
VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 1 
 

 

UNIT 1  

UML DIAGRAMS 

 

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– 

Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and 

Deployment Diagrams. 

 

INTRODUCTION TO OOAD 

 

ANALYSIS 

 Analysis is a creative activity or an investigation of the problem and requirements. 

Eg. To develop a Banking system 

Analysis: How the system will be used? 

      Who are the users? 

                 What are its functionalities? 

 

DESIGN  

  Design is to provide a conceptual solution that satisfies the requirements of a given 

problem. 

Eg. For a Book Bank System 

Design: Bank(Bank name, No of  Members, Address) 

              Student(Membership No,Name,Book Name, Amount Paid) 

 

OBJECT ORIENTED ANALYSIS (OOA) 

Object Oriented Analysis is a process of identifying classes that plays an important role in 

achieving system goals and requirements. 

Eg. For a Book Bank System, Classes or Objects identified are Book-details,  

Student-details, Membership-Details. 

 

OBJECT ORIENTED DESIGN (OOD) 

Object Oriented Design is to design the classes identified during analysis phase and to provide 

the relationship that exists between them that satisfies the requirements. 

Eg. Book Bank System 

 Class name Book-Bank (Book-Name, No-of-Members, Address) 

 Student (Name, Membership No, Amount-Paid) 

 

OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD) 

• OOAD is a Software Engineering approach that models an application by a set of 

Software Development Activities. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 2 
 

• OOAD emphasis on identifying, describing and defining the software objects and shows 

how they collaborate with one another to fulfill the requirements by applying the object 

oriented paradigm and visual modeling throughout the development life cycles. 

 

UNIFIED PROCESS (UP) 

 

    The Unified Process has emerged as a popular iterative software development process for 

building object oriented systems. The Unified Process (UP) combines commonly accepted best 

practices, such as an iterative lifecycle and risk-driven development, into a cohesive and well-

documented description. The best-known and extensively documented refinement of the 

Unified Process is the Rational Unified Process (RUP). 

 

Reasons to use UP 

• UP is an iterative process 

• UP practices provide an example structure to talk about how to do, and how to learn 

OOA/D. 

Best Practices and Key Concepts in UP 

• Tackle high-risk and high-value issues in early iterations 

•  Engage users continuously  for evaluation, feedback, and requirements  

• Build a cohesive, core architecture in early iterations  

• Apply use cases  

• Provides visual modeling using UML 

•  Practice change request and configuration management. 

 

UP PHASES 

There are 4 phases in Unified Process, 

1. Inception 

2. Elaboration 

3. Construction 

4. Transition 

INCEPTION 

Inception is the initial stage of the project. Inception is not a requirements phase but it is a 

feasibility phase where complete investigation takes place to support a decision to continue or 

stop .It deals with 

• Approximate vision 

• Business case 

• Scope 

• Vague estimates 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 3 
 

ELABORATION 

In Elaboration  phase the project team is expected to capture a healthy majority of the system 

requirements It deals with 

• Refined vision, 

• Iterative implementation of the core architecture,  

• Resolution of high risks,  

• Identification of most requirements and scope,  

• Realistic estimates. 

 

CONSTRUCTION 

Construction phase encompasses on iterative implementation of the remaining lower risk and 

easier elements, and preparation for deployment. 

 

TRANSITION 

Transition phase focus on releasing the final product to the customers for usability. 

 
Fig: Phases of UP 

 

UP DISCIPLINES 

 

• UP describes work activities such as writing a use case within disciplines a set of 

activities and related artifacts in one subject area within requirement analysis. 

• Artifact-any work such as code, web graphics, database schema, text documents, 

diagrams, models etc. 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 4 
 

Several UP Disciplines 

1. Business Modeling- Domain Model artifact to visualize concepts in the 

application domain. 

2. Requirements- use case model and specification artifacts to capture functional 

and non-functional requirements. 

3. Design- All aspects of design, including overall architecture, objects, databases, 

networking. 

 

  
Fig: Sample UP Disciplines 

 

 

UML DIAGRAMS 

 

UML:  

• Unified Modeling Language(UML) is a standard notation for the modeling of real-world 

objects as s first step in developing an object oriented design methodology.  

• UML is a Visual language for specifying,constructing and documenting the artifacts of a 

system. 

• The Various UML diagrams are as follows, 

i. Use Case Diagram 

ii. Class Diagram 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 5 
 

iii. Interaction Diagram 

• Sequence Diagram 

• Collaboration Diagram or Communication Diagram 

iv. State Diagram 

v. Activity Diagram 

vi. Package Diagram 

vii. Component Diagram 

viii. Deployment Diagram 

 

Three ways to apply UML: 

1. UML as sketch: 

Informal and incomplete diagrams created to explore difficult parts of the problem. 

2. UML as blueprint: 

Detailed design diagram used for better understanding of code. 

3. UML as programming language: 

Complete executable specification of a software system in UML. 

 

Three perspectives to apply UML: 

1. Conceptual perspective: Diagrams describe the things of real world. 

2.  Specification  perspective:  Diagrams  describe  software  abstractions  or  components  with  

specifications and interfaces. 

3.  Implementation  perspective:  Diagrams  describe  software  implementation  in  a  

particular technology. 

 

USE CASE DIAGRAM 

Use case diagrams are used to describe a set of actions (use cases) that some system or systems 

should or can perform in collaboration with one or more external users of the system (actors). 

Each use case should provide some observable and valuable result to the actors or other 

stakeholders of the system. 

Purpose: 

1. Used to gather requirements of a system 

2. Used to get an outside view of a system 

3. Identify external and internal factors influencing the system 

4. Show the interaction among the requirements through actors. 

Uses: 

1. Requirement analysis and high level design 

2. Model the context of a system 

3. Reverse engineering 

4. Forward engineering 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 6 
 

Notations: 

S.No Name Notation Description 

1 Actor 

 

Actors are the entities that interact with the 

system. 

2 System  

 

 

 

 

 

The use cases in the system make up the total 

requirements of the system. 

3 Use Case  

 

Use Case describes the actions performed by the 

user. 

4 Generalization  A generalization relationship is used to represent 

inheritance relationship between model elements 

of same type. 

5 Include 
 

<<include>> 

 

 

An include relationship specifies how the 

behavior for the inclusion use case is inserted 

into the behavior defined for the base use case. 

6 Extend <<extend>> 

 

 

An extend relationship specifies how the 

behavior of the extension use case can be 

inserted into the behavior defined for the base 

use case. 

 

 Sample Example - ATM System 

 

 

System 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 7 
 

CLASS DIAGRAM: 

Class diagram is a static diagram. It represents the static view of an application. The class 

diagram describes the attributes and operations of a class and also the constraints imposed on 

the system. The class diagrams are widely used in the modeling of object oriented systems 

because they are the only UML diagrams which can be mapped directly with object oriented 

languages. 

 

Purpose: 

1. Analysis and design of the static view of an application 

2. Describe responsibilities of a system 

3. Base for Component and Deployment Diagrams 

4. Forward and Reverse Engineering 

Uses: 

1. Describes the static view of the system 

2. Shows the collaboration among the elements of the static view  

3. Describes the functionalities performed by the system. 

4. Construction of software applications using object oriented languages. 

Notations: 

S.No Name Notation Description 

1 Class  

Class Name 

Attribute 

Operation 
 

Class is an entity 

which describes a 

group of objects 

with same 

properties & 

behavior. 

2 Generalization 

 

Generalization 

refers to a 

relationship 

between two 

classes where one 

class is a 

specialized version 

of another. 

3 Association 

 

Association 

represent static 

relationships 

between classes. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 8 
 

4 Aggregation 

 

Aggregation is a 

vague kind of 

association in the 

UML that loosely 

suggests whole-part 

relationships. 

5 Composition 

 

Composition is a 

strong kind of 

whole-part 

aggregation. 

6 Multiplicity 

 
 

                                   1 to      1 

 
1 to * 

 
* to * 

* to 1 

 
1 to 0….2 

 

Multiplicity 

specifies the 

number of 

instances of one 

class that may 

relate to a single 

instance of an 

associated class. 

 

 

Sample Example – ATM System 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 9 
 

INTERACTION DIAGRAM 

Interaction diagrams are used to visualize the interactive behavior of the system. The Interactive 

behaviour is represented in UML by two diagrams namely, 

• Sequence Diagram- It emphasizes on time sequence of messages 

• Collaboration Diagram- It emphasizes on structural organization of the objects that 

send and receive messages. 

Purpose: 

1. To capture dynamic behaviour of a system 

2. To describe the message flow in the system 

3. To describe structural organization of the objects 

4. To describe interaction among objects 

 

I. SEQUENCE DIAGRAM 

Sequence diagram describes an interaction by focusing on the sequence of messages that 

are exchanged, along with their corresponding occurrence specifications on the lifelines. 

