UNIT 1: TOOLS OF GEOMETRY

POINTS, LINES, & PLANES

Geometry is a mathematical system built on accepted facts, basic terms, and definitions.

Point, line, and plane are all **undefined** terms. They are the basic ideas that are used to build all other definitions in geometry.

POINT	A point indicates a and has no Usually represented by a small dot.	Named by a capital letter
LINE	A line extends in dimension. Usually represented by a straight line with two arrowheads to indicate that the line extends without end in two directions. A line contains many points.	Named by two points and ↔.
PLANE	A plane extends in dimensions. It is a flat surface with no thickness. A plane appears to have edges, but in actuality it extends without end in every direction.	Named by a single capital letter or by three of its non-collinear points.

Word or Word Phrase	Definition	Picture or Example
intersection	An intersection is the set of points two or more figures have in common.	Point E is the intersection of the lines.
ray	A ray is part of a line that consists of one and all the points of the line on one side of the endpoint.	
opposite rays		Point Q is the endpoint shared by these two rays.
segment	A segment is part of a line that consists of two endpoints and all points between them.	
collinear	Points that lie on the same line are collinear.	
coplanar		Points G, H, and Z are coplanar.

Ex .1 Using the diagram name the following:

- a. A plane.
- **b.** Two different lines
- c. Three collinear points
- **d.** Three coplanar points
- **e.** The intersection of line *r* and line s
- f. The intersection of line r and plane V

- a. Six segments
- **b.** The rays in the figure
- c. Opposite rays that contain the point C
- d. Another pair of opposite rays

Postulate-		
Postulate 1-1	Through any points there is exactly one line.	B Line ≠ or ÁB ^{>}
Postulate 1-2	If two distinct lines intersect they intersect exactly at one	D B B
Postulate 1-3	If two distinct planes intersect they intersect in exactly one	A D B
Postulate 1-4	Through any noncollinear points there is exactly one plane.	OD E F

EX 3. Use the diagram to name the following:

- **a.** Name the intersection of plane DCG and plane EFG.
- **b.** Name the intersection of plane EFG and plane ADH.
- **c.** Name the intersection of plane ABG and plane CGH.
- **d.** Name two planes that intersect in the line CD.
- e. Name two planes that intersect in the line DH.
- f. Name two planes that intersect in the line FG.

Ex. 4 Use the diagram at the right. How many planes contain each line and point.?

- **a.** \overrightarrow{KL} and G
- **b.** \overrightarrow{HM} and F
- **c.** \overrightarrow{NM} and M

OYO. Assembly Required

The bookshelf shown at the right comes in separate pieces, with assembly instructions. The pieces are listed below. T is the top piece, B is the base, and S_1 and S_2 are shelves. R is the right side, L is the left side, and X is the back piece.

Use the diagrams to answer each question.

- 1. After the bookshelf is assembled, will lines j and o intersect?
- 2. Will lines k and j intersect?

At how many points will the following lines intersect?

- **3.** j and q
- **4**. m and p
- **5**. h and o

Name the intersection of each pair of planes. If they do not intersect, write none.

6. B and \$1

7. B and L

8. B and R

Name two planes that intersect in the given line.

- **9**. k **10.** h **11**. m
- 12. Draw a different bookshelf. Then draw each separate component of the bookshelf. How many planes are in your drawing? Which of these planes intersect?

Measuring Segments

Ruler Postulate	To find the distance between two points take the absolute value of the difference between the coordinates of 2 points.	X1 .	-	B x ₂ AB can be found by x ₂
		**The	e symbol t	for the length of \overline{AB} is AB
Segment addition postulate	If H is between G & I, then GH + HI = GI. If GH + HI = GI, then H is between G& I.	<u>•</u>		H 1

EX 1. Find the length of each segment.

b. QT

c. PT

- a. Find the value of y.
- b. Find GH, HI, and GI.

OYO 1. GH= 3x + 8, HI= 2x + 6, and GI= 10x+9

- a. Find the value of x.
- b. Find GH, HI, and GI.

EX. 3 KL = 3x + 2 and LM = 5x - 10.

a. Find the value of KL.

OYO 2. KL = 8x - 5 and LM = 6x + 3

a. Find the value of KM.

