<u>Unit 1: Trigonometry</u> (10 days) | Day | Expectations | Technology | Specific
Expectations | Homework | |-----|--|--------------------|--------------------------|--| | 1 | solve sides of right angled triangles using
primary trig ratios | | C2.1 | Page 8 #1-3, 5 | | 2 | solve angles of right angled triangles using
primary trig ratios | | C2.1 | Page 15 #1-3, 6 | | 3 | solve problems, including those that arise
from real-world applications (e.g., surveying,
navigation), by determining the measures of
the sides and angles of right triangles using
the primary trigonometric ratios; | | C2.1 | Page 8 #4, 6
Page 16 #4, 5, 7 | | 4 | verify, through investigation using technology
(e.g., dynamic geometry software,
spreadsheet), the sine law and the cosine law
(e.g., compare, using dynamic geometry
software, the ratios a/sin A, b/sin B, and c in
triangle ABC while dragging one c/sin C of
the vertices) | GSP
1.3 Inquire | C2.2 | Page 25 #1, 3, 6 | | 5 | verify, through investigation using technology
(e.g., dynamic geometry software,
spreadsheet), the sine law and the cosine law
(e.g., compare, using dynamic geometry
software, the ratios a/sin A, b/sin B, and c in
triangle ABC while dragging one c/sin C of
the vertices) | GSP
1.5 Inquire | C2.2 | Page 35 #1, 2, 3, 5 | | 6 | calculate measures of sides in acute triangles
by applying the sine and cosine law | | C2.3 | Handout: Choosing the Sine Law or Cosine Law | | 7 | apply the sine and cosine law to real-world
problems and use metric as well as imperial
measurements | | C2.4 | Page 25 #2, 5, 9 | | 8 | apply the sine and cosine law to real-world
problems and use metric as well as imperial
measurements | | C2.4 | Page 37 #8-10
Page 44 #9 | | 9 | Review | | | Page 46-48 | | 10 | create a concept map outlining the key
concepts of solving acute triangles | | | | | 11 | Test # 1 | | | | ## Unit 2: Quadratics Part 1 (14 days) | Day | Key Concepts and Strategies | Technology | Expectations | Homefun | |-----------|---|------------------------|--------------|-----------------------------| | 1 | using tables of values, graph quadratic relations of
real–world applications | | A1.1, A1.2 | Page 103 #4, 6, 7 | | | interpret the significance of the variables used in
graphing quadratic real-world applications | | | | | 2 | using tables of values, graph quadratic relations of
real–world applications | Graphing
Calculator | A1.1, A1.2 | Page 109 #1 - 3 | | | interpret the significance of the variables used in graphing quadratic real-world applications | | | | | 3 | $y = (x + h)^2 + k$ • determine, through investigation using technology, the roles of a , h and k in quadratic relations in the form $y = a(x - h)^2 + k$ and describe these roles in terms of transformations on the graph $y = x^2$ | Graphing
Calculator | A1.1, A1.3 | Page 114 #1-4, 6, 9 | | 4 | $y = ax^2$ • determine, through investigation using technology, the roles of a , h and k in quadratic relations in the form $y = a(x-h)^2 + k$ and describe these roles in terms of transformations on the graph $y = x^2$ | Graphing
Calculator | A1.1, A1.3 | Page 119 #1 – 3, 5 | | 5,6 | • sketch graphs of $y = a(x-h)^2 + k$ by identifying the vertex and the steps needed to generate symmetrical coordinates (apply change in vertical differences : 1, 3, 5, when a=1) | | A1.4 | Page 123 #1, 2, 4 | | 7 | Mid Unit Quiz, Communication Evaluation | | | | | 8 | expand and simplify quadratic expressions in one
variable involving multiplying binomials using a
variety of tools | | A1.5, A1.6 | Page 129 #1, 2, 5, 7 | | 9, 10 | • factor trinomials $ax^2 + bx + c$, where a =1 and a is a common factor | | A1.7 | Page 137 #1 – 5, 7,
8a | | 11 | investigate the connection between the factors and the <i>x</i> -intercepts of a quadratic relation | Graphing
Calculator | A1.8 | Page 141 #1 – 3, 6 | | 12,