 

Uses: 

1. To model flow of control by time sequence  

2. To model flow of control by structural organizations 

3. Forward engineering 

4. Reverse engineering 

 

Notations: 

S.No Name Notation Description 

1 Lifeline 

 

Lifeline represents the duration 

during which an object is alive 

and interacting with other 

objects in the system. 

2 Message 
 

 
 

To send message from one 

object to another. 

3 Object 

 

It represents the existence of 

an object of a particular time. 

4 Self message  

 

 

 

Self message is a message by 

the object to itself. 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 10 
 

Sample Example – ATM System 

 
II. COLLABORATION DIAGRAM 

Collaboration or Communication diagram is also used to model the dynamic behaviour of 

the system. It emphasizes on structural organization of the objects that send and receive 

messages. 

Uses: 

1. Used to show the messages that flow from one object to another within the system and 

the order in which they happen. 

2. Used to track the source of the message from where it has been sent 

3. Used to provide relationships and interactions among software objects 

Notations: 

S.No Name Notation Description 

1 Link  A Link is a connection 

path between two objects 

2 Message                                  1:msg   

  2:msg  

 3:msg 

 

Communication between 

objects takes place 

through messages. A 

sequence number is added 

to show the sequential 

order of messages. 

Object 1 Object 2 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 11 
 

3 Message 

Number 

Sequencing 

 

 msg 1 1:msg 2 

 

 

                                 1.1:msg 3 

 

 

 

Numbers included along 

with the messages 

indicate the order of the 

message in an interaction. 

 

Sample Example – ATM System 

 

 
 

STATE DIAGRAM 

• A State diagram is used to describe the behaviour of the systems. State diagrams require 

that the system described is composed of a finite number of states. 

• State diagrams are used to give an abstract description of the behaviour of a system. This 

behaviour is analysed and represented in series of events, that could occur in one or more 

possible states. 

 

 

Object 1 Object 2 

Object 3 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 12 
 

Purpose: 

1. It describes dynamic behavior of the objects of the system. 

2. It specifies the possible states, what transitions are allowed between states. 

3. It  is  used  to  describe  the  dependence  of  the  functionality  on  the  state  of  the  

system 

4. The state model describes those aspects of objects concerned with time and the 

sequencing of operations events. 

Uses: 

      1. To model the object states of a system. 

      2. To model the reactive system. Reactive system consists of reactive objects. 

      3. To identify the events responsible for state changes. 

      4. Forward and reverse engineering. 

Notations: 

S.No Name Notation Description 

1 Initial State 
 

It shows the starting state of 

object. 

2 Final State 
 

It shows the terminating state 

of object. 

3 

State 

 

 

 

Represents the state of object 

at an instant of time 

4 Transition  A transition is a directed 

relationship between a source 

state and a target state. 

 

Sample Example – ATM System 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 13 
 

ACTIVITY DIAGRAM 

An Activity diagram is basically a flowchart to represent the flow from one activity to another 

activity. Activity diagrams are typically used for business process modeling, for modeling the 

logic captured by a single use case or usage scenario or for modeling the detailed logic of a 

business rule. 

 

Purpose: 

1. Draw the activity flow of a system 

2. Describe the sequence from one activity to another 

3. Describe the parallel, branched and concurrent flow of the system. 

 

How to apply Activity Diagrams? 

1. Activity diagrams show the flow of activities through the system. 

2. Diagrams are read from top to bottom and have branches and forks to describe conditions 

and parallel activities. 

3. A fork is used when multiple activities are occurring at the same time 

4. The branch describes what activities will take place base on set of conditions 

5. All branches at some point are followed by a merge to indicate the end of the conditional 

behavior started by that branch 

6. After the merge all of the parallel activities must be combined by a join before 

transitioning into the final activity state. 

7. Activity diagrams are applied to visualize business workflows and processes and use 

cases. 

 

Uses: 

1. Visualize business processes and workflows. 

2. Model work flow by using activities. 

3. Model business requirements. 

4. High level understanding of the system’s functionalities. 

5. Investigate business requirements at a later stage. 

 

Notations: 

S.No Name Notation Description 

1 Activity  

 

 

Represents  an individual activity of a 

system 

2 Initial State 
 

It shows the starting state of object. 

3 Final State 
 

It shows the terminating state of object. 

4 Transition  Represents flow of data from one 

activity to another. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 14 
 

5 Decision  

 
 

 

 

Decision node is a control node that 

accepts tokens on one or more incoming 

edges and selects outgoing edge from 

two or more outgoing flows. 

6 

Fork 

 

 
 

 

A fork represents a single incoming 

transition and multiple outgoing 

transitions exhibiting parallel behavior 

7 

Join 

 

 
 

 

A join in the activity diagram 

synchronizes the parallel behavior 

started at a fork. 

 

Sample Example – ATM System 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 15 
 

PACKAGE DIAGRAM 

• Package diagrams organize the elements of a system into related groups to minimize 

dependencies among them. 

• UML package diagrams are used to illustrate the logical architecture of a system, the 

layers, subsystems, packages etc. 

Package is a namespace used to group together elements that are semantically related and might 

change together. It is a general purpose mechanism to organize elements into groups to provide 

better structure for system model. 

 

Uses: 

1. Package diagrams can use packages containing use cases to illustrate the functionality of 

a software system. 

2. Package diagrams can use packages that represent the different layers of a software 

system to illustrate the layered architecture of a software system. 

 

Notations: 

S.No Name Notation Description 

1 Package  

 

A package is a group of elements 

with common theme. 

 

COMPONENT DIAGRAM 

Component diagrams are used to model physical aspects of a system (elements like executables, 

libraries, files, documents etc.).Component diagrams are used to visualize the organization and 

relationships among the components in a system. 

 

Purpose: 

1. Visualize the components of a system 

2. Construct executables by using forward and reverse engineering 

3. Describe the organization and relationships of the components. 

Uses: 

1. Model the components of a system 

2. Model database schema 

3. Model executables of an application 

4. Model system’s source code. 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 16 
 

Notations: 

S.No Name Notation Description 

1 Component 

 

A Component is a 

physical building 

block of the system 

 

Sample Example – ATM System 

 
 

DEPLOYMENT DIAGRAM 

• Deployment diagram is defined as assignment of concrete software artifacts (executable 

files) to computational nodes (processing services). 

• Deployment of software elements to the physical architecture and the communication 

(network) between physical elements. 

Purpose: 

1. Visualize the hardware topology of a system. 

2. Describe the hardware components used to deploy software components. 

3. Describe the runtime processing nodes. 

Uses: 

1. To model the hardware topology of a system. 

2. To model the embedded system. 

3. To model the hardware details for a client/server system. 

4. To model the hardware details of a distributed application. 

5.  Forward and Reverse engineering. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 17 
 

Notations: 

 

S.No Name Notation Description 

1 Node  

 

 

 

A single node in a 

deployment diagram 

represents multiple physical 

nodes, such as cluster of 

database servers. 

 

Sample Example – ATM System 

 

 
 

 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 18 
 

UNIT II 

DESIGN PATTERNS 

GRASP:Designing objects with responsibilities-Creator-Information Expert-Low Coupling-High 

Cohesion-Controller. Design Patterns-Creational-Factory Method-Structural-Bridge-Adapter-

Behavioral-Strategy-Observer. 

 

GRASP: General Responsibility Assignment Software Patterns 

• GRASP is a learning aid that helps to understand essential object design and apply design 

reasoning in a methodical, rational and explainable way. 

• GRASP is used as a tool to help master the basics of OOD and understanding 

responsibility assignment in object design. 

• There are nine basic OO design principles in GRASP. They are, 

1. Creator 

2. Information Expert 

3. Low Coupling 

4. High Cohesion 

5. Controller 

6. Polymorphism 

7. Pure Fabrication 

8. Indirection 

9. Protected Variations 

CREATOR 

Creation of objects is one of the most common activities in an object oriented system. Which 

class is responsible for creating objects is a fundamental property of relationship between objects 

of particular classes. 

Problem 

 Who should be responsible for creating a new instance of some class? 

Solution: 

 Assign class B the responsibility to create an instance of a class A if one of these is true, 

➢ B contains or compositely aggregates A 

➢ B records A 

➢ B closely uses A 

➢ B has the initializing data for A that will be passed to A when it is created. 

Thus B is an expert with respect to creating A 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 19 
 

B is a creator of A objects 

If more than one option applies, usually prefer a class B which aggregates or contains A. 

 

Fig: Partial Domain Model 

Since a Sale contains many SalesLineltem objects, the Creator pattern suggests that Sale is a 

good candidate to have the responsibility of creating SalesLineltem instances. 

 

 
Fig: Creating a SalesLineItem 

 

This assignment of responsibilities requires that a makeLineltem method be defined in Sale. The 

method section of class diagram can then summarize the responsibility assignment results, 

concretely realized as methods. 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 20 
 

INFORMATION EXPERT 

 

Problem 

 

What is a general principle of assigning responsibilities to objects? 

