Unit 1 Mathematical Methods

Chapter 6: Polynomials

Objectives

- To add, subtract and multiply polynomials.
- To divide polynomials.
- To use the remainder theorem, factor theorem and rational-root theorem to identify the linear factors of cubic and quartic polynomials.
- To solve equations and inequalities involving cubic and quartic polynomials.
- To recognise and sketch the graphs of cubic and quartic
 functions.
- To find the rules for given cubic graphs.
- To apply cubic functions to solving problems.
- To use the bisection method to solve polynomial equations numerically.

6A - The language of polynomials

A Polynomial function follows the rule

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots \ldots \ldots . a_{1} x+a_{0} \quad n \in N
$$

Where $a_{0}, a_{1}, \ldots \ldots \ldots \ldots a_{n}$ are coefficients.
Degree of a polynomial is the highest power of x with a non-zero coefficient.
In summary:

- A polynomial function is a function that can be written in the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $n \in \mathbb{N} \cup\{0\}$ and the coefficients a_{0}, \ldots, a_{n} are real numbers with $a_{n} \neq 0$.

- The number 0 is called the zero polynomial.
- The leading term, $a_{n} x^{n}$, of a polynomial is the term of highest index among those terms with a non-zero coefficient.
- The degree of a polynomial is the index n of the leading term.
- A monic polynomial is a polynomial whose leading term has coefficient 1.
- The constant term is the term of index 0 . (This is the term not involving x.)

Example 1

Let $Q(x)=2 x^{6}-x^{3}+a x^{2}+b x+20$. If $Q(-1)=2 Q(2)=0$, find the values of a and b.

The arithmetic of polynomials

The operations of addition, subtraction and multiplication for polynomials are naturally defined. The sum, difference and product of two polynomials is a polynomial.

Example 2

Let $f(x)=x^{3}-2 x^{2}+x, g(x)=2-3 x$ and $h(x)=x^{2}+x$, simplify the following:
a) $f(x)+h(x)$
b) $g(x) h(x)$

Equating coefficients

Two polynomials P and Q are equal only if their corresponding coefficients are equal.

Example 3

The polynomial $P(x)=x^{3}+3 x^{2}+2 x+1$ can be written in the form
$(x-2)\left(x^{2}+b x+c\right)+r$ where b, c and r are real numbers. Find the values of b, c and r.

The expansion of $(a+b)^{n}$

We know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$
This is called an identity.
If we multiply both sides by $(a+b)$, we obtain

$$
\begin{gathered}
(a+b)^{3}=(a+b)\left(a^{2}+2 a b+b^{2}\right) \\
=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{gathered}
$$

And so on \qquad

Quadratic function	$(a+b)^{2}=a x^{2}+b x+b^{2}$,	$a \neq 0$
Cubic function	$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$,	$a \neq 0$
Quartic functions	$(a+b)^{4}=a x^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$,	$a \neq 0$

Complete Exercise 6A Questions page 214

6B - Division of polynomials

In order to sketch the graphs of many cubic and quartic functions (as well as higher degree polynomials) it is often necessary to find the x-axis intercepts. As with quadratics, finding x axis intercepts can be done by factorising and then solving the resulting equation using the null factor theorem.
All cubic functions will have at least one x-axis intercept. Some will have two and others three.

When we divide the polynomial $P(x)$ by the polynomial $D(x)$ we obtain two polynomials, $Q(x)$ the quotient and $R(x)$ the remainder, such that

$$
P(x)=D(x) Q(x)+R(x)
$$

and either $R(x)=0$ or $R(x)$ has degree less than $D(x)$.
Here $P(x)$ is the dividend and $D(x)$ is the divisor.

Examples of long division:

1. Divide $x^{3}-4 x^{2}-11 x+30$ by $x-2$.
2. Divide $2 x^{3}-6 x^{2}-10 x+25$ by $x^{2}-2$

- Using the TI-Nspire

Use propFrac from menu >Algebra >Fraction Tools >Proper Fraction as shown.

Complete Exercise 6B Questions page 219

6C - Factorisation of polynomials

Remainder theorem and factor theorem

Remainder theorem

When $P(x)$ is divided by $\beta x+\alpha$, the remainder is $P\left(-\frac{\alpha}{\beta}\right)$.

Factor theorem

For a polynomial $P(x)$:

- If $P(\alpha)=0$, then $x-\alpha$ is a factor of $P(x)$.
- Conversely, if $x-\alpha$ is a factor of $P(x)$, then $P(\alpha)=0$.

More generally:

- If $\beta x+\alpha$ is a factor of $P(x)$, then $P\left(-\frac{\alpha}{\beta}\right)=0$.
- Conversely, if $P\left(-\frac{\alpha}{\beta}\right)=0$, then $\beta x+\alpha$ is a factor of $P(x)$.