13 | Review • Concept Map | | | Page 144 – 145,
Page 146 | | 14 | Test # 2 | | | | ### Unit 4: Statistics (10 days) | Day | Key Concepts and Strategies | Technology | | tations | Homefun | |-----|--|---------------------------|---------|------------------|----------| | Day | They contected and offategrees | recimology | Overall | Specific | Tiomeran | | 1 | One Variable Data | | DMV.01 | DM1.01 | 7.1-7.2 | | | identify situations involving one-variable data | | | DM1.02 | | | | secondary sources & use of various tools to
organize and store data | | | | | | 2 | Sampling Types and Techniques | spreadsheet | DMV.01 | DM1.03 | 7.3, 7.7 | | | population & sample | (MS Excel)
E-STAT | | DM1.04 | Handouts | | | sampling techniques & primary sources | Fathom | | | | | | Four Corners (DM1.04): Describe a specific
example or scenario of a sampling technique
without identifying it. Have students move to
an area in the classroom that is labeled as a
specific sampling technique (random,
stratified, clustered, other – convenience or
voluntary) that they believe represents the
example. Then have the students work in
these groups to help justify their ideas and
present to them to the class. | Fathom | | | | | 3 | Identifying and graphing one-variable data | graphing | DMV.01 | DM1.05 | Handouts | | | various types of one-variable data
represented in graphical forms | calculator | | | | | 4 | Common Distribution Properties and Questionnaire Design | | DMV.01 | DM1.01
DM1.06 | handout | | | distributions of data (normal, bimodal, skewed) | | | | | | 5 | Collecting and Organizing One-Variable Data | | | | | | 6 | measures of central tendency (mean, mode, median) | spreadsheet
(MS Excel) | DMV.01 | DM1.07
DM1.08 | 7.5 | | | | Fathom | | | | | | | E-STAT | | | | | | | graphing calculator | | | | | 7 | measures of spread (range, standard deviation) | | DMV.01 | DM1.07
DM1.08 | handouts | | 8 | Analyzing One-Variable Data | | DMV.01 | DM1.09 | 7.8 | | | solve one variable data collected from
secondary sources | | | DM1.10 | | | 9 | Review | | DMV.01 | | | | 10 | Test #4 | | DMV.01 | | | ### Unit 5: Probability (8 days) | Day | Key Concents and Strategies | Tachnology | Exped | tations | Homefun | |-----|--|---|---------|----------|---| | Day | Key Concepts and Strategies | Technology | Overall | Specific | nometun | | 1 | probability in the media | | DMV.02 | DM2.01 | 8.1, 8.2 | | | various representations of probability | | | DM2.02 | | | | theoretical probability | | | | | | 2-3 | probability experiments, frequency distributions | | DMV.02 | DM2.03 | 8.3 handouts | | | experimental probability of an event | | | | | | 4 | compare theoretical vs. experimental probability | | DMV.02 | DM2.04 | 8.4 | | | after completing an investigation, have
students look at their results using
think/pair/share and compare theoretical &
experimental probability and brainstorm why
they might differ. The pairs will join larger
groups to share their ideas and then present
to the class. | | | | | | 5 | class-generated data and technology-based
simulation models to show the tendency of
experimental to approach theoretical
probability with increase in trials | number
generator on
spreadsheet
(MS Excel) | DMV.02 | DM2.05 | 8.5
handouts | | | | graphing calculator | | | | | 6 | use of probability and statistics in the media
and making connections between them | Internet | DMV.02 | DM2.06 | handouts Websites: www.statcan.ca, http://curriculum.en oreo.on.ca/mathema tics/curriculum_link s.htm#statcan | | 7 | Review | | DMV.01 | | | | | | | DMV.02 | | | | 8 | Test #7 (2 of 2 for Strand 4) | | DMV.01 | | | | | | | DMV.02 | | | ## Unit 3: Exponential Relations (10 days) | Day | Key Concepts and Strategies | Technology | Expectations | Homefun | |-----|---|------------------------|--------------|------------------| | 1 | Exponent Rules | | A2.3 | Page 165 #1-9 | | | determine through investigation the exponent