Solution: 

 Assign a responsibility to the information expert-the class that has the information 

necessary to fulfill the responsibility. 

 

 
Fig: Partial domain model 

 

❖ What information is needed to determine the grand total? A Sale instance contains these; 

therefore, by the guideline of Information Expert, Sale is a suitable class of object for this 

responsibility. 

❖ The SalesLineltem knows its quantity and its associated ProductSpecification; therefore, 

by Expert, SalesLineltem should determine the subtotal; it is the information expert. 

 

 
Fig: Partial interaction and class diagrams 

 

❖ In terms of an interaction diagram, Sale needs to send get-Subtotal messages to each of 

the SalesLineltems and sum the results. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 21 
 

 
 Fig: Calculating the Sale total 

❖ The Product Specification is an Information Expert on answering its price, therefore 

SalesLineItem send it a message asking for the product price. 

To fulfill the responsibility of knowing and answering the sale’s total, three responsibilities were 

assigned to three design classes of objects as follows.  

 
 

LOW COUPLING 

Coupling is a measure of how strongly one element is connected to, has knowledge of, or relies 

on other elements. An element with low (or weak) coupling is not dependent on too many other 

elements. 

A class with high (or strong) coupling relies on many other classes. Such classes may be 

undesirable; some suffer from the following problems, 

❖ Forced local changes because of changes in related classes. 

❖ Harder to understand in isolation. 

❖ Harder to reuse because its use requires the additional presence of the classes on which it 

is dependent. 

 

Problem 

 How to support low dependency, low change impact, and increased reuse? 

 

Solution: 

 Assign a responsibility so that coupling remains low. 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 22 
 

Eg: Partial Class domain 

 

 
Assume that a Payment instance is to be created and associated with the Sale. What class should 

be responsible for this? Since a Register "records" a Payment in the real-world domain, the 

Creator pattern suggests Register as a candidate for creating the Payment. The Register instance 

could then send an addPayment message to the Sale, passing along the new Payment as a 

parameter. 

 

 
Fig: Register creates Payment 

 

Assignment of responsibilities couples the Register class to knowledge of payment class. 

Alternative solution to create payment and associate it with Sale. 

 
Fig: Sales creates Payment 

 

In object-oriented languages such as C++, Java, and C#, common forms of coupling 

from TypeX to TypeY include: 

✓ TypeX has an attribute (data member or instance variable) that refers to a TypeY 

instance, or TypeY itself. 

✓ A TypeX object calls on services of a TypeY object. 

✓ TypeX has a method that references an instance of TypeY, or TypeY itself, by any 

means. These typically include a parameter or local variable of type TypeY, or the object 

returned from a message being an instance of TypeY. 

✓ TypeX is a direct or indirect subclass of TypeY. 

✓ TypeY is an interface, and TypeX implements that interface. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 23 
 

HIGH COHESION 

 

Cohesion 

Cohesion is a measure of how strongly related and focused the responsibilities of an element 

are. An element with highly related responsibilities, and which does not do a tremendous amount 

of work, has high cohesion. These elements include classes, subsystems, and so on. 

 

Problem 

 How to keep objects focused, understandable, and manageable, and as a side effect, 

support Low Coupling? 

 

Solution: 

 Assign a responsibility so that cohesion remains high. 

A class with low cohesion does many unrelated things, or does too much work. Such classes are 

undesirable; they suffer from the following problems: 

✓ Hard to comprehend 

✓ Hard to reuse 

✓ Hard to maintain 

✓ Delicate; constantly affected by change. 

 

Example 

Assume that a Payment instance is to be created and associate it with the Sale. What class should 

be responsible for this? Since Register records a Payment in the real-world domain, the Creator 

pattern suggests Register as a candidate for creating the Payment. The Register instance could 

then send an addPayrnent message to the Sale, passing along the new Payment as a parameter. 
 

 
Fig: Register creates payment 

This assignment of responsibilities places the responsibility for making a payment in the 

Register. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 24 
 

 
Fig: Sale creates Payment 

CONTROLLER 

A Controller is the first object beyond the UI layer that is responsible for receiving or handling a 

system operation message. 

Problem 

What first object beyond the UI layer receives and coordinates(controls) a system operation? 

Solution: 

Assign the responsibility to a class representing one of the following choices, 

✓ Represents the overall system, “a root object”, a device that the software is running 

within, or a major subsystem. 

✓ Represents a use case scenario within which the system event occurs. 

Example: NextGen POS application 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 25 
 

 

Fig: Assigning responsibilities to controller class 

During design, a controller class is assigned the responsibility for system operation.  

The system Operations identified during system behaviour analysis are assigned to one or more 

controller classes, such as Register, 

 

Fig: Controller Class 

Bloated Controller 

Poorly designed, a controller class will have low cohesion. unfocused and handling 

too many areas of responsibility; this is called a bloated controller. 

 

 Signs of bloating include: 

✓ There is only a single controller class receiving all system events in the system, and there 

are many of them.  



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 26 
 

✓ The controller itself performs many of the tasks necessary to fulfill the system event, 

without delegating the work 

✓ A controller has many attributes, and maintains significant information about the system 

or domain, which should have been distributed to other objects, or duplicates information 

found elsewhere. 

Cures for a bloated controller 

 

✓ Add more controllers-a system does not have to have only one. For example, consider an 

application with many system events, such as an airline reservation system. 

 
✓ Design the controller so that it primarily delegates the fulfillment of each system 

operation responsibility on to other objects. 

 

DESIGN PATTERNS 

➢ Design patterns are termed as reusable solutions for commonly occurring problems in 

software designs. 

➢ Design Patterns are descriptions of communicating objects and classes customized to 

solve a general design problem in a particular context. 

➢ Design Patterns identifies the participating classes and instances, their roles and 

collaborations, and the distribution of responsibilities. 

 

Essential Elements of a pattern: 

1. Pattern Name 

2. Problem 

3. Solution 

4. Consequences 

 

Design Patterns are Categorized into, 

1. Creational Pattern 

▪ Factory Method 

2. Structural Patterns 

▪ Bridge 

▪ Adapter 

3. Behavioral Patterns  

▪ Strategy 

▪ Observer 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 27 
 

CREATIONAL PATTERN 

 

Creational design patterns provide a way to create objects while hiding the creation logic, rather 

than instantiating objects directly using new operator. This gives program more flexibility in 

deciding which objects need to be created for a given use case. 

 

FACTORY METHOD 

 

Name: Factory 

Problem: Who should be responsible for creating objects when there are special considerations, such as 

complex creation logic, a desire to separate the creation responsibilities for better cohesion, and so forth? 

Solution: Create a Pure Fabrication object called a Factory that handles the creation. 

 

Advantages of Factory objects 

 

✓ Separate the responsibility of complex creation into cohesive helper objects. 

✓ Hide potentially complex creation logic. 

✓ Allow introduction of performance-enhancing memory management strategies, such as object 

caching or recycling. 

 

In the below diagram, In ServicesFactory, the logic to decide which class to create is resolved by 

reading in class name from an external source and then dynamically loading the class. This is termed 

as Partial Data Driven Design. 

 

 

Fig: Factory Pattern 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 28 
 

Benefits of Factory Method 

✓ Factory method introduces a separation between the application and a family of classes. It 

provides a simple way of extending the family of products with minor changes in the 

application code 

✓ It provides customization hooks. When the objects are created directly inside the class, it 

is hard to replace them by objects which extend their functionality. If a factory is used 

instead to create a family of objects that customizes objects can easily replace the original 

objects, configuring the factory to create them.  

 

Drawbacks of Factory Method 

✓ The Factory has to be used for a family of objects. If the classes doesn’t extend 

common base class or interface they cannot be used in a factory design template. 

Uses: 

✓ Factory is used to manipulate objects of same type as abstract objects. 

✓ Whenever an application is designed, factory plays a vital role in creating objects. 

 

STRUCTURAL PATTERNS 

Structural patterns are concerned with how classes and objects are composed to form larger 

structures. These patterns describe ways to compose objects to realize new functionality. 

 

BRIDGE PATTERN 

• Bridge is used, when we need to decouple an abstraction from its implementation so that 

the two can vary independently. This type of design pattern comes under structural 

pattern as this pattern decouples implementation class and abstract class by providing a 

bridge structure between them. 

• This pattern involves an interface which acts as a bridge which makes the functionality 

of concrete classes independent from interface implementer classes. Both types of 

classes can be altered structurally without affecting each other. 

• In the following diagram, DrawAPI interface is acting as a bridge implementer and 

concrete classes RedCircle, GreenCircle implementing the DrawAPI interface. Shape is 

an abstract class and will use object of DrawAPI. BridgePatternDemo, a demo class will 

use Shape class to draw different colored circle. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 29 
 

 
 

ADAPTER PATTERN 

Adapter pattern works as a bridge between two incompatible interfaces. It is used to convert the 

programming interface of one class into that of another. 

