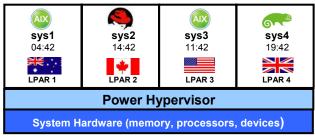


Unit 1 Introduction to IBM Power systems, AIX and System Administration

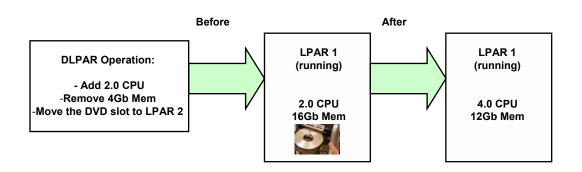
Unit objectives

After completing this unit, you should be able to:


- Define terminology and concepts of IBM Power system servers, virtualization, HMC, and AIX
- Understand a typical set-up of a Power environment
- Describe the roles of the system administrator
- Obtain root access with the su command

AIX overview

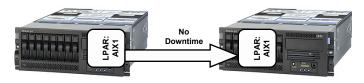
- IBM's proprietary operating system based on UNIX System V
 - Also has BSD compatible commands and programming interface extensions
- Advanced Interactive Executive (AIX) runs on proprietary hardware (H/W) called IBM Power Systems
 - Sixth generation of Power, based on Reduced Instruction Set Computer (RISC) technology
- Most Power Systems today run many instances of AIX in partitions known as Logical Partitions (LPAR)
 - This is H/W partitioning managed by the system firmware, Power Hyperviso


Logical partition (LPAR) overview

- An LPAR is the allocation of system resources to create logically separate systems within the same physical footprint.
- The resource allocation and isolation for a logical partition is implemented in firmware called Power Hypervisor.
 - Provides configuration flexibility
- Each partition has its own:
 - Operating system
 - Resources: processors, memory, devices (defined in a profile)
 - Resources can be changed dynamically using Dynamic LPAR (DLPAR)
- Partitions can consist of physical (real) or virtual devices
 - or a combination of both

Dynamic logical partitioning (DLPAR)

- DLPAR is the ability to add, remove, and move resources without reactivation of a partition
 - Processor, memory, and I/O allocation changes
- Processors and memory quantities are bound by the minimum and maximum profile settings
- Applications may be DLPAR-aware


Workload partitions (WPAR)

- Software (S/W) partitioning is managed by AIX.
 - Available from AIX 6.1
- Many AIX OS images can reside within a master global AIX image.
- Live Application Mobility allows WPAR relocation to another box or LPAR.
- WPARs provide automatic workload balancing.
- WPAR technology is not H/W dependent.
 - Support is available on Power 4, 5, and 6.

Live partition mobility

- Live partition mobility allows running AIX partitions to be migrated from one physical server to another without downtime.
 - For Power 6 only, LPARs must not contain any physical devices.

- Partition Mobility provides systems management flexibility and is designed to improve system availability.
 - Can help avoid planned outages for hardware or firmware maintenance
 - Can help avoid unplanned downtime
 - If a server indicates a potential failure, you can move its partitions to another server before the failure occurs.
 - Enables optimized resource use by moving workloads from server to server

Evolution of AIX

	AIX 6.1 7 TL 2	AIX Enterprise Edition	2008		
		AIX 6.1	2007	POWER6	
AIX Version 6.1 Technology Level 2 (GA 14, November, 2008)		AIX 5.3	2004	POWER 5	
IBM Support for new IBM UNIX® Systems New Virtualization Support		AIX 5.2	2002		
Faster Live Application Mobility (with WPAR Manager V1.2 Inactive Application Mobility		AIX 5.1	2001	POWER 4	
 Independent WPAR network routes WPAR named interface support 			1998	POWER 3	
 IPv6 WPAR network support MPIO support for physical and virtual paths PowerVM™ n Port ID virtualization (NPIV) 		AIX 4.3	1997	RS64	
 PowerVM™ Shared Memory Partitioning OS Integration and Management 		AIX 4.2	1996	P2SC	
IPv6 RFC currency BIND 9.4.1 support IPv4 tunneling in IPv6 networks		AIX 4.1	1994		
nmon integrated into topas topasrec performance data recording topas monitoring support for PowerVM VIOS		AIX 3.2.5	1993	POWER 2	PowerPC '601'
mpstat and sar support WPAR support Concurrent kernel update enhancements			1992	RSC	
LVM support for SAN mirror pools Systems Director Console enhancements			1990	POWER	
		AIX 3.0	1989		
	AIX 2.0	AIX 1.0	1986	the RT	
3 04 40 40 47 77			1974	"the 801"	
From Strength to Strength"			1960's	IBM develops 1st Hypervisor	

