Unit 1 LESSON 16:

Using
 Number Properties
 to Multiply and Divide Rationa Numbers

- Associative Property
- Commutative Property
- Identity Property of Multiplication (One)
- Multiplicative Inverse
- Carnegie Learning Lesson 5.3
- Properties of Operations Foldable

Essential Question

How do multiplication and division of rational numbers relate to one another?

Inyerse = Reciprocal

For all real numbers n,

WORDS	Multiplicative Inverse Property The product of a nonzero number and its reciprocal, or multiplicative inverse, is 1.
NUMBERS	$8 \bullet \frac{1}{8}=1$
ALGEBRA	$n \bullet \frac{1}{n}=1 \quad(n \neq 0)$

Practice
 Using Number Properties to Multiply and Divide

Rewrite the expression as only multiplication and evaluate.
$1 \div \frac{2}{3} \times(-8) \times 3 \div\left(-\frac{1}{2}\right)$
$4.2 \times\left(-\frac{1}{3}\right) \div \frac{1}{6} \times(-10)$

Multiply the expression using the distributive property.
$9 \times\left(-3 \frac{1}{2}\right)$

I can ., .

Apply properties to multiply and divide rational numbers.

Practice
 Using Number Properties to Multiply and Divide

Rewrite the expression as only multiplication and evaluate.
$1 \div \frac{2}{3} \times(-8) \times 3 \div\left(-\frac{1}{2}\right)$
$1 \times \frac{3}{2} \times(-8) \times 3 \times(-2)$
Multiplicative inverse

Commutative multiplication

Associative property
$-3 \times(-8) \times 3$
$-3 \times 3 \times(-8)$
Commutative multiplication

I can ...

Apply properties to multiply and divide rational numbers.

Practice
 Using Number Properties to Multiply and Divide

Rewrite the expression as only multiplication and evaluate.
$4.2 \times\left(-\frac{1}{3}\right) \div \frac{1}{6} \times(-10)$
$4.2 \times\left(-\frac{1}{3}\right) \times \frac{6}{1} \times(-10)$
Multiplicative inverse
$4.2 \times(-10) \times\left(-\frac{1}{3}\right) \times 6$
Commutative multiplication
$-42 \times\left(-\frac{1}{3}\right) \times 6$
14×6
84

I can . . .

Apply properties to multiply and divide rational numbers.

Practice

Using Number Properties to Multiply and Divide

Multiply the expression using the distributive property.

$$
\begin{aligned}
& 9 \times\left(-3 \frac{1}{2}\right) \\
& 9 \times\left(-3+\left(-\frac{1}{2}\right)\right) \\
& \underbrace{(9 \times(-3)}_{-27})+(\underbrace{9 \times\left(-\frac{1}{2}\right)}) \\
& \left.-31 \frac{1}{2} \frac{1}{2}\right)
\end{aligned}
$$

I can ., .

Apply properties to multiply and divide rational numbers.

Mental math means "doing math in your head."

Many mental math strategies use number properties that you already know to make equivalent expressions that may be easier

Mental to simplify.

Essential Question

How do 1

 use number properties to compute mentally?Bonus Lesson:

Number
Properties

$20 \cdot 3 \div 60$

$$
- 1 5 \longdiv { 7 + 1 3 + 1 5 }
$$

20

$$
\begin{array}{cl}
14(12) & \begin{array}{l}
12+21+18+14 \\
14(10+2)
\end{array}=140+28 \quad 12+20=32 \\
& =168 \\
32+1=33 \\
2(x+2) & 33+10=43 \\
4(106) & 50+1=51 \\
4(100+6) & 51+10=61
\end{array}
$$

Practice
Computing Mentally
Find each sum or product mentally.

1. $17+15=22+10=32$
2. $29+39=40+28=68$
3. $8(24)=8(20)+8(4)=192$
4. $7(12)=70+14=84$
5. $3(91)=3(90)+3(1)=273$
6. $6(15)=6(10+5)=90$

I can ...
use number properties to compute mentally.

Evaluate
$17+5+3+15$

$$
\begin{gathered}
17+5+3+15 \\
17+3+5+15 \\
(17+3)+(5+15) \\
20+20
\end{gathered}
$$

40

Look for sums that are multiples of 10

Use the Commutative Property.
Use the Associative Property to make groups of compatible numbers.

Use mental math to add.

