VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UNIT 1
UML DIAGRAMS

Introduction to OOAD — Unified Process - UML diagrams — Use Case — Class Diagrams—
Interaction Diagrams — State Diagrams — Activity Diagrams — Package, component and
Deployment Diagrams.

INTRODUCTION TO OOAD

ANALYSIS
Analysis is a creative activity or an investigation of the problem and requirements.
Eg. To develop a Banking system
Analysis: How the system will be used?
Who are the users?
What are its functionalities?

DESIGN
Design is to provide a conceptual solution that satisfies the requirements of a given
problem.
Eg. For a Book Bank System
Design: Bank(Bank name, No of Members, Address)
Student(Membership No,Name,Book Name, Amount Paid)

OBJECT ORIENTED ANALYSIS (OOA)
Object Oriented Analysis is a process of identifying classes that plays an important role in
achieving system goals and requirements.
Eg. For a Book Bank System, Classes or Objects identified are Book-details,
Student-details, Membership-Details.

OBJECT ORIENTED DESIGN (OOD)
Object Oriented Design is to design the classes identified during analysis phase and to provide
the relationship that exists between them that satisfies the requirements.

Eg. Book Bank System

Class name Book-Bank (Book-Name, No-of-Members, Address)

Student (Name, Membership No, Amount-Paid)

OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD)
e OOAD is a Software Engineering approach that models an application by a set of
Software Development Activities.

YEAR/SEM: I11/V CS6502-00AD Page 1

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e OOAD emphasis on identifying, describing and defining the software objects and shows
how they collaborate with one another to fulfill the requirements by applying the object
oriented paradigm and visual modeling throughout the development life cycles.

UNIFIED PROCESS (UP)

The Unified Process has emerged as a popular iterative software development process for
building object oriented systems. The Unified Process (UP) combines commonly accepted best
practices, such as an iterative lifecycle and risk-driven development, into a cohesive and well-
documented description. The best-known and extensively documented refinement of the
Unified Process is the Rational Unified Process (RUP).

Reasons to use UP
e UP isan iterative process
e UP practices provide an example structure to talk about how to do, and how to learn
OOA/D.
Best Practices and Key Concepts in UP
e Tackle high-risk and high-value issues in early iterations
e Engage users continuously for evaluation, feedback, and requirements
e Build a cohesive, core architecture in early iterations
e Apply use cases
e Provides visual modeling using UML
Practice change request and configuration management.

UP PHASES
There are 4 phases in Unified Process,
1. Inception
2. Elaboration
3. Construction
4. Transition
INCEPTION
Inception is the initial stage of the project. Inception is not a requirements phase but it is a
feasibility phase where complete investigation takes place to support a decision to continue or
stop .1t deals with
e Approximate vision
e Business case
e Scope
e Vague estimates

YEAR/SEM: I11/V CS6502-00AD Page 2

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

ELABORATION
In Elaboration phase the project team is expected to capture a healthy majority of the system
requirements It deals with

Refined vision,

Iterative implementation of the core architecture,

Resolution of high risks,

Identification of most requirements and scope,

Realistic estimates.

CONSTRUCTION
Construction phase encompasses on iterative implementation of the remaining lower risk and
easier elements, and preparation for deployment.

TRANSITION
Transition phase focus on releasing the final product to the customers for usability.

development cycle

. _ a)

fteration phase

r’"}'\"‘] A

I's ¥
ine. elaporalion construdiion trangition
milestone release increment final production
release

An iteration end- A stable executable The difference
point when some subset of the final (delta) between the At this point, the
significant decision product. The end of releases of 2 system is released
or evaluation each iteration is a subsequent for production use.
OCCUrs. minor release. iterations.

Fig: Phases of UP

UP DISCIPLINES

UP describes work activities such as writing a use case within disciplines a set of
activities and related artifacts in one subject area within requirement analysis.

Artifact-any work such as code, web graphics, database schema, text documents,

diagrams, models etc.

YEAR/SEM: 111/V CS6502-00AD

Page 3

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Several UP Disciplines
1. Business Modeling- Domain Model artifact to visualize concepts in the
application domain.
2. Requirements- use case model and specification artifacts to capture functional
and non-functional requirements.
3. Design- All aspects of design, including overall architecture, objects, databases,

networking.
A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.
AN
i
Sample |
UP Disciplines
=
| Business Modeling |———===mi o
] o
{f: Requirements |———" m— —
| Design ——T e S ——
" P E— . ———
Implementation —] T
Test T
Deployment S —
Configuration & Change I B S —
Management |——————i_ T
Project Management — I e —— -
—'_._._._,_-—"'_'_._._._‘_‘_‘_‘_‘-‘—\—._
Environment | =T —
Iterations

Fig: Sample UP Disciplines

UML DIAGRAMS

UML:
e Unified Modeling Language(UML) is a standard notation for the modeling of real-world
objects as s first step in developing an object oriented design methodology.
e UML is a Visual language for specifying,constructing and documenting the artifacts of a
system.
e The Various UML diagrams are as follows,
i. Use Case Diagram
ii. Class Diagram

YEAR/SEM: 11I/V CS6502-00AD Page 4

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

iii. Interaction Diagram
e Sequence Diagram
e Collaboration Diagram or Communication Diagram
iv. State Diagram
v. Activity Diagram
vi. Package Diagram
vii. Component Diagram
viii. Deployment Diagram

Three ways to apply UML.:

1. UML as sketch:

Informal and incomplete diagrams created to explore difficult parts of the problem.
2. UML as blueprint:

Detailed design diagram used for better understanding of code.

3. UML as programming language:

Complete executable specification of a software system in UML.