Examples :

1. Find the remainder when $P(x)=3 x^{4}-9 x^{2}+27 x-8$ is divided by $x-2$.
2. Factorise $P(x)=x^{3}-4 x^{2}-11 x+30$ by $x-2$ and hence solve for x.
3. Given $x+1$ and $x-2$ are factors of $6 x^{4}-x^{3}+a x^{2}-6 x+b$, find a and b.

Sums and differences

If $P(x)=x^{3}-a^{3}$, then $x-a$ is a factor and so by division:

$$
x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)
$$

If a is replaced by $-a$, then

$$
x^{3}-(-a)^{3}=(x-(-a))\left(x^{2}+(-a) x+(-a)^{2}\right)
$$

This gives:

$$
x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)
$$

Examples:

1. Factorise $27 x^{3}-1$	2. Factorise $8 a^{3}+125 b^{3}$

- The rational-root theorem

Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree n with all the coefficients a_{i} integers. Let α and β be integers such that the highest common factor of α and β is 1 (i.e. α and β are relatively prime). If $\beta x+\alpha$ is a factor of $P(x)$, then β divides a_{n} and α divides a_{0}.

Examples:

Use the rational-root theorem to factorise $P(x)=3 x^{3}+8 x^{2}+2 x-5$.

- Alternative method for division of polynomials

Synthetic division is an alternative method to long division that can be used when factorising a polynomial, and the method is not the priority.

```
A third method, called synthetic division, is described in the example below.
Divide }\mp@subsup{x}{}{3}+2\mp@subsup{x}{}{2}-1\mathrm{ by }x-3\mathrm{ using synthetic division.
Solution
Step 1 
Step 2
    3\ [\begin{array}{llll}{1}&{2}&{0}&{-1}\\{}&{3}&{}&{}\\{1}\end{array})
Step 3
1
3 3
    15
Step 4
3 \begin{tabular}{r|rrrr}
1 & 2 & 0 & -1 \\
& 3 & 15 & \\
& 1 & 5 & 15 &
\end{tabular}
Step 5
\begin{tabular}{|rrrr}
1 & 2 & 0 & -1 \\
& 3 & 15 & 45 \\
1 & 5 & 15 & 44
\end{tabular}
Multiply the 15 below the line by 3 , place the result below the -1 , and then add the two values as shown.
```

Therefore

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}-1\right) \div(x-3) \quad \text { Now read off the answer from the bottom row of the table as shown. } \\
& =x^{2}+5 x+15+\frac{44}{x-3}
\end{aligned}
$$

Complete Exercise 6C Questions page 227

6D - Solving cubic equations

In order to solve a cubic equation, the first step is often to factorise. Apply the same rule(s) practiced in Exercise 6C to find a factor(s) or by other means, then equate to zero to find solutions.

Examples:

1. Solve each of the following:
a) $2(x-1)^{3}=32$
b) $2 x^{3}-m x^{2}-22 x+11 m$
2. Solve $2 x^{3}-5 x^{2}+5 x-2=0$
$6 \mathrm{E}-\mathrm{Cubic}$ functions of the form $f(x)=a(x-h)^{3}+k$
In Chapter 3 we saw that all quadratic functions can be written in 'turning point form' and that the graphs of all quadratics have one basic form, the parabola. This is not true of cubic functions.
Consider cubic functions in the form $f(x)=a(x-h)^{3}+k$.
The graphs of these functions can be formed by simple transformations of the graph of $f(x)=x^{3}$.
For example, the graph of $f(x)=(x-1)^{3}+3$ is obtained from the graph of $f(x)=x^{3}$ by a translation of 1 unit in the positive direction of the x-axis and 3 units in the positive direction of the y-axis.

Transformations of the graph $f(x)=x^{3}$

Dilations from an axis and reflections in an axis to cubic functions in the form $f(x)=a x^{3}$

It should be noted that the implied domain of all cubics is \mathbb{R} and the range is also \mathbb{R}.
The point of inflection can move as described in the above function $f(x)=(x-1)^{3}+3$

General form:

For the graph of a cubic function of the form

$$
\begin{aligned}
& \begin{array}{l}
y=a(x-h)^{3}+k \\
\text { the point of inflection is at }(h, k) \text {. }
\end{array} \quad \text { Vertical translation }
\end{aligned}
$$

The function $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}, \boldsymbol{f}(\boldsymbol{x})=x^{\frac{1}{3}}$
The functions with rules of the form $f(x)=a(x-h)^{3}+k$ are one-to-one functions. Hence each of these functions has an inverse function.
The inverse function of $f(x)=x^{3}$ is $f^{-1}(x)=x^{\frac{1}{3}}$.

Examples:

1. Sketch the graph of $f(x)=-2(x+1)^{3}+1$. Show all intercepts andpoint of inflection.
2. Find the inverse functin of $f(x)=-2(x+1)^{3}+1$.

