
Unit 1 - Chapter 2

Oracle Built in Functions

There are two types of functions in Oracle.

1) Single Row Functions: Single row or Scalar functions return a value for every row that is

processed in a query.

2) Group Functions: These functions group the rows of data based on the values returned

by the query. This is discussed in SQL GROUP Functions. The group functions are used to

calculate aggregate values like total or average, which return just one total or one average

value after processing a group of rows.

There are four types of single row functions. They are:

1) Numeric Functions: These are functions that accept numeric input and return numeric

values.

2) Character or Text Functions: These are functions that accept character input and can

return both character and number values.

3) Date Functions: These are functions that take values that are of datatype DATE as input

and return values of datatype DATE, except for the MONTHS_BETWEEN function, which

returns a number.

4) Conversion Functions: These are functions that help us to convert a value in one form to

another form. For Example: a null value into an actual value, or a value from one datatype

to another datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE etc.

You can combine more than one function together in an expression. This is known as

nesting of functions.

What is a DUAL Table in Oracle?

This is a single row and single column dummy table provided by oracle. This is used to

perform mathematical calculations without using a table.

Select * from DUAL

Output:

DUMMY

X

Select 777 * 888 from Dual

Output:

777 * 888

689976

1) Numeric Functions:

Numeric functions are used to perform operations on numbers. They accept numeric

values as input and return numeric values as output. Few of the Numeric functions are:

Function
Name

Return Value

ABS (x) Absolute value of the number 'x'

CEIL (x) Integer value that is Greater than or equal to the number 'x'

FLOOR (x) Integer value that is Less than or equal to the number 'x'

TRUNC (x, y) Truncates value of number 'x' up to 'y' decimal places

ROUND (x, y) Rounded off value of the number 'x' up to the number 'y' decimal places

The following examples explains the usage of the above numeric functions

Function
Name

Examples Return
Value

ABS (x) ABS (1)
ABS (-1)

1
-1

CEIL (x) CEIL (2.83)
CEIL (2.49)
CEIL (-1.6)

3
3
-1

FLOOR (x) FLOOR (2.83)
FLOOR (2.49)
FLOOR (-1.6)

2
2
-2

TRUNC (x, y) ROUND (125.456, 1)
ROUND (125.456, 0)
ROUND (124.456, -1)

125.4
125
120

ROUND (x, y) TRUNC (140.234, 2)
TRUNC (-54, 1)

140.23
54

TRUNC (5.7)
TRUNC (142, -1)

5
140

These functions can be used on database columns.

For Example: Let's consider the product table used in sql joins. We can use ROUND to

round off the unit_price to the nearest integer, if any product has prices in fraction.

SELECT ROUND (unit_price) FROM product;

2) Character or Text Functions:

Character or text functions are used to manipulate text strings. They accept strings or

characters as input and can return both character and number values as output.

Few of the character or text functions are as given below:

Function Name Return Value

LOWER (string_value) All the letters in 'string_value'is converted to lowercase.

UPPER (string_value) All the letters in 'string_value'is converted to uppercase.

INITCAP (string_value) All the letters in 'string_value'is converted to mixed case.

LTRIM (string_value,
trim_text)

All occurrences of 'trim_text' is removed from the left
of'string_value'.

RTRIM (string_value,
trim_text)

All occurrences of 'trim_text' is removed from the right
of'string_value' .

TRIM (trim_text FROM
string_value)

All occurrences of 'trim_text'from the left and right
of'string_value' , 'trim_text' can also be only one character long .

SUBSTR (string_value,
m, n)

Returns 'n' number of characters from 'string_value'starting from
the 'm' position.

LENGTH (string_value) Number of characters in'string_value' in returned.

LPAD (string_value, n,
pad_value)

Returns 'string_value' left-padded with 'pad_value' . The length of
the whole string will be of 'n' characters.

RPAD (string_value, n,
pad_value)

Returns 'string_value' right-padded with 'pad_value' . The length of
the whole string will be of 'n' characters.

For Example, we can use the above UPPER() text function with the column value as follows.