Three perspectives to apply UML.:

1. Conceptual perspective: Diagrams describe the things of real world.

2. Specification perspective: Diagrams describe software abstractions or components with
specifications and interfaces.

3. Implementation perspective: Diagrams describe software implementation in a
particular technology.

USE CASE DIAGRAM
Use case diagrams are used to describe a set of actions (use cases) that some system or systems
should or can perform in collaboration with one or more external users of the system (actors).
Each use case should provide some observable and valuable result to the actors or other
stakeholders of the system.
Purpose:

1. Used to gather requirements of a system

2. Used to get an outside view of a system

3. Identify external and internal factors influencing the system

4. Show the interaction among the requirements through actors.

1. Requirement analysis and high level design
2. Model the context of a system

3. Reverse engineering

4. Forward engineering

YEAR/SEM: 111V CS6502-00AD Page 5

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Notations:
S.No Name Notation Description
1 | Actor Actors are the entities that interact with the
system.
2 | System The use cases in the system make up the total
System requirements of the system.
3 | Use Case Use Case describes the actions performed by the
4 | Generalization | —> | A generalization relationship is used to represent
inheritance relationship between model elements
of same type.
5 | Include <<include>> An include relationship specifies how the
——————————— — | behavior for the inclusion use case is inserted
into the behavior defined for the base use case.
6 | Extend <<extend>> An extend relationship specifies how the
___________ ~ | behavior of the extension use case can be
inserted into the behavior defined for the base
use case.

Sample Example - ATM System

/ystem Startup
==
Nstem Shutdown

Maintenance

Operator

%// Session <<extend>'?,.»©

o

Invalid PIN

<<include>> !
\'s
Customer O

Transaction

R

7

o €O >

Withdrawl Deposit Transfer

X

Bank

€

Inquiry

YEAR/SEM: 111V

CS6502-00AD

Page 6

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

CLASS DIAGRAM:
Class diagram is a static diagram. It represents the static view of an application. The class
diagram describes the attributes and operations of a class and also the constraints imposed on
the system. The class diagrams are widely used in the modeling of object oriented systems
because they are the only UML diagrams which can be mapped directly with object oriented
languages.

Purpose:
Analysis and design of the static view of an application

1.

2.
3.
4.

1. Describes the static view of the system
2. Shows the collaboration among the elements of the static view

Describe responsibilities of a system
Base for Component and Deployment Diagrams

Forward and Reverse Engineering

3. Describes the functionalities performed by the system.

4. Construction of software applications using object oriented languages.
Notations:

S.No

Name

Notation

Description

1

Class

Class Name

Attribute

Operation

Class is an entity
which describes a
group of objects
with same
properties &
behavior.

Generalization

Class1

Class3

Class2

Generalization
refersto a
relationship
between two
classes where one
class is a
specialized version
of another.

Association

Class3

Class4

Association
represent static
relationships
between classes.

YEAR/SEM: 111V

CS6502-00AD

Page 7

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

4 Aggregation Class? Aggregation is a
' ey vague kind of
association in the
UML that loosely
Classd Class2 suggests whole-part
relationships.

5 Composition Classi Class2 Composition is a

- strong kind of
whole-part
aggregation.

6 Multiplicity classl | g g | class2 Multiplicity
specifies the
number of
instances of one

1 to 1 class that may
relate to a single
1 to % instance of an
associated class.
* to *
* to 1
1 to 0....2
Sample Example — ATM System
Maintains
1 rBank ATMinfo
%aggsess : 1. &location
& mangedBy
Omanages() Hos Customer - 5
Omaintains() & Sidentifies ()
Manages 1 4 ‘%:33:285 Stransactions()
Owns 1.+ &dob 3
Sowns() Identifies
.
1.* 0.1
DebitCard giik ATMTrans'action
. % 1 J&owner |4 i
access() % i
A Omodifies()
CurrentAccount SavingsAccount T II 5 I = l = TR
accountNo accountNo I raw uery ransier all on
Qbalam:etN %balancetN &amount &querylD &amount &oldPIN
type &accountNo &newPIN
Qdebit() Qdebit() Qyithdrav... % - :
Scredit() Ocredit() processing() ®pinChange()
YEAR/SEM: 111/V CS6502-00AD Page 8

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

INTERACTION DIAGRAM

Interaction diagrams are used to visualize the interactive behavior of the system. The Interactive

behaviour is represented in UML by two diagrams namely,

e Sequence Diagram- It emphasizes on time sequence of messages
e Collaboration Diagram- It emphasizes on structural organization of the objects that

send and receive messages.

Purpose:

1. To capture dynamic behaviour of a system
. To describe the message flow in the system

2
3. To describe structural organization of the objects
4

. To describe interaction among objects

I. SEQUENCE DIAGRAM

Sequence diagram describes an interaction by focusing on the sequence of messages that
are exchanged, along with their corresponding occurrence specifications on the lifelines.

Uses:

1. To model flow of control by time sequence

2. To model flow of control by structural organizations
3. Forward engineering
4. Reverse engineering
Notations:
S.No Name Notation Description
1 Lifeline [Instancel. Life_zline re_presents 'Fhe d_urat_ion
: during which an object is alive
| . - -
! and interacting with other
i objects in the system.
i
|
2 Message Message To send message from one
object to another.
3 Object [Instancel. It represents the existence of
an object of a particular time.
4 Self message Self message is a message by
the object to itself.

YEAR/SEM: 111V

CS6502-00AD

Page 9

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Sample Example — ATM System

1- Insert ATM Card

A - ATM

2:- Request PIN

3: PIN Entered

|

6- Request Option

7: Option Entered

4:- Verify PIN

8: Request Amount

9: Amount Entered

i

12: Dispense Cash

13: Request to Take Cash

14: Take Cash

]

15: Reqguest Continuation /E]

16: Teminate

17: Print Receipt

COLLABORATION DIAGRAM

(]
L)
L)
e

5: PIN OK
[e e e e T
10: processTransaction()
11: Transaction Successful |—|
FEs nomoncssnononc s ononono s cnnea D

Collaboration or Communication diagram is also used to model the dynamic behaviour of
the system. It emphasizes on structural organization of the objects that send and receive

messages.