Measuring Angles

	T	
Angle	Formed by two rays that share a common endpoint.	†
	• The rays are the of the angle. $(\overrightarrow{ZY}and\overrightarrow{ZX})$	\r\
	The common endpoint is the of the angle. (point A)	\
	 The angle has sides YZ and XZ and can be named	.\
	,, or	Z
		X

How to classify angles				
Acute	Right	Obtuse	Straight	
An angle whose measure is greater than0 and less than0	An angle whose measure is exactly0	An angle whose measure is greater than0 and less than0	An angle whose measure is exactly	
			←	

Name each shaded angle in three different ways.

EX. 1

OYO 1.

Protractor	To find the measure of an angle take the of the difference between the two
Postulate	real numbers on the protractor that correspond the sides of the angle.
Congruent	Congruent angles are angles that have measure. Use the \cong
Angles	symbol when denoting that two angles are congruent

EX 2. Use th	e diaaram be	low. Find the mea:	sure of each angle. Then classify the angle as acute, right, obtuse, or straight.
	 		\
			1C
ANGLE	ANGLE	ANGLE	80 90 100
	MEASURE	CLASSIFICATION	B 60 101100 90 80 70 120
			100 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∠AFD			
ZAFD			
			[88] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
∠BFD			-587 - 584
			4 · · · · · · · · · · · · · · · · · · ·
.5.5.5			A F ° E
∠BFE			

EX 3. Use a protractor. Measure and classify each angle.	ANGLE MEASURE	angle Classification
•		

Angle Addition
Postulate

EX 5. If $m\angle FHI = 142$, what are $m\angle FHG$ and $m\angle GHI$?

OYO 5. $\angle JKL$ is a right angle. What are $m\angle JKM$ and $m\angle MKL$?

EX 6. $m\angle CGD = 4x + 2$, $m\angle DGE = 3x - 5$, $m\angle EGF = 2x + 10$. Solve for x.

OYO 6. $m\angle CGD = 2x - 2$, $m\angle EGF = 37$, $m\angle CGF = 7x + 2$. Solve for x.

EXPLORING ANGLE PAIRS

ANGLE PAIR RELATIONSHIPS					
NAME	DEFINITION	EXAMPLE	NON-EXAMPLE		
Adjacent angles		1 2	2		
Vertical angles		1) 2	1002		
Linear Pair		1/2	1 2		
NAME	DEFINITION	ADJACENT EXAMPLE	NON-ADJACENT EXAMPLE		

Complementary angles	$m \angle 1 = 60$ and $m \angle 2 = 30$	<i>m</i> ∠1 = 60 and <i>m</i> ∠2 = 30
		1 2
Supplementary angles	$m \angle 1 = 120$ and $m \angle 2 = 60$	$m \angle 1 = 120$ and $m \angle 2 = 60$
angles	1 /2	2

EX 1. Use the diagram at the right.

- a. Name two pairs of angles that form a linear pair.
- b. Name two pairs of angles that are complementary.
- c. Name two pairs of angles that are vertical.
- d. Name two pairs of angles that are supplementary.

- a. $\angle 5$ and $\angle 4$ are supplementary angles.
- b. $\angle 6$ and $\angle 5$ are adjacent angles.
- c. $\angle 1$ and $\angle 2$ are a linear pair.
- d. $\angle 2$ and $\angle 5$ are a vertical angles

OYO 2. In the diagram at the right, $m\angle HKI$ = 48. Find each of the following.

a. m∠HKJ

d. m∠lKJ

b. m∠FKG

e. m∠FKH

c. m∠FKJ

f. m∠GKI

Algebra Find the measure of each angle in the angle pair described.

- **EX 2.** The measure of one angle is 5 times the measure of its complement.
- **OYO 3.** The measure of an angle is 30 less than twice its supplement.

Angle bisector	A line, segment, or ray that an angle in	T	M	
		P	R	

Algebra \overrightarrow{QR} bisects $\angle PQS$. Solve for x and find $m\angle PQS$.

EX 3.
$$m \angle PQR = 3x$$
, $m \angle RQS = 4x - 9$

OYO 4.
$$m \angle PQR = 5x - 4$$
, $m \angle SQR = 3x + 10$

EX 4.
$$m \angle PQS = 4x - 6$$
, $m \angle PQR = x + 11$

OYO 5.
$$m \angle PQS = 16x + 2$$
, $m \angle SQR = 6x + 7$