 

Problem 

 How to resolve incompatible interfaces, or provide a stable interface to similar 

components with different interfaces? 

Solution: 

 Convert the original interface of a component into another interface, through an 

intermediate adapter object. 

 
Fig: Adapter Pattern 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 30 
 

Example: 

 Consider following example in which an audio player device can play mp3 files only and wants 

to use an advanced audio player capable of playing vlc and mp4 files with the use of adapter. 

 
 

→ In this example,we have a MediaPlayer interface and a concrete class AudioPlayer 

implementing the MediaPlayer interface. AudioPlayer can play mp3 format audio files by 

default.  

→ We are having another interface AdvancedMediaPlayer and concrete classes 

implementing the AdvancedMediaPlayer interface. These classes can play vlc and mp4 

format files.  

→ We want to make AudioPlayer to play other formats as well. To attain this, we have 

created an adapter class MediaAdapter which implements the MediaPlayer interface and 

uses AdvancedMediaPlayer objects to play the required format. 

→ AudioPlayer uses the adapter class MediaAdapter passing it to the desired audio type 

without knowing the actual class which can play the desired format. 
AdapterPatternDemo, a demo class will use AudioPlayer class to play various formats. 

 

BEHAVIORAL PATTERNS 

Behavioral Patterns are concerned with communication between objects. These patterns use 

inheritance to distribute behavior between classes. 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 31 
 

STRATEGY PATTERN 

 

Problem 

 How to design for varying, but related, algorithms or policies? How to design for the 

ability to change these algorithms or policies? 

 

Solution: 

 Define each algorithm/policy/strategy in a separate class, with a common interface. 

Example: 

In this example we are going to create a Strategy interface defining an action and concrete 

strategy classes implementing the Strategy interface. Context is a class which uses a Strategy. 

StrategyPatternDemo, a demo class, will use Context and strategy objects to demonstrate 

change in Context behaviour based on strategy it deploys or uses. 

 
Fig: Strategy Pattern 

OBSERVER PATTERN(Publish-Subscribe) 

 

Problem 

Different kinds of subscriber objects are interested in state changes or events of a 

publisher object,and want to react in their own unique way when the publisher generates an 

event. Moreover,the publisher wants to maintain low coupling to the subscribers. What to do? 

 

Solution: 

 Define a “subscriber” or “listener” interface. Subscribers implement this interface. The 

publisher can dynamically register subscribers who are interested in an event and notify them 

when an event occurs. 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 32 
 

  

Fig: The observer SaleFrame1subscribes to the publisher Sale 

The SaleFrame1 object is the observer/subscriber/listener. In the above diagram it subscribes to 

interest in property events of the Sale, which is a publisher of property events. The Sale adds the 

object to its list of PropertyListener subscribers.The Sale does not know about the SaleFrame1 

as a SaleFrame1 object,but only as a PropertyListener object,this lowers the coupling from the 

model up to the view layer. 

 

 

Fig: The Sale publishes a property event to all its subscribers 

In the above diagram,when the sale total changes, it iterates across all its registered subscribers, 

and “publishes an event” by sending the onPropertyEvent message to each. 
 
 
 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 33 
 

UNIT III 
 

CASE STUDY 
 
Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – 
include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and 
description classes – Associations – Attributes – Domain model refinement – Finding conceptual 
class Hierarchies - Aggregation and Composition. 

 

CASE STUDY- The  Next Gen POS system 

 

• Next Generation Point of Sale (POS) system is a computerized application to record sales 

and handle payments. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 34 
 

• It is used in a retail store 

• It includes hardware components such as a computer and bar code scanner and software 

to run the system 

• It can be interfaced with the various service applications such as calculator and inventory 

control. 

• POS is a fault tolerant system i.e if any of remote service fails, other services can be 

utilized 

• POS system supports multiple and varied client-side terminals and interfaces. It includes 

➢ Thin-client web browser terminal 

➢ Regular personal computer with Java swing GUI 

➢ Touch screen input 

➢ Wireless PDAs etc. 

INCEPTION 

Inception is the initial stage of the project. Inception is not a requirements phase but it is a 

feasibility phase where complete investigation takes place to support a decision to continue or 

stop .It deals with 

• Approximate vision 

• Business case 

• Scope 

• Vague estimates 

 

USE CASE MODELING 

Use case model provides an external view of the system or application directed towards the users 

or the actors of the system. Use case model expresses what the business or application will do. 

Use case Diagram 

A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary, 

communication associations between the actors and the use cases and generalization among the 

use cases. 

Actors 

An actor is an entity that interacts with a use case (object, place, or person)  

Eg:Cashier 

Scenario 

A Scenario is a specific sequence of actions and interactions between actors and the system. It is 

also called as use case instance. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 35 
 

Use cases 

➢ A use case is a static description of some way in which a system or a business is used by 

its users or actors. 

➢ Use case is a collection of related success and failure scenarios that describe an actor 

using a system to achieve the goal. 

Use cases and use case model 

➢ Use cases are defined as text documents not as diagrams in unified process(UP). 

➢ Use case model in UP is an act of writing text not drawing diagrams. 

➢ Use case model in UP optionally includes UML use case diagram and it also consists of 

• Vision 

• Glossary 

• Business Rules 

• Supplementary Specification 

Three Kinds of Actors 

1. Primary Actor (to find user goals)- This kind of Actor satisfies the user goals 

through SUD (System Under Discussion) services. Eg.Librarian 

2. Supporting Actor (to provide clear picture of external interfaces and protocols)- 

These actors provide a service information to SUD. Eg. Library assistant or 

computer system providing library details (Book or Transaction Details) 

3. Offstage Actor (to ensure all the goals are identified and satisfied). 

USE CASE FORMATS 

Use case can be written in one of the following formats, 

1. Brief- use case is a one paragraph summary consists of main success scenario. 

2. Casual-use case is an informal paragraph i.e multiple paragraphs with various scenarios. 

3. Fully dressed- Use cases are written in detail with supporting sections such as pre 

conditions and success guarantees. 

RELATING USE CASES 

Use cases can be related to each other using , 

1. Include 

2. Extend 

3. Generalization 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 36 
 

INCLUDE 

Include is a directed relationship between two use cases, implying that the behavior of the 

included use case is inserted into the behavior of including use case. 

 

Fig: Use case include relationship in the Use-Case Model 

EXTEND 

An extend relationship specifies that one use case (extension) extends the behavior of another 

use case (base use case). 

 

Fig: The extend relationship 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 37 
 

GENERALIZATION 

Generalization is the activity of identifying commonality among concepts and defining 

superclass (general concept) and subclass (specialized concept) relationships. 

 

Fig: Generalization-specialization hierarchy 

ELABORATION 

Elaboration is the initial series of iterations during which the team performs the following 

actions, 

1. Investigation 

2. Implements the core architecture 

3. Clarifies most requirements 

4. Tackles high risk issues. 

DOMAIN MODELS 

• A domain model is a visual representation of conceptual classes or real-world objects in a 

domain. They are called conceptual models, domain object models, and analysis 

object models. 

• Domain model can be represented by a set of class diagrams in which no operations 

(methods) are defined. It provides a conceptual view that includes, 

1. Domain objects or conceptual classes 

2. Association between conceptual classes 

3. Attributes of conceptual classes 

 

DOMAIN MODEL AS A VISUAL DICTIONARY 

• Domain model provides a visualization of concepts or words in Business domain such as 

name of the classes, association and attributes using UML notation. 

• The information expressed by the Domain model can also be expresses by a plain text as 

a glossary and hence the name Domain model a visual dictionary. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 38 
 

 
 

Fig: Partial domain model-a visual dictionary 

CONCEPTUAL CLASSES 

A Conceptual class is an idea, thing, or object to understand the real world situation. It is 

considered in terms of its symbol, intension, and extension. 

 

• Symbol-words or images representing a conceptual class. 

 
Fig: A conceptual class has a symbol 

• Intension-the definition of a conceptual class. 

 
Fig: A conceptual class has an intension 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 39 
 

 

• Extension-the set of examples to which the conceptual class applies. 

 

 
Fig: A conceptual class has an extension 

 

GUIDELINES TO CREATE A DOMAIN MODEL 

 

1. Find the conceptual classes 

2. Draw them as classes in a UML class diagram 

3. Add associations and attributes 

 

1) STRATEGIES TO FIND THE CONCEPTUAL CLASS 

 

1. Reuse or modify existing models 

→ They are published, well-crafted domain models and data models for 

many common domains such as inventory, finance, health etc. 