© Copyright IBM Corporation 2009

Overview of the POWER6 servers

Power 520

- · Entry/Low end
- Deskside or Rack (4U)
- 1,2, or 4 CPUs
- 1GB-64GB memory
- Max. Storage, Internal +
- Expansion I/O 132TB

Power 550

- Mid-range
- Deskside or Rack (4U)
- 2, 4, 6 or 8 CPUs
- 1GB-256GB memory
- Max. Storage, Internal +
- Expansion I/O 249TB

Power 560

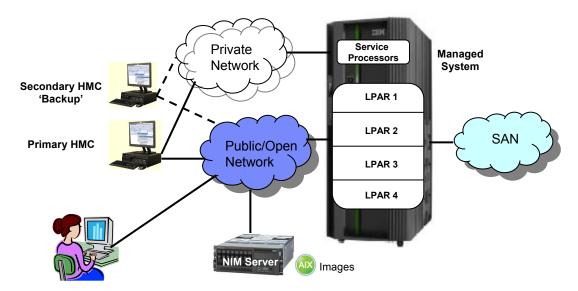
- Mid-range
- Rack (4U) building block (to 8U)
- 4, 8 or 16 CPUs
- 8GB-384GB memory
- Max. Storage, Internal +
- Expansion I/O 599TB

Power 570

- Mid-range
- Rack (4U) building block (to 16U)
- 2, 4, 8, 16 or 32 CPUs
- 1GB-768GB memory
- Max. Storage, Internal +
- Expansion I/O 604TB

Power 575

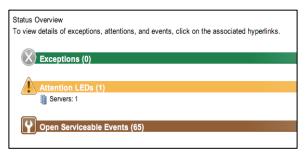
- High Performance Computing cluster
- For highly-parallel, compute-intensive HPC workloads (up to 64 nodes per cluster)
- · 24" System Frame, water cooled
- · 32 CPUs per nodes
- 32GB-256GB memory per node
- Max Internal storage per node 292GB



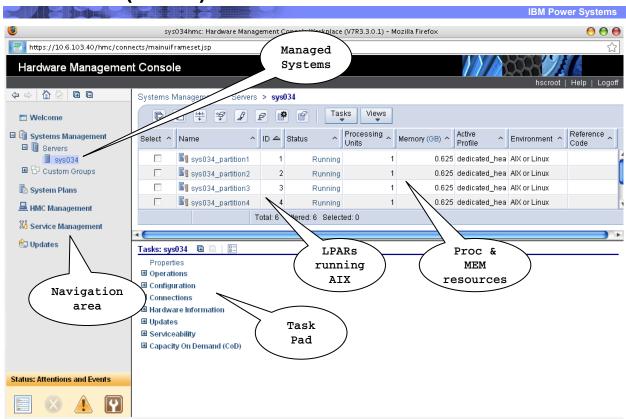
Power 595

- High-end
- 42U System Frame
- 8 to 64 CPUs
- 16GB-4TB memory
- Max. Storage, Internal +
- Expansion I/O 999TB

Typical Power / AIX system layout


- LPAR Configuration and Control is completed through the Hardware Management Console (HMC).
- The HMC connects to the Service Processors and the LPARs.
 - Best practice: Use a private network between the HMC and Service Processors.