1. Used to show the messages that flow from one object to another within the system and
the order in which they happen.

2. Used to track the source of the message from where it has been sent

3. Used to provide relationships and interactions among software objects

Notations:

S.No

Name

Notation

Description

1 Link

A Link is a connection
path between two objects

2 Message

1:msg

Object 1 Z:msg

—
—

Obiject 2

<«

3:msg

Communication between
objects takes place
through messages. A
sequence number is added
to show the sequential
order of messages.

YEAR/SEM: 111V

CS6502-00AD

Page 10

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

3 Message Numbers included along
Numbe_r MIL1 opjectr ™92 | opject 2 _/vith the messages

Sequencing indicate the order of the

message in an interaction.

1.1:msg 3*

Object 3

Sample Example — ATM System

1: Insert ATM Card
3: PIN Entered
7: Option Entered
9: Amount Entered
14: Take Cash
16: Terminate

-

C- — A ATM

Customer =
2: Request PIN
6: Request Option
8: Request Amount
12: Dispense Cash
13: Request to Take Cash
15: Request Continuation

17: Print Receipt A \L

4: Venfy PIN

5 PINOK !
: 10: processTransaction()

11: Transaction Successful

Acc - Account

STATE DIAGRAM
e A State diagram is used to describe the behaviour of the systems. State diagrams require
that the system described is composed of a finite number of states.
e State diagrams are used to give an abstract description of the behaviour of a system. This
behaviour is analysed and represented in series of events, that could occur in one or more
possible states.

YEAR/SEM: I11/V CS6502-00AD Page 11

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Purpose:
1. It describes dynamic behavior of the objects of the system.
2. It specifies the possible states, what transitions are allowed between states.
3. It is used to describe the dependence of the functionality on the state of the
system
4. The state model describes those aspects of objects concerned with time and the
sequencing of operations events.
Uses:
1. To model the object states of a system.
2. To model the reactive system. Reactive system consists of reactive objects.
3. To identify the events responsible for state changes.
4. Forward and reverse engineering.

Notations:
S.No Name Notation Description
1 Initial State . It shows the starting state of
object.
2 Final State @ It shows the terminating state
of object.

3 Represents the state of object
State D at an instant of time

A transition is a directed
relationship between a source
state and a target state.

4 Transition

v

Sample Example — ATM System

Reading Card Not Readable
Card

Card Read Successfully

Re ading '| Cancel Pressed
PIN

PIN Read Successfully

3

Choosing

Transaction

Cancel Pressed

Another Transaction

Transaction Chosen
R

Performing
Transaction

Finished

Ejecting
Card

YEAR/SEM: I11/V CS6502-00AD Page 12

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

ACTIVITY DIAGRAM

An Activity diagram is basically a flowchart to represent the flow from one activity to another
activity. Activity diagrams are typically used for business process modeling, for modeling the
logic captured by a single use case or usage scenario or for modeling the detailed logic of a
business rule.

Purpose:
1. Draw the activity flow of a system
2. Describe the sequence from one activity to another
3. Describe the parallel, branched and concurrent flow of the system.

How to apply Activity Diagrams?
1. Activity diagrams show the flow of activities through the system.
2. Diagrams are read from top to bottom and have branches and forks to describe conditions

and parallel activities.

3. Afork is used when multiple activities are occurring at the same time

The branch describes what activities will take place base on set of conditions

5. All branches at some point are followed by a merge to indicate the end of the conditional
behavior started by that branch

6. After the merge all of the parallel activities must be combined by a join before
transitioning into the final activity state.

7. Activity diagrams are applied to visualize business workflows and processes and use

&

cases.
Uses:
1. Visualize business processes and workflows.
2. Model work flow by using activities.
3. Model business requirements.
4. High level understanding of the system’s functionalities.
5. Investigate business requirements at a later stage.
Notations:
S.No Name Notation Description
1 Activity Represents an individual activity of a
2 Initial State ‘ It shows the starting state of object.
3 Final State @ It shows the terminating state of object.
4 Transition — Represents flow of data from one
activity to another.

YEAR/SEM: I11/V CS6502-00AD Page 13

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

5 Decision Decision node is a control node that
accepts tokens on one or more incoming
edges and selects outgoing edge from
two or more outgoing flows.

A fork represents a single incoming
transition and multiple outgoing

Fork transitions exhibiting parallel behavior

A join in the activity diagram
synchronizes the parallel behavior

] started at a fork.
Join

1T

Sample Example — ATM System

u ATM Machine Bank

< nsert AT >
Card
L
|
Validate ATM
Card
J/ invalid
Eject Card
valid
Take Card
Enter PIN = Authorize PIN >
valid pin 2L invalid pin
Enter Amount = Check)]
Balance
Balance >= Arhount
Take Money Debit Accoun t
from Slot e
<\/L Balance < Amount
Show Balance
Take Card Eject Card =
__—2

YEAR/SEM: I11/V CS6502-00AD Page 14

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

PACKAGE DIAGRAM
e Package diagrams organize the elements of a system into related groups to minimize
dependencies among them.
e UML package diagrams are used to illustrate the logical architecture of a system, the
layers, subsystems, packages etc.
Package is a namespace used to group together elements that are semantically related and might
change together. It is a general purpose mechanism to organize elements into groups to provide
better structure for system model.

Uses:
1. Package diagrams can use packages containing use cases to illustrate the functionality of
a software system.
2. Package diagrams can use packages that represent the different layers of a software
system to illustrate the layered architecture of a software system.