2. Use of category list 

 

S.No Conceptual Class Category Examples 

1 Business Transactions Sale,Payment 

2 Roles of people Cashier,Customer 

3 Catalogs Product catalog, Flight 

catalog 

4 Records of Finance Receipt,ledger 

 

3. Identify noun phrases 

→ Linguistic analysis i.e identify noun and noun phrases in textual 

description of a domain. 

→ Eg. POS domain 

A list of candidate classes for the domain is generated. 

Sale    Cashier 

CashPayment  Customer 

SalesLineItem  Store 

Item   ProductDescription 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 40 
 

Register  ProductCatalog 

Ledger 

 

 
 

Fig: Initial POS domain model 

 

DESCRIPTION CLASS 

A description class contains information that describes something else. 

Eg: ProductDescription- records price, picture and text description of an item. 

 

 
USE OF A DESCRIPTION CLASS 

Description class is used when, 

• There needs to be a description about an item or service,independent of the current 

existence of any examples of those items or services. 

• Deleting instances of things they describe results in a loss of information that needs to be 

maintained. 

• It reduces redundant or duplicated information. 

 
 

Fig: Description Class 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 41 
 

ASSOCIATION 

 

An association is a relationship between classes that indicates some meaningful and interesting 

connection. 

 
Fig: Association 

 

ASSOCIATION NOTATION 

 

• An association is represented as a line between classes with a capitalized association 

name. 

• The end of an association contains a multiplicity expression indicating the numerical 

relationship between instances of the classes. 

 

 
Fig: UML notation for association 

 
 

MULTIPLICITY 

 

Multiplicity defines how many instances of a class A can be associated with one instance of a 

class B. 
 

 
 

Fig: Multiplicity on an association 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 42 
 

 

MULTIPLE ASSOCIATION BETWEEN TWO CLASSES 

 

 
Fig: Multiple associations 

 

ATTRIBUTE 

• An attribute is a logical data value of an object. 

• It is useful to identify those attributes of conceptual classes that are needed to 

satisfy the information requirements of the current scenarios under development. 

 

 
 

Fig: Partial Domain Model 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 43 
 

DOMAIN MODEL REFINEMENT 

 

Refinement of Domain Model is done with, 

• Generalization 

• Specialization 

• Conceptual Class Hierarchies 

 

GENERALIZATION 

 

Generalization is the activity of identifying commonality among concepts and defining 

superclass (general concept) and subclass (specialized concept) relationships. 

 

Fig: Generalization-specialization hierarchy 

GENERALIZATION AND CLASS SETS 

• Conceptual subclasses and superclass set are related in terms of set membership 

• All members of a conceptual subclass set are members of their superclass set. 

 

 
Fig:Venn diagram of set relationships 

 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 44 
 

CONCEPTUAL SUBCLASS DEFINITION CONFORMANCE 

 

 
Fig: Subclass Conformance 

• All Payments have an amount and are associated with sale. 

• All Payment subclasses must conform to having an amount and paying for a sale- 100 % 

rule. 

• 100 % of the conceptual superclass’s definition should be applicable to the subclass. The 

subclass must conform to 100% of the superclass 

✓ Attribute 

✓ Association 

 

CONCEPTUAL SUBCLASS SET CONFORMANCE 

• A  Conceptual subclass should be a member of the set of the superclass 

• Conceptual subclass is a kind of superclass 

• CreditPayment is a kind of Payment- is-a rule 

 

CORRECT CONCEPTUAL SUBCLASS 

A potential subclass should conform to the 

1) 100% rule (Definition Conformance) 

2) Is-a- Rule (Set membership conformance) 

 

When to Define a Conceptual Subclass? 

A conceptual class partition is a division of a conceptual class into disjoint subclasses. 

 

Eg. 

                        Fig: Conceptual class partition 

 

Create a conceptual subclass of a superclass when: 

1. The subclass has additional attributes of interest. 

2. The subclass has additional associations of interest. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 45 
 

3. The subclass concept is operated on, handled, reacted to, or manipulated differently than                                

the superclass or other subclasses, in ways that are of interest. 

4. The subclass concept represents an animate thing (for example, animal, robot) that behaves 

differently than the superclass or other subclasses, in ways that are of interest. 

 

When to Define a Conceptual Superclass? 

When commonality is identified among subclasses, generalization is done. 

Create a conceptual superclass in a generalization relationship to subclasses when: 

1. The potential conceptual subclasses represent variations of a similar concept. 

2. The subclasses will conform to the 100% and Is-a rules. 

3. All subclasses have the same attribute which can be factored out and expressed in the 

superclass. 

4. All subclasses have the same association which can be factored out and related to the 

superclass. 

 

Eg:  

 

 
Fig: Justifying Payment Subclasses 

 

ABSTRACT CONCEPTUAL CLASSES 

If every member of a class C must also be a member of a subclass, then class C is called an abstract 

conceptual class. 

 

Eg: 

 
Fig: Abstract Conceptual Classes 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 46 
 

AGGREGATION 

 Aggregation is a vague king of association in the UML that loosely suggests whole-part 

relationships 

Eg: 

 
 

COMPOSITION 

 Composition is a strong kind of whole-part aggregation and is useful to show in some other 

models. 

Eg:  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 47 
 

UNIT IV 

APPLYING DESIGN PATTERNS 

System Sequence diagrams-Relationship between sequence diagrams and use cases-Logical 

architecture and UML package diagram- Logical architecture refinement- UML class diagrams- 

UML interaction diagrams- Applying GoF design patterns. 

SYSTEM SEQUENCE DIAGRAM (SSD) 

• A system sequence diagram (SSD) is a picture that shows, for a particular scenario of a 

use case, the events that external actors generate, their order, and inter-system events. 

• Sequence diagrams are an easy way of describing the behaviour of a system by viewing 

the interaction between the system and its environment. 

Eg: 

 
                                         Fig: SSD for a Process Sale scenario 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 48 
 

UML Perspective of Sequence Diagram 

• Use Cases describe how external actors interact with the software system. 

• During this interaction an actor generates system events to a system requesting for some 

system operation to handle the event. 

• UML Sequence Diagrams are thereby a notation to depict actor interactions and the 

operations initiated by them. 

Why to draw SSD? 

1. To investigate and define system behaviour before proceeding with a detailed 

design of how a software application will work. 

System Behaviour-description of what a system does rather how it does. Such a 

kind of description is clearly depicted by system sequence diagram. 

2. To know what events are coming into the system,so that software can be designed 

to handle those events and execute a response. 

Three events that affects the software system 

i. External events from actors 

ii. Timer events 

iii. Faults or Exceptions 

RELATIONSHIP BETWEEN SEQUENCE DIAGRAMS AND USE CASES 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 49 
 

SYSTEM EVENTS AND SYSTEM BOUNDARY 

System Event 

A system event is an external event that directly stimulates the software. 

System Boundary 

The system boundary is usually chosen to be the software (and possibly hardware) system itself. 

 
Fig: Defining System Boundary 

 

NAMING SYSTEM EVENTS AND OPERATIONS 

• System Events should be expressed at the abstract level of intention rather than in terms 

of the physical input device 

• Choose event and operation names at an abstract level. 

Eg: 

 
                                              Fig: Naming System Events 

 

Start the name of a system event with a verb such as add, enter, insert, make etc. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 50 
 

LOGICAL ARCHITECTURE AND UML PACKAGE DIAGRAMS 

 

 Logical Architecture 

• Logical Architecture is the organization of software classes into packages, subsystems 

and layers. 

• Logical Architecture does not depict how these elements are deployed across different 

operating system processes or across physical computers in a network. 

 

UML Package Diagram 

• UML Package diagrams are used to represent the logical architecture of a system- the 

layers, subsystems, packages. 

• UML Package diagram is a way of grouping elements such as classes, other packages, 

use cases etc. 

 

LOGICAL ARCHITECTURE REFINEMENT 

 

 
Fig: Partial Logical Layered Architecture in NextGen application 

 

1. The Logical Architecture consists of three layers, 

• UI (User Interface) Layer 

• Domain Layer 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 51 
 

• Technical Services Layer 

2. UI Layer allows the user to manipulate a system and/or system to indicate the effects of 

user’s manipulation. 

Java swing can be used to design UI. 

3. Domain Layer is responsible for representing concepts of the business, information about 

the business situation and business rules. 

4. Technical Services layer are used to depict high level or low level technical services such 

as persistence etc. 

 

 
Fig: Coupling between layers and packages 

 

1. Inter Layer and Inter Package Coupling 

1. Dependency lines are used to communicate coupling between packages or types in 

packages. 

2. Many elements of the packages may share the dependency 

a. From Process Sale Frame to Register 

b. From Process Sale Frame to Sale 

c. From Sale to PosRule Engine Façade 

d. From PosRule Engine to Jess 

e. From Inventory to SOAP etc. 