Complete Exercise 6E Questions page 235

6F - Graphs of factorised cubic functions

The general cubic function written in polynomial form is

$$
y=a x^{3}+b x^{2}+c x+d
$$

The graph of a cubic function can have one, two or three x-axis intercepts.

- If a cubic can be written as the product of three linear factors,

$$
y=a(x-\alpha)(x-\beta)(x-\gamma)
$$

then its graph can be sketched by following these steps:

- Find the y-axis intercept.
- Find the x-axis intercepts.
- Prepare a sign diagram.
- Consider the y-values as x increases to the right of all x-axis intercepts.
- Consider the y-values as x decreases to the left of all x-axis intercepts.
- If there is a repeated factor to the power 2 , the y-values have the same sign immediately to the left and right of the corresponding x-axis intercept. Linear factors will be written as

$$
y=a(x-\alpha)(x-\beta)^{2}
$$

Graphs of some cubic functions

Points of inflection

$f(x)=x^{3}-x$
$f(x)=x^{3}-3 x-2$

$f(x)=x^{3}-3 x+2$

Sign diagrams

A sign diagram is a number-line diagram which shows when an expression is positive or negative.
The following is a sign diagram for a cubic function, the graph of which is also shown.

Using a sign diagram requires that the factors, and the x-axis intercepts, be found.
The y-axis intercept and sign diagram can then be used to complete the graph.

Example:

1. Sketch the graph of $y=(x+1)(x-2)(x+3)$. Hint: draw a sign diagram first.
2. Sketch the graph of $y=3 x^{3}-4 x^{2}-13 x-6$
\square

- Using the TI-Nspire

In order to provide more detail, the coordinates of the turning points can be found with a CAS calculator.
\square Enter $f_{1}(x)=x^{3}+2 x^{2}-5 x-6$ in a Graphs application.

- Choose a suitable window (menu) $>$ Window/Zoom $>$ Window Settings).
- Use menu > Analyze Graph > Maximum.
- Move the cursor to the left of point (lower bound), click, move to the right of point (upper bound) and click to display the coordinates.
1 Repeat for other points of interest.

Note:
Alternatively, use menu > Trace > Graph Trace to find the coordinates of the two turning points. A label will appear near a turning point to indicate that the calculator has found a local maximum or a local minimum.

Complete Exercise 6F Questions page 241

6G - Solving cubic inequalities

As was done for quadratic inequalities, we can solve cubic inequalities by considering the graph of the corresponding polynomial.

Examples:

Solve the following cubic inequalities.
a) $(x+1)(x-2)(x+3) \geq 0$
b) $(x+1)(x-2)(x+3)<0$

Complete Exercise 6G Questions page 242

6H - Families of cubic polynomial functions

Finding rules for cubic polynomialfunctions.

Apply the same rules that were applied to finding the rule for a quadratic polynomial function.
Use any of the general rules:
$f(x)=a(x-h)^{3}+k$
Or
$f(x)=a x^{3}+b x^{2}+c x+d$

Example:

1. Find a cubic function whose graph touches the x-axis at $x=-4$, cuts it at the origin, and has a value 6 when $x=-3$.
2. Find the equation of the following cubic in the form $y=a x^{3}+b x^{2}$.

Complete Exercise 6H Questions page 246

6 - Quartic and other polynomial functions

- Quartic functions of the form $f(x)=a(x-h)^{4}+k$
- As with other graphs it has been seen that changing the value of a simply narrows or broadens the graph without changing its fundamental shape.
- If $a<0$, the graph is inverted.
- The significant feature of the graph of a quartic of this form is the turning point.
- The turning point of $y=x^{4}$ is at the origin $(0,0)$.
- For the graph of a quartic function of the form

$$
\begin{aligned}
& f(x)=a(x-h)^{4}+k, \\
& \text { the turning point is at }(h, k) .
\end{aligned}
$$

When sketching quartic graphs of the form $y=a(x-h)^{4}+k$, first identify the turning point. To add further detail to the graph, find the x-axis and y-axis intercepts.

Examples of possible cubic functions and the shape of their graphs.

$$
f(x)=x^{4}
$$

$f(x)=(x-1)^{2}(x+2)^{2}$

$f(x)=x^{4}-x^{2}$

$f(x)=(x-1)^{3}(x+2)$

Odd and even polynomials

Knowing that a function is even or that it is odd is very helpful when sketching its graph.

- A function f is even if $f(-x)=f(x)$.

This means that the graph is symmetric about the y-axis. That is, the graph appears the same after reflection in the y axis.

- A function f is odd if $f(-x)=-f(x)$.

The graph of an odd function has rotational symmetry with respect to the origin: the graph remains unchanged after rotation of 180° about the origin.