Notations:
S.No Name Notation Description
1 Package A package is a group of elements
with common theme.
Package
name

COMPONENT DIAGRAM

Component diagrams are used to model physical aspects of a system (elements like executables,
libraries, files, documents etc.).Component diagrams are used to visualize the organization and
relationships among the components in a system.

Purpose:
1. Visualize the components of a system
2. Construct executables by using forward and reverse engineering
3. Describe the organization and relationships of the components.
Uses:
1. Model the components of a system
Model database schema
Model executables of an application
Model system’s source code.

P own

YEAR/SEM: I11/V CS6502-00AD Page 15

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Notations:

S.No Name Notation Description

1 Component A Component is a
% physical building

block of the system

Sample Example — ATM System

Cash
Dispenser

A

Card
A e T Validator

. ‘%3 1
Card ATM
Reader MNetwork

DEPLOYMENT DIAGRAM
e Deployment diagram is defined as assignment of concrete software artifacts (executable
files) to computational nodes (processing services).
e Deployment of software elements to the physical architecture and the communication
(network) between physical elements.
Purpose:
1. Visualize the hardware topology of a system.
2. Describe the hardware components used to deploy software components.
3. Describe the runtime processing nodes.
Uses:

1. To model the hardware topology of a system.

2. To model the embedded system.

3. To model the hardware details for a client/server system.
4. To model the hardware details of a distributed application.
5. Forward and Reverse engineering.

YEAR/SEM: I11/V CS6502-00AD Page 16

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Notations:
S.No Name Notation Description
1 Node A single node in a
deployment diagram
represents multiple physical
nodes, such as cluster of
database servers.
Sample Example — ATM System
Cash
DLe(\J/i%:e Dis::nser Display
Receipt
Printer Keypad
ATM Node

Card
Reader

Processor:
200Mhz Pentium

Memory:
64MB

Bank Server

Network
nterface

NewDevi
ce

T1 network
-~ connection

YEAR/SEM: 111V

CS6502-00AD

Page 17

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UNIT 11
DESIGN PATTERNS

GRASP:Designing objects with responsibilities-Creator-Information Expert-Low Coupling-High
Cohesion-Controller. Design Patterns-Creational-Factory Method-Structural-Bridge-Adapter-
Behavioral-Strategy-Observer.

GRASP: General Responsibility Assignment Software Patterns
e GRASP is a learning aid that helps to understand essential object design and apply design
reasoning in a methodical, rational and explainable way.
e GRASP is used as a tool to help master the basics of OOD and understanding
responsibility assignment in object design.
e There are nine basic OO design principles in GRASP. They are,
1. Creator
Information Expert
Low Coupling
High Cohesion
Controller
Polymorphism
Pure Fabrication
Indirection
Protected Variations

© Nk W

CREATOR

Creation of objects is one of the most common activities in an object oriented system. Which
class is responsible for creating objects is a fundamental property of relationship between objects
of particular classes.

Problem
Who should be responsible for creating a new instance of some class?
Solution:
Assign class B the responsibility to create an instance of a class A if one of these is true,

» B contains or compositely aggregates A

B records A

B closely uses A

B has the initializing data for A that will be passed to A when it is created.

YV V VYV

Thus B is an expert with respect to creating A

YEAR/SEM: I11/V CS6502-00AD Page 18

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

B is a creator of A objects

If more than one option applies, usually prefer a class B which aggregates or contains A.

Sale
date
time:
1
Contains
1 1
Product
Sales ® . Specification
Linzltem Described-by
description
quanfity price
itemnlD

Fig: Partial Domain Model

Since a Sale contains many SalesLineltem objects, the Creator pattern suggests that Sale is a
good candidate to have the responsibility of creating SalesLineltem instances.

: Register : Sale

T T
| |
| |
— I
|

|

|

makel ineltemi guantity) -

create{gquantity)

: Saleslineltern

-

Fig: Creating a SalesLineltem

This assignment of responsibilities requires that a makeLineltem method be defined in Sale. The
method section of class diagram can then summarize the responsibility assignment results,
concretely realized as methods.

YEAR/SEM: I11/V CS6502-00AD Page 19

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

INFORMATION EXPERT
Problem

What is a general principle of assigning responsibilities to objects?
Solution:

Assign a responsibility to the information expert-the class that has the information
necessary to fulfill the responsibility.

Sale

dat=
e
1
Contains
1 4
Product
Zales - Specification
Limeltenn Described-by !
description
quamntity price
iteml D

Fig: Partial domain model
% What information is needed to determine the grand total? A Sale instance contains these;
therefore, by the guideline of Information Expert, Sale is a suitable class of object for this
responsibility.
%+ The SalesLineltem knows its quantity and its associated ProductSpecification; therefore,
by Expert, SalesLineltem should determine the subtotal; it is the information expert.

JR—— —_— |
t = getTotal() - gale 1 *: st := getSubtotal() -galeslineltem J
-

Fig: Partial interaction and class diagrams

7

% In terms of an interaction diagram, Sale needs to send get-Subtotal messages to each of
the SalesLineltems and sum the results.

YEAR/SEM: I11/V CS6502-00AD Page 20

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

— — [
t ;= getTotal() - sale 1* st = getSubtotal() -SalesLineltem J

1.1: p ;= getPrice()

Product
Specification

Fig: Calculating the Sale total

¢+ The Product Specification is an Information Expert on answering its price, therefore
SalesLineltem send it a message asking for the product price.

To fulfill the responsibility of knowing and answering the sale’s total, three responsibilities were
assigned to three design classes of objects as follows.

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal
ProductSpecification knows product price

LOW COUPLING

Coupling is a measure of how strongly one element is connected to, has knowledge of, or relies

on other elements. An element with low (or weak) coupling is not dependent on too many other

elements.