 

       



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 52 
 

2.  Partial Package Coupling 

 

 
Fig: Partial Package Coupling 

 

3. Inter Layer and Inter Package Interaction Scenarios 

a. Package diagrams are static in nature 

b. To understand the dynamic actions i,e how the objects across the layers connect and 

communicate with each other, interaction diagrams should be drawn 

c. Logical View of the architecture focuses on the collaborations as they cross the layer and 

package boundaries 

d. A set of interaction diagrams illustrate architecturally significant scenarios that depicts 

the large scale or big ideas in design 

 

Applying UML 

 

1. The package of a type can optionally be shown by qualifying the type with UML path 

name expression <package Name> :: <Type Name> 

Eg: Domain :: Sales :: Register 

2. Subsystem stereotype (<<subsystem>>) used in the diagram is a special kind of package 

with behaviour and interfaces. 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 53 
 

 
 

                Fig: An architecturally significant interaction diagram 

 

COLLABORATIONS WITH LAYERS PATTERN 

 

Two design decisions at an architectural level 

1. What are big parts? 

2. How they are connected? 

 

Simple packages versus Subsystems 

1. Packages groups the factory and strategies used 

Packages are used to represent the different layers of source code. 

Eg: Pricing, Payroll, Foundation Packages such as java.util 

2. Subsystems are a type of stereotyped component that represent independent, behavioural 

units in a system. 

Eg: Persistence, POS Rule Engine, Jess 

 

Façade 

• Façade is the most common pattern of access for packages that represent subsystems. 

• Façade is a GoF design pattern 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 54 
 

• Public façade object defines the services for the subsystem and clients collaborate with 

the façade not internal subsystem components. 

 
 

Fig: Subsystem Stereotype 

 

Session Facades and the application layer 

 

 
 

Session façade is the one where each session instance represents a session with one client. 

 

Controller 

• Controller Pattern describes common choices in client side handlers for system operation 

requests emitting form the UI layer. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 55 
 

 
Fig: Controller 

 

System Operations and Layers 

 

The System operations being invoked on the system are requests being generated by an actor via 

the UI layer onto the Application or Domain Layer. 

 

 
 

Fig: System Operations in SSD using Layers 

 

Upward Collaboration with observer 

Observer Pattern is used for upward collaboration i.e when the lower application or domain layer 

needs to communicate with the upward UI Layer via observer pattern. 

1. UI objects in the higher Presentation layer implement an interface such as Property 

Listener or Alarm Listener, and are subscribers or listeners to events coming from objects 

in the lower layers. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 56 
 

2.  The lower layer objects directly sends messages to the upper layer UI objects. Coupling 

takes place only to the objects viewed as things that implement an interface. 

 

 
Fig: Observer Pattern 

 

UML CLASS DIAGRAM: 

Class diagram is a static diagram. It represents the static view of an application. The class 

diagram describes the attributes and operations of a class and also the constraints imposed on 

the system. The class diagrams are widely used in the modeling of object oriented systems 

because they are the only UML diagrams which can be mapped directly with object oriented 

languages. 

 

Purpose: 

5. Analysis and design of the static view of an application 

6. Describe responsibilities of a system 

7. Base for Component and Deployment Diagrams 

8. Forward and Reverse Engineering 

       Uses: 

5. Describes the static view of the system 

6. Shows the collaboration among the elements of the static view  

7. Describes the functionalities performed by the system. 

8. Construction of software applications using object oriented languages. 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 57 
 

Notations: 

S.No Name Notation Description 

1 Class  

Class Name 

Attribute 

Operation 
 

Class is an entity 

which describes a 

group of objects 

with same 

properties & 

behavior. 

2 Generalization 

 

Generalization 

refers to a 

relationship 

between two 

classes where one 

class is a 

specialized version 

of another. 

3 Association 

 

Association 

represent static 

relationships 

between classes. 

4 Aggregation 

 

Aggregation is a 

vague kind of 

association in the 

UML that loosely 

suggests whole-part 

relationships. 

5 Composition 

 

Composition is a 

strong kind of 

whole-part 

aggregation. 

6 Multiplicity 

 
1 to      1 

1 to      * 

*             to      * 

*             to      1 

1 to 0….2 

 

Multiplicity 

specifies the 

number of 

instances of one 

class that may 

relate to a single 

instance of an 

associated class. 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 58 
 

Sample Example – ATM System 

 

 
 

UML INTERACTION DIAGRAM 

Interaction diagrams are used to visualize the interactive behavior of the system. The Interactive 

behaviour is represented in UML by two diagrams namely, 

• Sequence Diagram- It emphasizes on time sequence of messages 

• Collaboration Diagram- It emphasizes on structural organization of the objects that 

send and receive messages. 

Purpose: 

5. To capture dynamic behaviour of a system 

6. To describe the message flow in the system 

7. To describe structural organization of the objects 

8. To describe interaction among objects 

 

III. SEQUENCE DIAGRAM 

Sequence diagram describes an interaction by focusing on the sequence of messages that 

are exchanged, along with their corresponding occurrence specifications on the lifelines. 

Uses: 

5. To model flow of control by time sequence  

6. To model flow of control by structural organizations 

7. Forward engineering 

8. Reverse engineering 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 59 
 

 

Notations: 

S.No Name Notation Description 

1 Lifeline 

 

Lifeline represents the duration 

during which an object is alive 

and interacting with other 

objects in the system. 

2 Message  
 

 

To send message from one 

object to another. 

3 Object 

 

It represents the existence of 

an object of a particular time. 

4 Self message  

 

 

 

Self message is a message by 

the object to itself. 

 

Sample Example – ATM System 

 
 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 60 
 

IV. COLLABORATION DIAGRAM 

Collaboration or Communication diagram is also used to model the dynamic behaviour of 

the system. It emphasizes on structural organization of the objects that send and receive 

messages. 

Uses: 

4. Used to show the messages that flow from one object to another within the system and 

the order in which they happen. 

5. Used to track the source of the message from where it has been sent 

6. Used to provide relationships and interactions among software objects 

Notations: 

S.No Name Notation Description 

1 Link  A Link is a connection 

path between two objects 

2 Message                                  1:msg   

  2:msg  

 3:msg 

 

Communication between 

objects takes place 

through messages. A 

sequence number is added 

to show the sequential 

order of messages. 

3 Message 

Number 

Sequencing 

 

 msg 1 1:msg 2 

 

 

                                 1.1:msg 3 

 

 

 

Numbers included along 

with the messages 

indicate the order of the 

message in an interaction. 

 

Sample Example – ATM System 

 
 

Object 1 Object 2 

Object 1 Object 2 

Object 3 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 61 
 

APPLYING GoF DESIGN PATTERNS 

 

1. ADAPTER (GoF) 

Adapter pattern works as a bridge between two incompatible interfaces. It is used to convert the 

programming interface of one class into that of another. 

 

Problem 

 How to resolve incompatible interfaces, or provide a stable interface to similar 

components with different interfaces? 

Solution: 

 Convert the original interface of a component into another interface, through an 

intermediate adapter object. 

 
Fig: Adapter Pattern 

2. SINGLETON (GoF) 

• Singleton Pattern is a design pattern used to implement the mathematical concept of a 

singleton, by restricting the instantiation of a class to one object. 

• Singleton is a class which only allows a single instance of itself to be created and usually 

give simple access to that instance. 

 

Name: Singleton 

Problem:  Exactly one instance of a class is allowed-it is a singleton, objects need a global      

and single point of access 

Solution: Define a static method of the class that returns the singleton 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 62 
 

 
Fig: Singleton Pattern 

 

3. FACTORY PATTERN 

 

Name: Factory 

Problem: Who should be responsible for creating objects when there are special considerations, 

such as complex creation logic, a desire to separate the creation responsibilities for better 

cohesion, and so forth? 

Solution: Create a Pure Fabrication object called a Factory that handles the creation. 

 

Advantages of Factory objects 

 

✓ Separate the responsibility of complex creation into cohesive helper objects. 

✓ Hide potentially complex creation logic. 

✓ Allow introduction of performance-enhancing memory management strategies, such as 

object caching or recycling. 

 

In the below diagram, In ServicesFactory, the logic to decide which class to create is 

resolved by reading in class name from an external source and then dynamically loading the 

class. This is termed as Partial Data Driven Design. 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 63 
 

 
Fig: Factory Pattern 

 

4. OBSERVER PATTERN 

 

Problem 

Different kinds of subscriber objects are interested in state changes or events of a 

publisher object,and want to react in their own unique way when the publisher generates an 

event. Moreover,the publisher wants to maintain low coupling to the subscribers. What to do? 

 

Solution: 

 Define a “subscriber” or “listener” interface. Subscribers implement this interface. The 

publisher can dynamically register subscribers who are interested in an event and notify them 

when an event occurs. 

