridium 2.2	Pt Platinum 2.28	79 Au Gold 2.54	Hg Mercury 2	B1 Thallium 1.62	Pb Lead 2.33	Bi Bismuth 2.02	Po Polonium 2	At Astatine 2.2	R Ra 2.2
107 1 rium	109 Mt Meitnerium	111 Rg Roentgenium	110 DS Darmstadtium	112 Cn Copernicium	113 Nh Nihonium	114 Fl Flerovium	115 MC Moscovium	116 LV Livermorium	117 TS Tennessine	0