SELECT UPPER (product_name) FROM product;

The following examples explains the usage of the above character or text functions

Function Name Examples Return Value

LOWER(string_value) LOWER('Good Morning') good morning

UPPER(string_value) UPPER('Good Morning') GOOD MORNING

INITCAP(string_value) INITCAP('GOOD MORNING') Good Morning

LTRIM(string_value, trim_text) LTRIM ('Good Morning', 'Good) Morning

RTRIM (string_value, trim_text) RTRIM ('Good Morning', '
Morning')

Good

TRIM (trim_text FROM
string_value)

TRIM ('o' FROM 'Good Morning') Gd Mrning

SUBSTR (string_value, m, n) SUBSTR ('Good Morning', 6, 7) Morning

LENGTH (string_value) LENGTH ('Good Morning') 12

LPAD (string_value, n, pad_value) LPAD ('Good', 6, '*') **Good

RPAD (string_value, n, pad_value) RPAD ('Good', 6, '*') Good**

3) Date Functions:

These are functions that take values that are of datatype DATE as input and return values

of datatypes DATE, except for the MONTHS_BETWEEN function, which returns a number as

output.

Few date functions are as given below.

Function Name Return Value

ADD_MONTHS (date,
n)

Returns a date value after adding 'n' months to the date'x'.

MONTHS_BETWEEN
(x1, x2)

Returns the number of months between dates x1 and x2.

ROUND (x,
date_format)

Returns the date 'x' rounded off to the nearest century, year,
month, date, hour, minute, or second as specified by
the'date_format'.

TRUNC (x,
date_format)

Returns the date 'x' lesser than or equal to the nearest century,
year, month, date, hour, minute, or second as specified by the
'date_format'.

NEXT_DAY (x,
week_day)

Returns the next date of the'week_day' on or after the
date'x' occurs.

LAST_DAY (x) It is used to determine the number of days remaining in a month
from the date 'x'specified.

SYSDATE Returns the systems current date and time.

NEW_TIME (x, zone1,
zone2)

Returns the date and time in zone2 if date 'x' represents the time in
zone1.

The below table provides the examples for the above functions

Function Name Examples Return
Value

ADD_MONTHS () ADD_MONTHS ('16-Sep-81', 3) 16-Dec-81

MONTHS_BETWEEN() MONTHS_BETWEEN ('16-Sep-81', '16-Dec-81') 3

NEXT_DAY() NEXT_DAY ('01-Jun-08', 'Wednesday') 04-JUN-08

LAST_DAY() LAST_DAY ('01-Jun-08') 30-Jun-08

NEW_TIME() NEW_TIME ('01-Jun-08', 'IST', 'EST') 31-May-08

4) Conversion Functions:

These are functions that help us to convert a value in one form to another form. For Ex: a

null value into an actual value, or a value from one datatype to another datatype like NVL,

TO_CHAR, TO_NUMBER, TO_DATE.

Few of the conversion functions available in oracle are:

Function Name Return Value

TO_CHAR (x [,y]) Converts Numeric and Date values to a character string value. It
cannot be used for calculations since it is a string value.

TO_DATE (x [,
date_format])

Converts a valid Numeric and Character values to a Date value.
Date is formatted to the format specified by 'date_format'.

NVL (x, y) If 'x' is NULL, replace it with 'y'. 'x'and 'y' must be of the same
datatype.

DECODE (a, b, c, d, e,
default_value)

Checks the value of 'a', if a = b, then returns 'c'. If a = d, then
returns 'e'. Else, returns default_value.

The below table provides the examples for the above functions

Function Name Examples Return Value

TO_CHAR () TO_CHAR (3000, '$9999')
TO_CHAR (SYSDATE, 'Day, Month YYYY')

$3000
Monday, June 2008

TO_DATE () TO_DATE ('01-Jun-08') 01-Jun-08

NVL () NVL (null, 1) 1

Numeric Functions:

These are functions that accept numeric input and return numeric values. Below are few of the
examples

ABS: Absolute value of the number

SELECT ABS(12) FROM DUAL;
 ABS(12)

 12

CEIL: Integer value that is Greater than or equal to the number
SQL> SELECT CEIL(48.99) FROM DUAL;
CEIL(48.99)