  

Fig: The observer SaleFrame1subscribes to the publisher Sale 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 64 
 

The SaleFrame1 object is the observer/subscriber/listener. In the above diagram it subscribes to 

interest in property events of the Sale, which is a publisher of property events. The Sale adds the 

object to its list of PropertyListener subscribers.The Sale does not know about the SaleFrame1 

as a SaleFrame1 object,but only as a PropertyListener object,this lowers the coupling from the 

model up to the view layer. 

 

 

Fig: The Sale publishes a property event to all its subscribers 

In the above diagram, when the sale total changes, it iterates across all its registered subscribers, 

and “publishes an event” by sending the onPropertyEvent message to each. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 65 
 

UNIT –V 

CODING AND TESTING 

Mapping design to code-Testing: Issues in OO Testing-Class Testing-OO Integration Testing-

GUI Testing-OO System Testing. 

MAPPING DESIGN TO CODE 

Implementation in an object-oriented programming language requires writing source code for, 

• Class and Interface Definitions 

• Method Definitions 

Creating Class Definitions from DCD’s (Design Class Diagrams) 

DCD’s depict the class or interface name, superclasses, method signatures, and simple attributes 

of a class. 

 

Defining a Class with Method Signature and Attributes 

 

 
Fig: SalesLineItem in Java 

 

Creating Methods from Interaction Diagrams 

 
An interaction diagram shows the messages that are sent in response to a method invocation. The 

sequence of these messages translates to a series of statements in the method definition. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 66 
 

 
 

Fig: Interaction Diagram depicting enterItem message sent to Register instance 

The enterltem message is sent to a Register instance; therefore, the enterltem method is defined 

in class Register. 

 

public void enterltem ( ItemID itemID, int qty) 

 

Message 1: A getSpecification message is sent to the ProductCatalog to retrieve a 

ProductSpecification. 

 

ProductSpecif ication spec = catalog. getSpecif ication( itemID ); 

 

Message 2: The makeLineltem message is sent to the Sale. 

 

sale .makeLineltemf spec, qty); 

 

Each sequenced message within a method, as shown on the interaction diagram, is mapped to a 

statement in the Java method. 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 67 
 

Fig: Register Class 

 

 
 

Fig: The enterItem method 

Collection Classes in Code 

A collection class is a container which holds a number of items in a data structure and provides 

various operations to manipulate the contents of the collection. 

Collection object examples- List, Map etc. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 68 
 

Java libraries contain collection classes such as ArrayList and Hash Map which implement the 

List and Map interfaces. 

Eg: Using ArrayList,the sale class can define an attribute that maintain an ordered List of 

SalesLineItem instances. 

Exceptions and Error Handling 

Exception handling is a programming language construct to handle the occurrence of exceptions, 

special conditions that change the normal flow of program execution. The point of exception 

handling routines is to ensure that the code can handle error conditions. In terms of UML, 

exceptions can be indicated in the property strings of messages and operation declarations. 

Fig: Adding a collection 

Defining the Sale.makeLineltem Method 

 

Fig: Sale.makeLineItem method 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 69 
 

Order of Implementation 

 

Fig: Possible order of class implementation and testing 

Test Driven or Test First Development (TDD) 

• TDD is a software development process where the developers first writes a failing automated test 

case that defines a desired improvement or new function,then produces code to pass that test and 

finally refactors the new code to acceptable standards. 

• TDD requires developers to create automated unit tests that define code requirements before 

writing the code itself. 

• In OO unit testing TDD style,test code is written before the class to be tested and the developer 

writes unit testing code for nearly all production code. 

Refactoring 

Refactoring is a structured,disciplined method to rewrite or restructure existing code without 

changing its external behaviour,applying small transformation steps combined with re-executing 

tests each step. 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 70 
 

NextGen POS Program Solution 

 

 

TESTING 

• Testing is an activity to check whether the actual results match the expected results and to 

ensure that the system is defect free.  

• Testing also helps to identify errors, gaps or missing requirements in contrary to the 

actual requirements. It can be either done manually or using automated tools. 

ISSUES IN OO TESTING 

Traditional testing methods are not directly applicable to OO programs as they involve OO 

concepts including encapsulation, inheritance, and polymorphism. These concepts lead to issues, 

which are yet to be resolved. Some of these issues are listed below. 

1. Basic unit of unit testing 

 

• The class is natural unit for unit test case design. 

• The methods are meaningless apart from their class. 

• Testing a class instance (an object) can validate a class in isolation. 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 71 
 

• When individually validated classes are used to create more complex classes in an 

application system, the entire subsystem must be tested as whole before it can be 

considered to be validated (integration testing). 

2. Implication of Encapsulation 

• Encapsulation of attributes and methods in class may create obstacles while testing. As 

methods are invoked through the object of corresponding class, testing cannot be 

accomplished without object. 

• In addition, the state of object at the time of invocation of method affects its behavior. 

Hence, testing depends not only on the object but on the state of object also, which is 

very difficult to acquire. 

 

3. Implication of Inheritance. 

 

• Inheritance  introduce problems that are not found in traditional software. 

• Test cases designed for base class are not applicable to derived class always (especially, 

when derived class is used in different context). Thus, most testing methods require some 

kind of adaptation in order to function properly in an OO environment. 

 

4. Implication of Genericity 

 

• Genericity is basically change in underlying structure. 

• We need to apply white box testing techniques that exercise this change. 

 

5. Implications of Polymorphism 

• Each possible binding of polymorphic component requires a separate set of test cases. 

• Many server classes may need to be integrated before a client class can be tested. 

• It is difficult to determine such bindings. 

• It complicates the integration planning and testing. 

 

6. Implications for testing processes 

• Re-examine all testing techniques and processes. 

A 

CLASS TESTING 

• Smallest testable unit is the encapsulated class 

• Test each operation as part of a class hierarchy because its class hierarchy defines its 

context of use. 

 

 

 

 

 

 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 72 
 

Testing OO Code 

 

Approach: 

• Test each method (and constructor) within a class 

• Test the state behavior (attributes) of the class between methods 

 

How is class testing different from conventional testing? 

• Conventional testing focuses on input-process-output, whereas class testing 

focuses on each method, then designing sequences of methods to exercise states 

of a class.But white-box testing can still be applied. 

 

Class Testing Process 

 
Class Test Case Design 

1. Identify each test case uniquely 

- Associate test case explicitly with the class and/or method to be tested 

2. State the purpose of the test 

3. Each test case should contain: 

a. A list of messages and operations that will be exercised as a consequence of the  

test. 

  b. A list of exceptions that may occur as the object is tested. 

c. A list of external conditions for setup (i.e., changes in the environment external 

to the software that must exist in order to properly conduct the test) 

d. Supplementary information that will aid in understanding or implementing the 

test 

• Automated unit testing tools facilitate these requirements. 

 

 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 73 
 

Challenges of Class Testing 

• Encapsulation: 

Difficult to obtain a snapshot of a class without building extra methods 

which display the class state. 

• Inheritance and polymorphism: 

1. Each new context of use (subclass) requires re-testing because a 

method may be implemented differently (polymorphism). 

2. Other unaltered methods within the subclass may use the redefined 

method and need to be tested. 

• White box tests: 

Basis path, condition, data flow and loop tests can all apply to individual 

methods, but don’t test interactions between methods. 

 

Testing Methods Applicable at the Class Level 

 

1. Random testing - requires large numbers data permutations and combinations, and can 

be inefficient 

• Identify operations applicable to a class 

• Define constraints on their use 

• Identify a minimum test sequence 

• Generate a variety of random test sequences. 

2. Partition testing - reduces the number of test cases required to test a class 

• state-based partitioning - tests designed in way so that operations that cause 

state changes are tested separately from those that do not. 

• attribute-based partitioning - for each class attribute, operations are classified 

according to those that use the attribute, those that modify the attribute, and those 

that do not use or modify the attribute. 

• category-based partitioning - operations are categorized according to the 

function they perform: initialization, computation, query, termination. 

3. Fault-based testing 

• best reserved for operations and the class level 

• uses the inheritance structure 

• tester examines the OOA model and hypothesizes a set of possible defects that 

may be encountered in operation calls and message connections and builds 

appropriate test cases 

• misses incorrect specification and errors in subsystem interactions. 

 

OO INTEGRATION TESTING 

Integration testing is the phase in software testing in which individual software modules are 

combined and tested as a group. Integration testing takes as its input modules that have been unit 

tested, groups them in larger aggregates, applies tests defined in an integration test plan to those 

aggregates, and delivers as its output the integrated system ready for system testing. 

 

Kinds of integration testing: 

• big bang testing - An inappropriate approach to integration testing in which you 

take the entire integrated system and test it as a unit 

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Module_(programming)
https://en.wikipedia.org/wiki/Test_plan
https://en.wikipedia.org/wiki/System_testing


VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 74 
 

• incremental testing - A integration testing strategy in which you test subsystems 

in isolation, and then continue testing as you integrate more and more subsystems. 