rules for multiplying and dividing numerical
expressions involving exponents | | A2.2 | | | | • evaluate expressions of positive exponents | | | | | 2 | Zero and Negative Exponents | Graphing | A2.1 | Page 169 #1-7 | | | determine through investigation the meaning
of negative exponents and the zero exponent | Calculator | A2.2 | | | 3 | Putting all the Rules Together | | | Worksheet | | 4 | Graph Exponential Relations | | A2.4 | Page 173 #1-3, 5 | | | • graph simple exponential relations e.g. | | A2.5 | | | | $y = 2^{x}, y = 10^{x}, y = \left(\frac{1}{2}\right)^{x}$ | | | | | | describe these sketches and look for
relationships | | | | | 5 | Applications of Exponential Growth | | A3.2 | Page 180 #1-5 | | | solve problems using given equations of
exponential relations | | A3.4 | | | 6 | Applications of Exponential Decay | | | Page 185 #1-4 | | | solve problems using given equations of
exponential relations | | | | | 7 | Characteristics of Exponential Relations | Graphing | A3.1 | | | | collect data that can be modeled as an
exponential relation | Calculator | A3.2 | | | | describe characteristics of exponential
relations (e.g. show with technology there is
no maximum or minimum value) | | | | | | have students write in a journal to respond to
the question: What does "The population is
modeled by an exponential relation" mean? | | | | | 8 | Comparing Linear, Quadratic and Exponential Relations | Graphing
Calculator | A2.6
A3.3 | Page 193 #1-4, 6 | | | compare exponential, quadratic and linear graphs within the same context | | | | | | pose and solve problems involving
exponential relations arising from a variety of
real-world applications | | | | | | Appendix Investigation: "Half Life of a Radioactive Material" | | | | | 9 | Review
Read 199 | | Page 200 #1 – 21 Practice Test | |----|--------------------|--|--------------------------------| | 10 | Test #3 | | Page 202 | # Unit 7: Personal Finance (14 days) | Day | Voy Concents and Strategies | Tachnology | Expec | tations | Hamafun | |-----|--|--|---------|----------|----------| | Day | Key Concepts and Strategies | Technology | Overall | Specific | Homefun | | 1-2 | Introduction to Simple Interest | graphs, | PFV.01 | PF1.01 | 5.1-5.2 | | | | | | PF1.02 | | | | | | | | | | 2 | Compound Interest From Simple Interest | graphs, (MS | PFV.01 | PF1.02 | 5.1-5.2 | | | difference between compound interest vs. | Excel), | | | | | | simple interest | graphing calculator | | | | | | relationship between compound interest and exponential growth | Calculator | | | | | | *need to mention relationship between compound interest and exponential growth, since resources do not | | | | | | 3 | Finance on a Spreadsheet | spreadsheet | PFV.01 | PF1.03 | 5.3 | | | compound interest & calculation of final
amount A=P(1+i) ⁿ | scientific calculator | | PF1.04 | | | | total interest earned (I=A-P) | | | | | | 4 | Introduction to Compound Interest | scientific | PFV.01 | PF1.03 | 5.6 | | | present value | calculator | | PF1.04 | | | | PV=A(1+i)-n is easier for students to use than | | | | | | | $PV = \frac{A}{(1+i)^n}$. Students will need reminding | | | | | | | of the (+/ -) button on their calculator. | | | | | | 5-6 | Interest Calculations with TVM Solver | graphing | PFV.01 | PF1.05 | 5.7 | | | compound interest and calculation of interest
rate per compounding period (i) or the
number of compounding periods (n) | calculator
(TVM Solver),
spreadsheet | | PF1.06 | Handouts | | | a visual aid poster with TVM Solver steps | (MS Excel) | | | | | | have the students create a group journal on
chart paper of the steps/procedure of how to
use the TVM Solver in solving and calculating
for the interest rate, number of compounding