 49

SQL> SELECT CEIL(48.11) FROM DUAL;
CEIL(48.11)

 49

FLOOR: Integer value that is Less than or equal to the number
SQL> SELECT FLOOR(49.99) FROM DUAL;
FLOOR(49.99)

 49

SQL> SELECT FLOOR(49.11) FROM DUAL;
FLOOR(49.11)

 49

ROUND: Rounded off value of the number 'x' up to the number 'y' decimal places

SQL> SELECT ROUND(49.11321,2) FROM DUAL;
ROUND(49.11321,2)

 49.11

SQL> SELECT ROUND(49.11321,3) FROM DUAL;
ROUND(49.11321,3)

 49.113

SQL> SELECT ROUND(49.11321,4) FROM DUAL;
ROUND(49.11321,4)

 49.1132

Few other functions,

POWER
SQL> SELECT POWER(4,2) FROM DUAL;
POWER(4,2)

 16

MOD
SQL> SELECT MOD(4,2) FROM DUAL;
 MOD(4,2)

 0

SQL> SELECT SIGN(-98) FROM DUAL;
SIGN(-98)

 -1

SQL> SELECT SIGN(98) FROM DUAL;
 SIGN(98)

 1

Character String:

Function 1: UPPER
Purpose : Returns the string in uppercase

Syntax : UPPER(‘str’)

Example : SELECT UPPER(‘karuvachi’) from Dual;

Output:KARUVACHI

———————————————————————————————-

Function 2: lower
Purpose : Returns the string in lowercase

Syntax : lower(‘str’)

Example : SELECT LOWER(‘KaRuVaChi’) FROM DUAL;

Output:karuvachi

———————————————————————————————-

Function 3: Initcap
Purpose : Returns the string with first letter in uppercase and rest of the letters in lowercase

Syntax : Initcap(‘str’)

Example : SELECT Initcap(‘KaRuVaChi’) FROM DUAL;

Output:Karuvachi

———————————————————————————————-

Function 4: Concat
Purpose : Concatenate two strings

Syntax : concat(‘str1′,’str2’)

Example : SELECT CONCAT(‘Karu’,’Nand’) FROM DUAL;

Output:KaruNand

———————————————————————————————-

Function 5: Lpad
Purpose : Pad in the left side of the string for given times – length of the string

Syntax : Lpad(‘str1′,n,’str2’)

Example : SELECT Lpad(‘Karu’,6,’?’) FROM DUAL;

Output:??Karu

———————————————————————————————-

Function 6: Rpad
Purpose : Pad in the right side of the string for given times – length of the string

Syntax : Rpad(‘str1′,n,’str2’)

Example : SELECT Rpad(‘Karu’,6,’?’) FROM DUAL;

Output:Karu??

———————————————————————————————-

Function 7: trim
Purpose : Trim the whitespaces in both the sides of the string

Syntax : trim(‘str’)

Example : SELECT TRIM(‘ karu ‘) FROM DUAL;

Output:karu

———————————————————————————————-

Function 8: Ltrim
Purpose : Trim the whitespaces in left the side of the string

Syntax : Ltrim(‘str’)

Example : SELECT LTRIM(‘ karu ‘) FROM DUAL;

Output:karu….(. dot are spaces)

———————————————————————————————-

Function 9: Rtrim

Purpose : Trim the whitespaces in right the side of the string

Syntax : Rtrim(‘str’)

Example : SELECT RTRIM(‘ karu ‘) FROM DUAL;

Output:….karu(. dot are spaces)

———————————————————————————————-

Function 10: Length
Purpose : length of the string

Syntax : length(‘str’)

Example : SELECT LENGTH(‘karuvachi’) FROM DUAL;

Output:9

———————————————————————————————-

Function 11: Instr
Purpose : Find the position of the string in another string

Syntax : Instr(‘str1′,’str2’)

Example : SELECT INSTR(‘karuvachi’,’ka’) FROM DUAL;

Output:1

———————————————————————————————-

Function 12: substr
Purpose : get a sub string from string

Syntax : substr(‘str’,start_pos,number_of_chars)

Example : SELECT substr(‘karuvachi’,2,4) FROM DUAL;

Output: aruv

Date Functions and Operators.