A class with high (or strong) coupling relies on many other classes. Such classes may be

undesirable; some suffer from the following problems,

% Forced local changes because of changes in related classes.

Harder to understand in isolation.

%+ Harder to reuse because its use requires the additional presence of the classes on which it
is dependent.

%

K/
L X4

>

Problem
How to support low dependency, low change impact, and increased reuse?

Solution:
Assign a responsibility so that coupling remains low.

YEAR/SEM: I11/V CS6502-00AD Page 21

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Eg: Partial Class domain

— : : !
| Payment ‘ Register ‘ L Sale
1

Assume that a Payment instance is to be created and associated with the Sale. What class should
be responsible for this? Since a Register "records™ a Payment in the real-world domain, the
Creator pattern suggests Register as a candidate for creating the Payment. The Register instance
could then send an addPayment message to the Sale, passing along the new Payment as a
parameter.

—

makePayment() - Register 1: create(y—= p

2: addPayment(p) —

Fig: Register creates Payment

Assignment of responsibilities couples the Register class to knowledge of payment class.
Alternative solution to create payment and associate it with Sale.

— —

makePayment() - Reqister 1: makePayment{) -gaje

1.1. create()

:Payment

Fig: Sales creates Payment

In object-oriented languages such as C++, Java, and C#, common forms of coupling
from TypeX to TypeY include:

v" TypeX has an attribute (data member or instance variable) that refers to a TypeY
instance, or TypeY itself.

v' A TypeX object calls on services of a TypeY object.

v' TypeX has a method that references an instance of TypeY, or TypeY itself, by any
means. These typically include a parameter or local variable of type TypeY, or the object
returned from a message being an instance of TypeY.

v' TypeX is a direct or indirect subclass of TypeY.

v' TypeY is an interface, and TypeX implements that interface.

YEAR/SEM: I11/V CS6502-00AD Page 22

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

HIGH COHESION

Cohesion

Cohesion is a measure of how strongly related and focused the responsibilities of an element

are. An element with highly related responsibilities, and which does not do a tremendous amount
of work, has high cohesion. These elements include classes, subsystems, and so on.

Problem
How to keep objects focused, understandable, and manageable, and as a side effect,
support Low Coupling?

Solution:
Assign a responsibility so that cohesion remains high.

A class with low cohesion does many unrelated things, or does too much work. Such classes are
undesirable; they suffer from the following problems:

v Hard to comprehend

v Hard to reuse

v Hard to maintain

v’ Delicate; constantly affected by change.

Example

Assume that a Payment instance is to be created and associate it with the Sale. What class should
be responsible for this? Since Register records a Payment in the real-world domain, the Creator
pattern suggests Register as a candidate for creating the Payment. The Register instance could
then send an addPayrnent message to the Sale, passing along the new Payment as a parameter.

. Reqgister - Sale

[
I
makePaymeni() .__l_

create()

- p - Payment

addPayment{ p)

;

Fig: Register creates payment
This assignment of responsibilities places the responsibility for making a payment in the
Register.

YEAR/SEM: I11/V CS6502-00AD Page 23

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

. Register C Sale

T
|
makePayment({) _ !

T
I
I
I
makePayment{) _ |
L create() ., - Payment
I
I
|
I
I
I
I
I
|
I

Fig: Sale creates Payment
CONTROLLER

A Controller is the first object beyond the Ul layer that is responsible for receiving or handling a
system operation message.

Problem

What first object beyond the Ul layer receives and coordinates(controls) a system operation?
Solution:

Assign the responsibility to a class representing one of the following choices,

v Represents the overall system, “a root object”, a device that the software is running
within, or a major subsystem.
v Represents a use case scenario within which the system event occurs.

Example: NextGen POS application

System

endSale()
enteritem)
makeMNewSsale()
makePayment()

YEAR/SEM: I11/V CS6502-00AD Page 24

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

=% 7 he FOD Stoee [= O] x]
tem D |
presses button
Emter leam A soon ...
. Cashier
¢ actionPerformed(actionEvent)
Interface SaleJFrame
Layer
system event message ﬁ
1 | enteritem(itemiD, qty) ©
. Which class of object should be responsible for receiving this
Domain mon system event message?
Layer - o

’ . It is sometimes called the controller or coordinator. It does not
J' J' * normally do the work, but delegates it to other objects.

The controller is a kKind of "facade” onto the domain layer from
the interface layer.

Fig: Assigning responsibilities to controller class
During design, a controller class is assigned the responsibility for system operation.

The system Operations identified during system behaviour analysis are assigned to one or more
controller classes, such as Register,

Systemn Reqister
endSale()
enteritern() - »
makeMewSale() endSale()
makePayment() enterltermn()
makeMNewSalel)
makeMNewReturn() makePayment()
enterReturnitem()
. makeMewRetumi)
enterRetumitem()

Fig: Controller Class

Bloated Controller

Poorly designed, a controller class will have low cohesion. unfocused and handling
too many areas of responsibility; this is called a bloated controller.

Signs of bloating include:
v There is only a single controller class receiving all system events in the system, and there
are many of them.

YEAR/SEM: I11/V CS6502-00AD Page 25

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

v The controller itself performs many of the tasks necessary to fulfill the system event,
without delegating the work
v A controller has many attributes, and maintains significant information about the system
or domain, which should have been distributed to other objects, or duplicates information
found elsewnhere.
Cures for a bloated controller

v Add more controllers-a system does not have to have only one. For example, consider an
application with many system events, such as an airline reservation system.

Use-case controllers

MakeReservationHandler

ManageSchedulesHandler

ManageFaresHandler

v Design the controller so that it primarily delegates the fulfillment of each system
operation responsibility on to other objects.