 

Integration applied three different incremental strategies: 

• Thread-based testing: integrates classes required to respond to one input or event 

• Use-based testing: integrates classes required by one use case 

• Cluster testing: integrates classes required to demonstrate one collaboration 

 

Inter-Class Test Case Design 

• Test case design becomes more complicated as integration of the OO system 

begins – testing of collaboration between classes 

• Multiple class testing 

• for each client class use the list of class operators to generate random test 

sequences that send messages to other server classes 

• for each message generated determine the collaborator class and the 

corresponding server object operator 

• for each server class operator (invoked by a client object message) 

determine the message it transmits 

• for each message, determine the next level of operators that are invoked 

and incorporate them into the test sequence 

• Tests derived from behavior models 

• Use the state transition diagram (STD) as a model that represent the 

dynamic behavior of a class. 

• test cases must cover all states in the STD 

• breadth first traversal of the state model can be used  

• test cases can also be derived to ensure that all behaviors for the class have 

been adequately exercised. 

 

Testing Methods Applicable at Inter-Class Level 

• Cluster Testing 

• Is concerned with integrating and testing clusters of cooperating objects 

• Identify clusters using knowledge of the operation of objects and the system 

features that are implemented by these clusters 

• Approaches to Cluster Testing 

• Use-case or scenario testing 

• Testing is based on a user interactions with the system 

• Has the advantage that it tests system features as experienced by 

users 

• Thread testing – tests the systems response to events as processing threads 

through the system 

• Object interaction testing – tests sequences of object interactions that stop 

when an object operation does not call on services from another object 

• Use Case/Scenario-based Testing 

• Based on 

• use cases 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 75 
 

• corresponding sequence diagrams 

• Identify scenarios from use-cases and supplement these with interaction diagrams 

that show the objects involved in the scenario 

• Concentrates on (functional) requirements 

• Every use case 

• Every fully expanded extension (<<extend>>) combination 

• Every fully expanded uses (<<uses>>) combination 

• Tests normal as well as exceptional behavior 

• A scenario is a path through sequence diagram 

• Many different scenarios may be associated with a sequence diagram 

• using the user tasks described in the use-cases and building the test cases from the 

tasks and their variants 

• uncovers errors that occur when any actor interacts with the OO software 

• concentrates on what the use does, not what the product does. 

 

GUI TESTING 

GUI testing is the process of ensuring proper functionality of the graphical user interface 

(GUI) for a given application and making sure it conforms to its written specifications. In 

addition to functionality, GUI testing evaluates design elements such as layout, colors, fonts, font 

sizes, labels, text boxes, text formatting, captions, buttons, lists, icons, links and content. 

GUI testing processes can be either manual or automatic, and are often performed by 

third -party companies, rather than developers or end users. GUI testing can require a lot of 

programming and is time consuming whether manual or automatic. 

There are two types of interfaces in a computer application. 

• Command Line Interface is where you type text and computer responds to that command. 

• GUI stands for Graphical User Interface where you interact with the computer using 

images rather than text. 

Following are the GUI elements which can be used for interaction between the user and 

application: 

 
In the below example, if we have to do GUI testing we first check that the images should 

be completely visible in different browsers. Also, the links are available, and the button should 

work when clicked. Also, if the user resizes the screen, neither images nor content should shrink 

or crop or overlap. 

 

Need for GUI Testing 

• A user doesn't have any knowledge about XYZ software/Application. It is the UI 

of the Application which decides that a user is going to use the Application further or not.  



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 76 
 

• A normal User first observes the design and looks of the Application/Software 

and how easy to understand the UI. If a user is not comfortable with the Interface or find 

Application complex to understand he/she would never going to use that Application again. 

 

What do you check in GUI Testing? 

 

The following checklist will ensure detailed GUI Testing. 

• Check all the GUI elements for size, position, width, length and acceptance of 

characters or numbers. For instance, you must be able to provide inputs to the 

input fields. 

• Check if you can execute the intended functionality of the application using the 

GUI 

• Check Error Messages are displayed correctly 

• Check for Clear separation of different sections on screen 

• Check Font used in application is readable 

• Check the alignment of the text is proper 

• Check the Color of the font and warning messages  

• Check that the images have good clarity 

• Check that the images are properly aligned 

• Check the positioning of GUI elements for different screen resolution. 

Approach of GUI Testing 

GUI testing can be done through three ways: 

Manual Based Testing 

Under this approach, graphical screens are checked manually by testers in conformance 

with the requirements stated in the business requirements document. 

 
Record and Replay 

GUI testing can be done using automation tools. This is done in 2 parts. During Record , 

test steps are captured by the automation tool. During playback, the recorded test steps are 

executed on the Application Under Test. Example of such tools - QTP . 



VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 77 
 

 
Model Based Testing 

Model-based testing is an application of model-based design for designing and optionally also 

executing artifacts to perform software testing or system testing. Models can be used to represent 

the desired behavior of a system under test (SUT), or to represent testing strategies and a test 

environment. 

 
GUI Testing Test Cases 

GUI Testing basically involves 

1. Testing the size, position, width, height of the elements. 

2. Testing of the error messages that are getting displayed. 

3. Testing the different sections of the screen. 

4. Testing of the font whether it is readable or not. 

5. Testing of the screen in different resolutions with the help of zooming in and 

zooming out like 640 x 480, 600x800, etc. 

6. Testing the alignment of the texts and other elements like icons, buttons, etc. are 

in proper place or not. 

7. Testing the colors of the fonts. 

8. Testing the colors of the error messages, warning messages. 

9. Testing whether the image has good clarity or not. 

10. Testing the alignment of the images. 

11. Testing of the spelling. 

12. The user must not get frustrated while using the system interface. 

https://en.wikipedia.org/wiki/Model-based_design
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/System_under_test


VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 78 
 

13. Testing whether the interface is attractive or not. 

14. Testing of the scrollbars according to the size of the page if any. 

15. Testing of the disabled fields if any. 

16. Testing of the size of the images. 

17. Testing of the headings whether it is properly aligned or not. 

18. Testing of the color of the hyperlink. 

 

Challenges in GUI Testing 

 

The most common problem comes while doing regression testing is that the application GUI 

changes frequently. It is very difficult to test and identify whether it is an issue or enhancement. 

The problem manifests when you don't have any documents regarding GUI changes. 

 

OO SYSTEM TESTING 

System testing of software or hardware is testing conducted on a complete, integrated system to 

evaluate the system's compliance with its specified requirements. System testing falls within the 

scope of black-box testing, and as such, should require no knowledge of the inner design of the 

code or logic.  

Types of System Testing: 

• Functional Testing 

• Structure Testing 

• Acceptance Testing 

• Installation Testing 

Functional Testing 

Goal: Test functionality of system 

• Test cases are designed from the requirements analysis document (better: user 

manual) and centered around requirements and key functions (use cases) 

• The system is treated as black box. 

• Unit test cases can be reused, but new test cases have to be developed as well. 

Structure Testing 

Goal: Cover all paths in the system design 

• Exercise all input and output parameters of each component. 

• Exercise all components and all calls (each component is called at least once and 

every component is called by all possible callers.) 

• Use conditional and iteration testing as in unit testing. 

Performance Testing 

Goal: Try to break the subsystems 

• Test how the system behaves when overloaded. 

• Try unusual orders of execution 

• Call a receive() before send() 

• Check the system’s response to large volumes of data 

• If the system is supposed to handle 1000 items, try it with 1001 items. 

• What is the amount of time spent in different use cases? 

• Are typical cases executed in a timely fashion? 

https://en.wikipedia.org/wiki/Requirements
https://en.wikipedia.org/wiki/Black-box_testing


VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE 

 

YEAR/SEM: III/V                                           CS6502-OOAD Page 79 
 

 

Types of Performance Testing 

• Recovery testing: how well and quickly does the system recover from faults 

• Security testing: verify that protection mechanisms built into the system will protect 

from unauthorized access  

• Stress testing: place abnormal load on the system 

• Volume testing: Test what happens if large amounts of data are handled 

• Configuration testing: Test the various software and hardware configurations 

• Compatibility test: Test backward compatibility with existing systems 

• Timing testing: Evaluate response times and time to perform a function 

• Environmental test - Test tolerances for heat, humidity, motion 

• Quality testing: - Test reliability, maintainability & availability 

• Human factors testing: Test with end users 

Acceptance Testing 

Goal: Demonstrate system is ready for operational use 

• Choice of tests is made by client 

• Many tests can be taken from integration testing 

• Acceptance test is performed by the client, not by the developer. 

Alpha test: 

• Sponsor uses the software at the developer’s site. 

• Software used in a controlled setting, with the developer always ready to fix bugs. 

Beta test: 

• Conducted at sponsor’s site (developer is not present) 

• Software gets a realistic workout in target environment. 

 

 

 

 

 