Evaluate
$4 \times 13 \times 5$
$4 \times 13 \times 5 \quad$ Look for products that are
$13 \times 4 \times 5 \quad$ Use the Commutative Property.
$13 \times(4 \times 5)$
Use the Associative Property to group compatible numbers.
$13 \times 20 \quad$ Use mental math to multiply.

$$
260
$$

Evaluate
$12+5+8+5$

$$
\begin{array}{cl}
12+5+8+5 & \begin{array}{l}
\text { Look for sums that are } \\
\text { multiples of 10 }
\end{array} \\
(12+8+5+5 & \begin{array}{l}
\text { Use the Commutative Property. }
\end{array} \\
\begin{array}{c}
\text { Use the Associative Property to } \\
\text { make groups of compatible } \\
\text { numbers. }
\end{array} \\
30 & \text { Use mental math to add. }
\end{array}
$$

Evaluate
6×35

$$
\begin{gathered}
6 \times 35=6 \times(30+5) \text { "Break apart" } 35 \text { into } 30+5 \\
(6 \times 30)+(6 \times 5) \\
180+30 \\
\text { Use the Distributive Property. } \\
210
\end{gathered} \quad \text { Use mental math to multiply. }
$$

Evaluate 9×87
$9 \times 87=9 \times(80+7)$ "Break apart" 87 into $80+7$.
$(9 \times 80)+(9 \times 7)$ Use the Distributive Property.
$720+63$ Use mental math to multiply.
783 Use mental math to add.

Evaluate
4×27

$$
\begin{gathered}
4 \times 27=4 \times(20+7) \text { "Break apart" } 27 \text { into } 20+7 \\
(4 \times 20)+(4 \times 7) \\
80+28 \quad \text { Use the Distributive Property. } \\
108
\end{gathered} \quad \text { Use mental math to multiply. }
$$

Evaluate
6×43

$$
\begin{gathered}
6 \times 43=6 \times(40+3) \text { "Break apart" } 43 \text { into } 40+3 \\
\begin{array}{c}
6 \times 40)+(6 \times 3) \\
240+18
\end{array} \text { Use the Distributive Property. } \\
258
\end{gathered} \quad \text { Use mental math to multiply. }
$$

Practice:
Evaluate.

1. $18+24+2+6$
(Comm and Assoc.) 50
2. $10 \times 5 \times 3$
3. $13+42+7+8$
(Comm. and Assoc.) 70
Use the Distributive Property to find each product.
4. 8×12

$$
\text { 5. } 6 \times 15
$$

6. Angie wants to buy 3 new video games. How much will she need to save if each game costs $\$ 27$?

$$
3(27)=3(20+7)=\$ 81
$$

At the bottom of today's notes, complete this sentence:

Conclusion

One thing I need to remember from today's lesson is ...

Converting Fractions to Decimals (Repeating and Terminating Decimals)
7.NS.2d

Unit 1 LESSON 18:

$$
\begin{aligned}
& 7.7777 \ldots \ldots \\
& 0.246246 \ldots . . \\
& 0.7222 \ldots \ldots
\end{aligned}
$$

Repeating

Repeating Decimal: includes a pattern of Decimals digits that REPEAT FOREVER.

$$
\begin{aligned}
& 0.8121212 \ldots . . . \\
& 4.12123123 \ldots . . \\
& 22.52010101
\end{aligned}
$$

Essential Question

What symbol indicates that a number repeats?

How is this symbol used correctly?

Repeating Decimals: Bar Notation

Fraction
 5
 11

Decimal
$1 1 \longdiv { 5 . 0 0 0 0 0 } \quad \frac { \square . } { 0 . 4 5 4 }$
0.454 0.45
means $5 \div 11$

Repeating Recimals; Bar Notation

Fraction Decimal
 $\frac { 1 } { 3 } \quad 3 \longdiv { 1 . 0 0 0 }$

means $1 \div 3$

Repeating Decimals; Bar Notation

Fraction

$$
\frac{5}{6}
$$

$6 \longdiv { 5 . 0 0 0 }$

Decimal

8.83

$$
0.833
$$

means $5 \div 6$

Repeating Recimals; Bar Notation

Fraction
$\frac{5}{12}$

$$
\frac{5}{12}
$$

Decimal
$1 2 \longdiv { 5 . 4 1 6 6 } \cdots$
$0.41 \overline{6}$
means $5 \div 12$

Write each repeating decimal with bar notation.
a) $7.7777 \ldots \ldots=7 . \overline{7}$
b) $0.246246 \ldots \ldots=0 . \overline{246}$
c) $0.7222 \ldots \ldots=0.7 \overline{2}$
d) $0.8121212 \ldots \ldots=0.8 \overline{12}$
e) $4.12123123 \ldots \ldots=4.12 \overline{123}$
symbol used correctly?
f) $22.52010101 \ldots \ldots=22.52 \overline{01}$

Unit 1 LESSON 18:

$$
\begin{aligned}
& 12.5 \\
& 3.25 \\
& 4.3
\end{aligned}
$$

Terminating Decimal: decimal that ends with
Terminating a specific digit Decimals

Essential Question

How do 1 know if the decimal form of a number terminates or repeats?