DESIGN PATTERNS

> Design patterns are termed as reusable solutions for commonly occurring problems in
software designs.

> Design Patterns are descriptions of communicating objects and classes customized to
solve a general design problem in a particular context.

> Design Patterns identifies the participating classes and instances, their roles and
collaborations, and the distribution of responsibilities.

Essential Elements of a pattern:
1. Pattern Name
2. Problem
3. Solution
4. Consequences

Design Patterns are Categorized into,
1. Creational Pattern
= Factory Method
2. Structural Patterns

= Bridge

= Adapter
3. Behavioral Patterns

= Strategy

= Observer

YEAR/SEM: I11/V CS6502-00AD Page 26

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

CREATIONAL PATTERN

Creational design patterns provide a way to create objects while hiding the creation logic, rather
than instantiating objects directly using new operator. This gives program more flexibility in
deciding which objects need to be created for a given use case.

FACTORY METHOD

Name: Factory

Problem: Who should be responsible for creating objects when there are special considerations, such as
complex creation logic, a desire to separate the creation responsibilities for better cohesion, and so forth?
Solution: Create a Pure Fabrication object called a Factory that handles the creation.

Advantages of Factory objects

v’ Separate the responsibility of complex creation into cohesive helper objects.

v" Hide potentially complex creation logic.

v"Allow introduction of performance-enhancing memory management strategies, such as object
caching or recycling.

In the below diagram, In ServicesFactory, the logic to decide which class to create is resolved by
reading in class name from an external source and then dynamically loading the class. This is termed
as Partial Data Driven Design.

note that the factory methods

SenvicesFacto
v return objects typed to an

accountingAdapter © |Accountingfdapter .+ interface rather than a class, so
inventoryAdapter - linventory Adapter Lt that the factory can retum any
taxCalculatorAdapter © ITaxCalculatorAdapter implementation of the interface

getAccountingAdapter() - IAccountingﬁdaptem"

getinventory Adapter() - linventoryAdapter

getTaxCalculatorAdapter() - ITaxCalculatorAdapter
[SH

Ly

if { taxCalculatorAdapter == null)

Il a reflective or data-driven approach to finding the right class: read it from an
Il extemal property

String classMame = System_getProperty("taxcalculator. class name")
taxCalculatorAdapter = (I TaxCalculatorAdapter) Class.fortdlame] className).newlnstance();

retum taxCalculatorAdapier,

}

Fig: Factory Pattern

YEAR/SEM: I11/V CS6502-00AD Page 27

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Benefits of Factory Method

v Factory method introduces a separation between the application and a family of classes. It
provides a simple way of extending the family of products with minor changes in the
application code

v' It provides customization hooks. When the objects are created directly inside the class, it
is hard to replace them by objects which extend their functionality. If a factory is used
instead to create a family of objects that customizes objects can easily replace the original
objects, configuring the factory to create them.

Drawbacks of Factory Method
v' The Factory has to be used for a family of objects. If the classes doesn’t extend
common base class or interface they cannot be used in a factory design template.
Uses:
v’ Factory is used to manipulate objects of same type as abstract objects.
v" Whenever an application is designed, factory plays a vital role in creating objects.

STRUCTURAL PATTERNS
Structural patterns are concerned with how classes and objects are composed to form larger
structures. These patterns describe ways to compose objects to realize new functionality.

BRIDGE PATTERN
e Bridge is used, when we need to decouple an abstraction from its implementation so that
the two can vary independently. This type of design pattern comes under structural
pattern as this pattern decouples implementation class and abstract class by providing a
bridge structure between them.

e This pattern involves an interface which acts as a bridge which makes the functionality
of concrete classes independent from interface implementer classes. Both types of
classes can be altered structurally without affecting each other.

e In the following diagram, DrawAPI interface is acting as a bridge implementer and
concrete classes RedCircle, GreenCircle implementing the DrawAPI interface. Shape is
an abstract class and will use object of DrawAPI. BridgePatternDemo, a demo class will
use Shape class to draw different colored circle.

YEAR/SEM: I11/V CS6502-00AD Page 28

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

<<Interface>>

Shape DrawAPI

uses +drawAPI : DrawAP| uses
—>

+Shape() : void

+draw() : String +drawCircle() : void

extends T
implement

BridgePatternDemo Circle RedCircle GreenCircle

-X, y, radius :int

+main() : void +Circle() : void
+draw() : String

uses A uses 4

+drawCircle() : void +drawCircle() : void

ADAPTER PATTERN

Adapter pattern works as a bridge between two incompatible interfaces. It is used to convert the
programming interface of one class into that of another.

Problem

How to resolve incompatible interfaces, or provide a stable interface to similar
components with different interfaces?
Solution:

Convert the original interface of a component into another interface, through an
intermediate adapter object.

implements a particular interface

UML motation to indicate something 7

._D

:Begister - SAPAcountingAdapter | Accountin ter
makePayment | I
| COAF oree
I HTTP
stSale sale
HEX aSystems
—_—
: AR
i [.o

o.,,

the Adapter adapts to
interfaces in other

Ccomponents

Fig: Adapter Pattern

YEAR/SEM: I11/V CS6502-00AD Page 29

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Example:

Consider following example in which an audio player device can play mp3 files only and wants

to use an advanced audio player capable of playing vic and mp4 files with the use of adapter.
<<Interface>>

MediaPlayer AdapterPattern
Demo
+play() : void +main() : void
<<Interface>>
AdvancedMediaPlayer impaments SRpiements uses
+playVic() : void
+playMp4():void
MediaAdapter AudioPlayer
-advancedMedia
» Dlayz:vi i -mediaAdapter :
vancedMedia
uses uses) Mediaadapter
VicPlayer Mp4Player i plaver €
+MediaAdapter{): +play() : void
void
+playVviLcy{) : void +playviLgy) : veid +play|) : void
+playMpd() : void +playMpd() : void

- In this example,we have a MediaPlayer interface and a concrete class AudioPlayer
implementing the MediaPlayer interface. AudioPlayer can play mp3 format audio files by
default.