To see the system date and time use the following functions :

CURRENT_DATE :returns the current date in the session time zone, in a value in the Gregorian

calendar of datatype

 DATE

SYSDATE :Returns the current date and time.

SYSTIMESTAMP :The SYSTIMESTAMP function returns the system date, including fractional

seconds and time zone

 of the database. The return type is TIMESTAMP WITH TIME ZONE.

FORMAT MEANING

D Day of the week

DD Day of the month

DDD Day of the year

DAY Full day for ex. ‘Monday’, ’Tuesday’, ’Wednesday’

DY Day in three letters for ex. ‘MON’, ‘TUE’,’FRI’

W Week of the month

WW Week of the year

MM Month in two digits (1-Jan, 2-Feb,…12-Dec)

MON Month in three characters like “Jan”, ”Feb”, ”Apr”

MONTH Full Month like “January”, ”February”, ”April”

RM Month in Roman Characters (I-XII, I-Jan, II-Feb,…XII-Dec)

Q Quarter of the Month

YY Last two digits of the year.

YYYY Full year

YEAR Year in words like “Nineteen Ninety Nine”

HH Hours in 12 hour format

HH12 Hours in 12 hour format

HH24 Hours in 24 hour format

MI Minutes

SS Seconds

FF Fractional Seconds

SSSSS Milliseconds

J Julian Day i.e Days since 1st-Jan-4712BC to till-date

RR If the year is less than 50 Assumes the year as 21ST Century. If the year

is greater than 50 then assumes the year in 20th Century.

Date and time functions and formats are quite different in various databases. In this article, let’s
review the most common functions that manipulates dates in an Oracle database.

The function SYSDATE() returns a 7 byte binary data element whose bytes represents:

 century,

 year,

 month,

 day,

 hour,

 minute,

 second

Select sysdate from dual;

Oracle enables you to extract the day, month, and year from a date using an extract function:

select extract(day from sysdate) as only_day from dual
select extract(month from sysdate) as only_month from dual
select extract(year from sysdate) as only_year from dual

ADD_MONTHS(date, n) – Adds the specific number of months (n) to a date. The ‘n’ can be both

negative and positive:

Select add_months(sysdate, -1) as prev_month , sysdate, add_months (sysdate, 1) as next_month
from dual

LAST_DAY(date) – Returns the last day in the month of the specified date d.

select sysdate, last_day(sysdate) as last_day_curr_month,
last_day(sysdate) + 1 as first_day_next_month from dual

The number of days until the end of the month.

select last_day(sysdate) - sysdate as days_left
from dual

MONTHS_BETWEEN(date, date) – Calculates the number of months between two dates.

Example:

select MONTHS_BETWEEN ('31-JAN-2014', '28-FEB-2014')
from dual

select MONTHS_BETWEEN ('31-MAR-2013', '28-FEB-2013')
from dual

Let’s select the number of months an employee has worked for the company.

Select months_between (sysdate, date_of_hire)
from employees

NEXT_DAY(date, day_of_week) – Returns the date of the first weekday specified that is later

than the date.

select next_day(sysdate, 'monday') as next_Monday from dual

ROUND(date [, format_mask VARCHAR2]) – Returns the date with time rounded to midnight

(12 A.M.) in the default. The format mask is optional. The following example rounds a date to

the first day of the following year:

SELECT ROUND (TO_DATE ('10-SEP-14'),'YEAR') as new_year
FROM DUAL;

TRUNC(date, [format]) – Truncates the specified date of its time portion according to the

format provided. If the ‘format’ is omitted, the hours, minutes or seconds will be truncated.