A power function is a function f with rule $f(x)=x^{r}$ where r is a non-zero real number. We will only consider the cases where r is a positive integer or $r \in\{-2,-1,12,13\}$.

Even-degree power functions

The functions with rules $f(x)=x^{2}$ and $f(x)=x^{4}$ are examples of even-degree power functions.

The following are properties of all even-degree power functions:
$f(-x)=(x)$ for all x
$f(0)=0$
As $x \rightarrow \pm \infty, y \rightarrow \infty$.

Odd-degree power functions

The functions with rules $f(x)=x^{3}$ and $f(x)=x^{5}$ are examples of odd-degree power functions.

The following are properties of all odd-degree power functions:
$f(-x)=-f(x)$ for all xx
$f(0)=0$
As $x \rightarrow \infty, y \rightarrow \infty$ and
as $x \rightarrow-\infty, y \rightarrow-\infty$.

Note: if a function has both even and odd powers, it is neither even or odd.

Example:

3. State whether the following polynomials is even or odd.
a) $f(x)=3 x^{4}-x^{2}$
b) $f(x)=8 x^{3}+5 x-9$
4. a) On the same set of axis sketch the graphs of $f(x)=x^{4}$ and $g(x)=9 x^{2}$.
b) Solve the equation $f(x)=g(x)$
c) Solve the inequality $f(x) \leq g(x)$

6 J - Applications of polynomial functions

Textbook examples:

1. A square sheet of tin measures $12 \mathrm{~cm} \times 12 \mathrm{~cm}$.

Four equal squares of edge $x \mathrm{~cm}$ are cut out of the corners and the sides are turned up to form an open rectangular box. Find:
a) the values of x for which the volume is $100 \mathrm{~cm}^{3}$
b) the maximum volume.

Solution

The figure shows how it is possible to form many open rectangular boxes with dimensions
$12-2 x, 12-2 x$ and x.

The volume of the box is

$$
V=x(12-2 x)^{2}, \quad 0 \leq x \leq 6
$$

which is a cubic model.
We complete the solution using a CAS calculator as follows.

- Using the TI-Nspire

Plot the graph of $V=x(12-2 x)^{2}$.
a To find the values of x for which $V=100$, plot the graph of
$V=100$ on the same screen and find the intersection points
using menu > Geometry > Points \& Lines > Intersection Point(s).
b To find the maximum volume, use menu $>$ Trace $>$ Graph
Trace or menu) > Analyze Graph > Maximum.

2. It is found that 250 metres of the path of a stream can be modelled by a cubic function. The cubic passes through the
points (0,0), (100,22), (150,-10), (200,-20).

a) Find the equation of the cubic function.
b) Find the maximum deviation of the graph from the x-axis for $x \in[0,250]$.

- Using the TI-Nspire

- Define $f(x)=a x^{3}+b x^{2}+c x$.
- Solve using the Solve System of Equations command. Enter using the following function notation:

$$
\begin{aligned}
& f(100)=22, \quad f(150)=-10, \\
& f(200)=-20
\end{aligned}
$$

Proceed as shown in the first screen.

- Store these values as a, b and c respectively.
- Use $\mathrm{fMax}($) from menu) > Calculus > Function Maximum to find where f obtains its maximum value.
- Use $\mathbf{f M i n}()$ from menu > Calculus > Function Minimum to find where f obtains its minimum value.
The maximum deviation is 38.21 metres.

Complete Exercise 6J Questions page 255

Chapter 6 Checklist

This is the minimum requirement, do more where you feel it is necessary.

Exercise 6A: The language of polynomials	Q 2, 3, 4, 5a,c,d,h, 6, 7, 8, 9, 10b
Exercise 6B: Division of polynomials	Q 1a,c, 2b, d, 3b,c, 4a, d, 5, 6, 7a,c,e,f
Exercise 6C: Factorisation of polynomials	Q 1-LHS, 2,b,c, 3, 4, 5-RHS, 7a, d, 8b,c,e,g,h, 9,a,c, 10
Exercise 6D: Solving cubic equations	Q 1b,d, 2a,c, 3c, d, 4-RHS, 5-b,c,f, 6a,c,e, 7b, d
Exercise 6E: Cubic functions f(x)=a(x-h) ${ }^{3}+\mathrm{k}$	Q 2, 3, 4
Exercise 6F: Graphs of factorised cubic functions	Q1a,c, 2b,e,f, 3a,c,d, 4, 5
Exercise 6G: Solving cubic inequalities	Q 1, 2
Exercise 6H: Families of cubic polynomials	Q 1, 3, 5, 6, 7a,c, 8 9a,c,g
Exercise 6I: Quartic and other polynomials	Q 1a,d, 2a, d,e,f, 3-RHS, 4-LHS, 5, 6, 8
Exercise 6J: Applications of polynomials	Q- All
Chapter 6 Review Questions	All