-> We are having another interface AdvancedMediaPlayer and concrete classes
implementing the AdvancedMediaPlayer interface. These classes can play vic and mp4
format files.

- We want to make AudioPlayer to play other formats as well. To attain this, we have
created an adapter class MediaAdapter which implements the MediaPlayer interface and
uses AdvancedMediaPlayer objects to play the required format.

- AudioPlayer uses the adapter class MediaAdapter passing it to the desired audio type
without knowing the actual class which can play the desired format.
AdapterPatternDemo, a demo class will use AudioPlayer class to play various formats.

BEHAVIORAL PATTERNS
Behavioral Patterns are concerned with communication between objects. These patterns use

inheritance to distribute behavior between classes.

YEAR/SEM: 111/V CS6502-00AD Page 30

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

STRATEGY PATTERN

Problem

How to design for varying, but related, algorithms or policies? How to design for the
ability to change these algorithms or policies?

Solution:

Define each algorithm/policy/strategy in a separate class, with a common interface.
Example:

In this example we are going to create a Strategy interface defining an action and concrete
strategy classes implementing the Strategy interface. Context is a class which uses a Strategy.

StrategyPatternDemo, a demo class, will use Contextand strategy objects to demonstrate
change in Context behaviour based on strategy it deploys or uses.

StrategyPatter

Strategy <<Interface>> nDemo

+main() : void
+doOperation() : int

implements implements asks
v
implements
ki A Context
OpearationAdd OperationSubstract OperationMultiply
= -strategy :
Strategy
uses
+executeStrate
+doOperation() : int +doOperation() : int +doOperation():int gy() : int

Fig: Strategy Pattern
OBSERVER PATTERN(Publish-Subscribe)

Problem

Different kinds of subscriber objects are interested in state changes or events of a
publisher object,and want to react in their own unique way when the publisher generates an
event. Moreover,the publisher wants to maintain low coupling to the subscribers. What to do?

Solution:

Define a “subscriber” or “listener” interface. Subscribers implement this interface. The
publisher can dynamically register subscribers who are interested in an event and notify them
when an event occurs.

YEAR/SEM: I11/V CS6502-00AD Page 31

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

sf : SaleFrame1 ¥ el propertyListeners |
| : List<PropertyListener>
|
|
inialize(s : Sale) {

addPropertyListener(sf ‘ ki

add(sf) R

Fig: The observer SaleFramelsubscribes to the publisher Sale

The SaleFramel object is the observer/subscriber/listener. In the above diagram it subscribes to
interest in property events of the Sale, which is a publisher of property events. The Sale adds the
object to its list of PropertyListener subscribers.The Sale does not know about the SaleFramel
as a SaleFramel object,but only as a PropertyListener object,this lowers the coupling from the
model up to the view layer.

s ‘Sale propertylisteners| i | :
PropertyListener

setTotal(total) >
publishPropertyEvent
("sale.lotal", total)

loop onPropertyEvent(s, "sale.total", total)

ARETAT AR X3, AR B heas

Fig: The Sale publishes a property event to all its subscribers

In the above diagram,when the sale total changes, it iterates across all its registered subscribers,
and “publishes an event” by sending the onPropertyEvent message to each.

YEAR/SEM: I11/V CS6502-00AD Page 32

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UNIT 111
CASE STUDY

Case study — the Next Gen POS system, Inception -Use case Modeling - Relating Use cases —
include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and
description classes — Associations — Attributes — Domain model refinement — Finding conceptual
class Hierarchies - Aggregation and Composition.

CASE STUDY- The Next Gen POS system

Sampla UP Artifact Ralationships
Domain Modal

Busincss Sae 1 1.7 _"SE'EE‘
Madaling . Lineliam

qlaanlity

shjects, attributos i
BEE0CISnNS

_{"- —— —— —— —— E—— — S— MFE.H"H'&- WiSIOn
s i-Caza Madal aclorg, fealures

' 9

Brocess Sale

P i

fo US89, Gustenner |
AITivES
NATEE | 5 Camnie

ks Pow |
sale

3 lerma, attribubes

walication Glossary
.

Raguirs-
ments Use Gase Diagram Use Case Text
Fyalam

| avans

| Oarafion + Enahlar

enieriiem]) Supplementary

spatem Spacification

I
|
Poeleondlions: ~ GPSEMETE |
| - I arteriten
L I
!
]

{hd, quartityd o non-funclional regs,
pually Atribaibes
Cperaton Conracs Syslem Sequance Eiag'aﬁsﬂ/

requiremenls

Design Mogal
Hagister s : FroouciGatalog > Sala

* :
 enteritem :
Dresign . (it D, cpuardity) »

spec = getProductSpec| kemiD)
eddLinellem{ spoc. quandity | i

e Next Generation Point of Sale (POS) system is a computerized application to record sales
and handle payments.

YEAR/SEM: 111/V CS6502-00AD Page 33

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e Itisused in a retail store
e It includes hardware components such as a computer and bar code scanner and software
to run the system
e |t can be interfaced with the various service applications such as calculator and inventory
control.
e POS is a fault tolerant system i.e if any of remote service fails, other services can be
utilized
e POS system supports multiple and varied client-side terminals and interfaces. It includes
» Thin-client web browser terminal
> Regular personal computer with Java swing GUI
» Touch screen input
> Wireless PDAs etc.