SELECT TRUNC(TO_DATE('27-OCT-92'), 'year')
as new_year FROM DUAL;

Arithmetic Operations With Dates

 Date + number

select sysdate + 1 as tomorrow
from dual

select sysdate + (5/1440) as five_mintues_from_now
from dual

 Date – number

select sysdate - 1 as yesterday
from dual

 Date – date

You can subtract a date from a date in Oracle. The result will be in days. You can also multiply

by 24 to get hours and so on.

 select 24 * (to_date('2014-10-10 22:00', 'YYYY-MM-DD hh24:mi') - to_date('2014-10- 9 21:00', 'YYYY-MM-DD hh24:mi'))

 difference_in_hours from dual;

Besides the SQL utility functions, Oracle inbuilt function library contains type conversion

functions. There may be scenarios where the query expects input in a specific data type, but it

receives it in a different data type. In such cases, Oracle implicitly tries to convert the

unexpected value to a compatible data type which can be substituted in place and application

continuity is not compromised. Type conversion can be either implicitly done by Oracle or

explicitly done by the programmer.

Implicit data type conversion works based on a matrix which showcases the Oracle's support for

internal type casting. Besides these rules, Oracle offers type conversion functions which can be

used in the queries for explicit conversion and formatting. As a matter of fact, it is recommended

to perform explicit conversion instead of relying on software intelligence. Though implicit

conversion works well, but to eliminate the skew chances where bad inputs could be difficult to

typecast internally.

Implicit Data Type Conversion

A VARCHAR2 or CHAR value can be implicitly converted to NUMBER or DATE type value by

Oracle. Similarly, a NUMBER or DATA type value can be automatically converted to character

data by Oracle server. Note that the impicit interconversion happens only when the character

represents the a valid number or date type value respectively.

For example, examine the below SELECT queries. Both the queries will give the same result

because Oracle internally treats 15000 and '15000' as same.

Query-1

SELECT employee_id,first_name,salary

FROM employees

WHERE salary > 15000;

Query-2

SELECT employee_id,first_name,salary

FROM employees

WHERE salary > '15000';

Explicit Data Type Conversion

SQL Conversion functions are single row functions which are capable of typecasting column

value, literal or an expression . TO_CHAR, TO_NUMBER and TO_DATE are the three functions

which perform cross modification of data types.

TO_CHAR function

TO_CHAR function is used to typecast a numeric or date input to character type with a format

model (optional).

Syntax

TO_CHAR(number1, [format], [nls_parameter])

For number to character conversion, nls parameters can be used to specify decimal characters,

group separator, local currency model, or international currency model. It is an optional

specification - if not available, session level nls settings will be used. For date to character

conversion, the nls parameter can be used to specify the day and month names, as applicable.

Dates can be formatted in multiple formats after converting to character types using TO_CHAR

function. The TO_CHAR function is used to have Oracle 11g display dates in a particular format.

Format models are case sensitive and must be enclosed within single quotes.

Consider the below SELECT query. The query format the HIRE_DATE and SALARY columns of

EMPLOYEES table using TO_CHAR function.

SELECT first_name,
 TO_CHAR (hire_date, 'MONTH DD, YYYY') HIRE_DATE,
 TO_CHAR (salary, '$99999.99') Salary
FROM employees
WHERE rownum < 5;

FIRST_NAME HIRE_DATE SALARY
-------------------- ------------------ ----------
Steven JUNE 17, 2003 $24000.00
Neena SEPTEMBER 21, 2005 $17000.00
Lex JANUARY 13, 2001 $17000.00
Alexander JANUARY 03, 2006 $9000.00

The first TO_CHAR is used to convert the hire date to the date format MONTH DD, YYYY i.e.

month spelled out and padded with spaces, followed by the two-digit day of the month, and

then the four-digit year. If you prefer displaying the month name in mixed case (that is,

"December"), simply use this case in the format argument: ('Month DD, YYYY').

The second TO_CHAR function in Figure 10-39 is used to format the SALARY to display the

currency sign and two decimal positions.

TO_NUMBER function

The TO_NUMBER function converts a character value to a numeric datatype. If the string being

converted contains nonnumeric characters, the function returns an error.

Syntax

TO_NUMBER (string1, [format], [nls_parameter])

TO_DATE function

The function takes character values as input and returns formatted date equivalent of the same.

The TO_DATE function allows users to enter a date in any format, and then it converts the entry

into the default format used by Oracle 11g.

Syntax:

TO_DATE(string1, [format_mask], [nls_language])