Terminating Recimals; Look at the Denominator

Fraction

Decimal

$\frac{3}{8}$

$$
\begin{array}{r}
0.375 \\
8 \longdiv { 3 . 0 0 0 }
\end{array}
$$

means $3 \div 8$
$\frac{375}{1000} \div 125=\frac{3}{8}$
0.375

Say it correctly!

Terminating Decimals; Look at the Denominator

Fraction	Decimal
$\frac{4}{2}=\frac{8}{10}$	0.8
$\frac{3}{100}$	0.03

$$
\frac{7}{20} \cdot \frac{\bullet 5}{\bullet 5}=\frac{35}{100} \quad 0.35
$$

Unit 1 LESSON 18:

Converting Fractions to Decimals Repeating and Terminating Decimals)

Essential Question

What are the steps to converting a rational number (fraction) to a decimal using long division?

Essential Question

What are the steps to converting a fraction to a decimal using long division?

Repeating Decimals as Fractions What do you notice about the repeating decimals compared to the terminating decimals?
Terminating Repeating
$0.1=\frac{1}{10}$
$0 . \overline{1}=\frac{1}{9}$
Terminating
Repeating

$$
0.2=\frac{2}{10}
$$

$$
0 . \overline{2}=\frac{2}{9}
$$

Terminating
Repeating

$$
0.3=\frac{3}{10} \quad 0 . \overline{3}=\frac{3}{9}=\frac{1}{3}
$$

Repeating Decimals as Fractions

Terminating Repeating
$0.1=\frac{1}{10}$
$0 . \overline{1}=\frac{1}{9}$
$0 . \overline{4}=\frac{4}{9}$

Terminating Repeating
$0.2=\frac{2}{10}$
$0 . \overline{2}=\frac{2}{9}$

$$
0 . \overline{5}=\frac{5}{9}
$$

Terminating
$0.3=\frac{3}{10}$
$0 . \overline{3}=\frac{3}{9}=\frac{1}{3}$
$0 . \overline{6}=\frac{6}{9}=\frac{2}{3}$
Writing Repeating Decimals as fractions can be a challenge. But following a pattern really helps!

Repeating Recimals as Fractions

Terminating Repeating

$$
0.13=\frac{13}{100} \quad 0 . \overline{13}=\frac{13}{99}
$$

Terminating
Repeating
$0.24=\frac{24}{100}$
$0 . \overline{24}=\frac{24}{99}$
What do you notice about the repeating decimals compared to the terminating decimals?
Terminating Repeating

$$
0.36=\frac{36}{100} \quad 0 . \overline{36}=\frac{36}{99}
$$

Repeating Recimals as Fractions

Terminating Repeating
$0.123=\frac{123}{1000} \quad 0 . \overline{123}=\frac{123}{999}$
Terminating

Try these challenging ones!
$0.2154=\frac{2154}{10000} \quad 0 . \overline{2154}=\frac{2154}{9999}$

Terminating
$0.83=\frac{83}{100}$

Repeating
$0.8 \overline{3}=\frac{5}{6}$

When one digit is terminating this can be a challenge!

Converting

 Fractions toDecimals
Repeating and
Terminating Decimals)

> Divide the numerator by the denominator.

Conxerting Fractions to Recimals

To Change a Fractions To a Decimal: Divide the numerator by the denominator.

$$
\frac{4}{5}
$$

. 8
$\begin{array}{r}54.0 \\ -40 \\ \hline\end{array}$
$\frac{4}{5}=0.8$
0
Zero Remainder? YES Terminating Decimal

Conxerting Fractions to Recima|s

To Change a Fractions To a Decimal: Divide the numerator by the denominator.

Conxerting Fractions to Recimals

To Change a Fractions To a Decimal: Divide the numerator by the denominator.

$$
\begin{aligned}
& \begin{array}{cc}
1 \\
3 & \begin{array}{c}
.3 \overline{3} \\
\hline
\end{array} \quad \frac{1}{3}
\end{array} \quad=0 . \overline{3} \\
& \text { Zero Remaindert? } \\
& \text { Repeating Recimal }
\end{aligned}
$$

Converting Mixed Numbers; Leave the Whole Number Alone

Fraction
$6 \frac{7}{10}$ Decimal 6.7
$9 \frac{45}{100}$
9.45

Practice: Converting Fractions to Decimals
 1 $-\frac{8}{33}$ -0.24 4.035

I can . . '
convert rational numbers to decimals.

Practice: Converting Fractions to Decimals

$\frac{2}{5}$
$\frac{6}{11}$
$4 \frac{27}{125}$
0.4
0.54
4.216

I can . . .
convert rational numbers to decimals.

At the bottom of today's notes, complete this sentence:

Conclusion

One thing I need to remember from today's lesson is ...