periods, or final amount (FV). Display the | | | | | | | journals in the classroom for students to refer back to and review. | | | | | |----|---|---|--------|------------------|---| | 7 | Review | | | | | | 8 | Test | | | | | | 9 | Interest and Savings Alternatives savings alternatives investment alternatives allow students to work in groups and orally present examples 1 to 5 in section 4.5 (MHRF11), using PowerPoint. These examples allow students to become familiar with various savings & investment alternatives available at financial institutions and also study risk tolerance. | Internet research Websites: http://www.f undlibrary.c om/ http://www.r oyalbank.co m/ http://www.c ibc.com/ www.csb.gc. ca/eng/defau lt.asp | PFV.02 | PF2.01
PF2.02 | AW11 – 1.7, 2.6
(p.93-96), 7.7 (p.365-367), Section 1.7
(Project, p.46, 48)
MHRF11 – 4.5, p.163
#13-15, p.165 #11 | | 10 | Introduction To Credit Cards Borrowing money costs associated with credit cards and debit cards | Internet research Websites: www.fcac- acfc.gc.ca, www.fcac.gc .ca | PFV.02 | PF2.03
PF2.04 | 6.1-6.2 | | 11 | Comparing Financial Services application of compound interest and the cost of making a purphase an eradit. | | PFV.02 | PF2.05 | 6.3 | | 12 | of making a purchase on credit Vehicles: Costs Associated With Owning costs of insuring a vehicle, insurance rates fixed & variable costs of owning and operating a vehicle create a problem where a graph is given of gasoline consumption vs. speed to determine how much gasoline is used to drive a certain distance at specific speeds | Internet research Websites: http://www.i bc.ca, http://www.l anarkmutual .on.ca/ | PFV.03 | PF3.01 | AW11 – 7.3 (p.346,
p.348 #4)
MHRF11 – 7.3 (p.271
Example 1, p.274 #9,
10), p.270 "Discover" | | 13 | Vehicles: Buying or Leasing costs in buying a new vehicle, leasing, or buying a used vehicle | | PFV.03 | PF3.02 | AW11 – 7.1, 7.2, 7.3,
7.4
MHRF11 - 7.1, 7.2,
7.3, 7.4, p.283 "Case
Study" | | 14 | Vehicles: Buying Old or New | Internet research Websites: | PFV.03 | PF3.01 | 6.5 | | http://www.l
anarkmutual | http://www.i | | |-----------------------------|------------------------|--| | <u>anarkmutual</u> | bc.ca, | | | | | | | | anarkmutuai
.on.ca/ | | ### Unit 8: Geometry (10 days) | Davi | Evenestations | Tachnolomy | Exped | tations | Hamafun | |------|---|------------|---------|----------|--------------------------------| | Day | Expectations | Technology | Overall | Specific | Homefun | | 1 | identify real world applications of 3D | | GTV.01 | GT1.01 | p.56 then | | | geometric shapes | | | | 2.1 #1-4 | | 2 | Imperial and Metric systems of Measurement | | | GT1.03 | | | 3 | Representing 3-D figures using orthographic | GSP | GTV.01 | GT1.02 | 2.3 | | | and isometric methods | CorelDraw | | | Journal? | | | construct 3D objects using materials or drawing software | AutoCAD | | | | | | technology tutorials for using GSP, CorelDraw and AutoCAD to draw 3-D shapes | | | | | | 4 | Representing 3-D figures using scale models | | GTV.01 | GT1.03 | 2.4 # 1-6 | | | use the metric and imperial system to create
nets, plans and patterns from physical models | | | | | | 5 | Representing 3-D figures using a net, pattern or plan | | GTV.01 | GR1.04 | 2.6 # 1-6 | | | create nets, plans and patterns using technology | | | | | | 6 | Creating plans | | | | 2.7 #1, divide #2 | | | solve design problems given specific constraints | | | | among groups of three students | | | Project: Designing My Home Activity 3.1- see MAP4C course profile pgs 23-25 | | | | Journal ? | | | http://www.curriculum.org/csc/library/profile
s/12/mathematics_p.shtml | | | | | | 7 | Creating an individual design problem | | | | | | 8 | Review | | | | p. 90-92 | | | create a Placemat outlining the key concepts
of solving acute triangles | | | | | | 9 | Performance Task | | GTV.02 | | | | 10 | Test # 8 | | GTV.01 | | | | | | | GTV.02 | | |