The HMC (1 of 2)

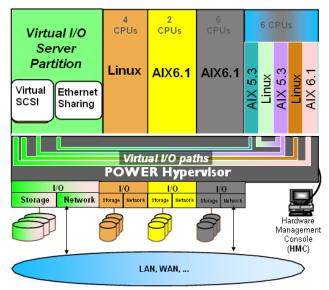

- Intel based server (desktop or rack mount) running a web based application on a customized version of Linux
- Access is through https (GUI) and SSH (Command line)

- Collects status health information from the managed systems
- Mandatory on Power 570s and above
 - Power 550's and below can use Integrated Virtualization Manager (IVM)
- Can be configured to call home to IBM

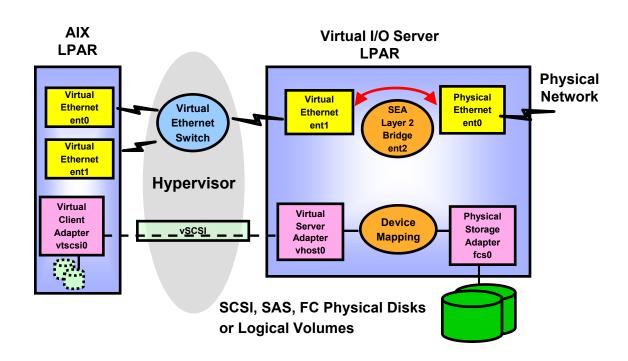
The HMC (2 of 2)

LPAR virtualization overview (1 of 2)

- An AIX client partition can :
 - Be virtual, have no real devices
 - Use fractions of CPUs (Micro-Partitioning)
- Virtualizing LPARs has many advantages
 - Flexibility in allocating resources
 - More efficient use of system resources through sharing
 - Consolidation (H/W, floor space, merge production and test environments)
 - Relocating partitions using Live Partition Mobility
- A key component of virtualization is the Virtual I/O Server (VIOS)
 - Implemented as special customized version of AIX
 - It is **not** AIX. It is PowerVM software!
 - Requires at minimum a PowerVM standard license
 - Included on some high-end systems


IBM Power Systems

- The two key functions of virtualization are:
 - Virtual Ethernet is a standard feature of POWER5 and POWER6.
 - AIX can have up to 256 virtual adapters per LPAR.
 - Does not require a VIOS, unless a bridged connection to the outside world is required
 - Virtual SCSI is way of providing virtual disks to clients.
 - The backend storage can be Internal disk (SCSI/SAS) or SAN storage.
 - This is a feature of the VIOS.


 Note: There are many other virtualization features which are covered in more depth in the LPAR & virtualization curriculum / roadmap.

Virtual I/O server (VIOS) overview

- The VIOS partition is allocated physical I/O slots containing real adapters.
 - These are used for the virtual adapters (SCSI or Ethernet) to share amongst the client partitions

Virtualization example

Role of the system administrator

- Pre-installation planning of:
 - Partitions
 - User accounts/groups
 - Storage allocation/paging space
 - Subsystems (printing, networks, and so forth)
 - Standard naming conventions
 - Determine system policies
 - Install and configure hardware
- Network configuration
- System Backups and disaster recovery
- Create/manage user accounts
- Define and manage subsystems
- Manage system resources (for example, disk space)
- Performance monitoring
- Capacity planning
- Application license management
- Documentation system configuration, and keep it current!

Who can perform administration tasks?

- The root user
 - Exercise caution when logging in directly as root, especially remotely.
 - Keep the root password secure.
- Members of special groups such as system, or roles using the new AIX6 feature: RBAC
- The su command enables you to obtain access to the root user

```
$ id; pwd
uid=251(alex) gid=1(staff)
/home/alex
$ su root
root's Password:
# id; pwd
uid=0(root) gid=0(system)
/home/alex
# set |grep USER
USER=alex
```

```
$ id; pwd

uid=251(alex) gid=1(staff)

/home/alex

$ su - root

root's Password:

# id; pwd

uid=0(root) gid=0(system)

/

# set |grep USER

USER=root
```

Unit summary

Having completed this unit, you should be able to:

- Define terminology and concepts of IBM Power System servers, virtualization, HMC, and AIX
- Understand a typical set-up of a Power environment
- Describe the roles of the system administrator
- Obtain root access with the su command