INCEPTION
Inception is the initial stage of the project. Inception is not a requirements phase but it is a
feasibility phase where complete investigation takes place to support a decision to continue or
stop .It deals with

e Approximate vision

e Business case

e Scope

e Vague estimates

USE CASE MODELING

Use case model provides an external view of the system or application directed towards the users
or the actors of the system. Use case model expresses what the business or application will do.

Use case Diagram

A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary,
communication associations between the actors and the use cases and generalization among the
use cases.

Actors

An actor is an entity that interacts with a use case (object, place, or person)
Eg:Cashier

Scenario

A Scenario is a specific sequence of actions and interactions between actors and the system. It is
also called as use case instance.

YEAR/SEM: I11/V CS6502-00AD Page 34

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Use cases

> A use case is a static description of some way in which a system or a business is used by
its users or actors.

» Use case is a collection of related success and failure scenarios that describe an actor
using a system to achieve the goal.

Use cases and use case model

» Use cases are defined as text documents not as diagrams in unified process(UP).

» Use case model in UP is an act of writing text not drawing diagrams.

» Use case model in UP optionally includes UML use case diagram and it also consists of
e Vision

Glossary

Business Rules

Supplementary Specification

Three Kinds of Actors

1. Primary Actor (to find user goals)- This kind of Actor satisfies the user goals
through SUD (System Under Discussion) services. Eg.Librarian

2. Supporting Actor (to provide clear picture of external interfaces and protocols)-
These actors provide a service information to SUD. Eg. Library assistant or
computer system providing library details (Book or Transaction Details)

3. Offstage Actor (to ensure all the goals are identified and satisfied).

USE CASE FORMATS
Use case can be written in one of the following formats,

1. Brief- use case is a one paragraph summary consists of main success scenario.

2. Casual-use case is an informal paragraph i.e multiple paragraphs with various scenarios.

3. Fully dressed- Use cases are written in detail with supporting sections such as pre
conditions and success guarantees.

RELATING USE CASES
Use cases can be related to each other using ,

1. Include
2. Extend
3. Generalization

YEAR/SEM: 111/V CS6502-00AD Page 35

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

INCLUDE

Include is a directed relationship between two use cases, implying that the behavior of the
included use case is inserted into the behavior of including use case.

NextGen POS
% /f;rauess SaD
Cashier : 7|\)
aincludes f"' ™, wincludes aactors
/') J{_ S Ancounting
aincludes System
ay ~ N y
X Fande © Check Handle Cash ¢ Handle Credi
Z'aymen Z'aymen \M_ Payment
Customer 7 F—" adctors
)Fnlncludmf Credit
4|n|:IudE| \‘ aincludes Autharization
UML notation: o~ Service

the base use
ase points to

the included use
case

Gmcess Ren:@
Gndle Re:urn:;) o
— @nage Lsers> o
—_—_ >

Fig: Use case include relationship in the Use-Case Model

EXTEND

An extend relationship specifies that one use case (extension) extends the behavior of another
use case (base use case).

/,-"”F Process EaI;_E‘\\

|'I; Extension Points: L
Paymeant UML notation:
VIP Customer 1. The extending use case
'-——_j'l‘_——d"’ points to the base use case
wextends
| Payment, if Customer 2 The_c-::ndi':iu::;n andl}e
resents a gift certificate | SX1EMNSIGN pOINT Can
J— _Lp______ ? shown on the line.
Handle Gift Certificate™,
Payment d-f"/

Fig: The extend relationship

YEAR/SEM: 111/V CS6502-00AD Page 36

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

GENERALIZATION

Generalization is the activity of identifying commonality among concepts and defining
superclass (general concept) and subclass (specialized concept) relationships.

i superclass- more general
Payment | concept

subclass - more

-~ e ~
Cash Credt Check | ..., specialized concept

Payment Fayment Payment

Fig: Generalization-specialization hierarchy
ELABORATION

Elaboration is the initial series of iterations during which the team performs the following
actions,

Investigation

Implements the core architecture
Clarifies most requirements
Tackles high risk issues.

i

DOMAIN MODELS

e A domain model is a visual representation of conceptual classes or real-world objects in a
domain. They are called conceptual models, domain object models, and analysis
object models.

e Domain model can be represented by a set of class diagrams in which no operations
(methods) are defined. It provides a conceptual view that includes,

1. Domain objects or conceptual classes
2. Association between conceptual classes
3. Aittributes of conceptual classes

DOMAIN MODEL AS A VISUAL DICTIONARY
e Domain model provides a visualization of concepts or words in Business domain such as
name of the classes, association and attributes using UML notation.
e The information expressed by the Domain model can also be expresses by a plain text as
a glossary and hence the name Domain model a visual dictionary.

YEAR/SEM: 111/V CS6502-00AD Page 37

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

concept Sales ltem
or domain " Lingltem Records-sale-of
ohject 1
quantity -1
-+
1.*
— Stocked-in
associatio 5 o Contained-in
1 1
Sale Store
attributes 5 iy | late address
time name
.1 1
Houses
FPaid-twy 1.*
1 Register
Capturaed-oh
Fayment ;
amount

Fig: Partial domain model-a visual dictionary
CONCEPTUAL CLASSES

A Conceptual class is an idea, thing, or object to understand the real world situation. It is
considered in terms of its symbol, intension, and extension.

e Symbol-words or images representing a conceptual class.

Salec

concept's symhbaol H

date
time

Fig: A conceptual class has a symbol
e Intension-the definition of a conceptual class.

"A sale represents the evept .
of a purchase transaction. It
has a date and time."

| concept's intenaioh

Fig: A conceptual class has an intension

YEAR/SEM: 111/V CS6502-00AD Page 38

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e Extension-the set of examples to which the conceptual class applies.

|
|
e N o
\ saled __--j
__"Lf—~.__/

Fig: A conceptual class has an extension

GUIDELINES TO CREATE A DOMAIN MODEL

1. Find the conceptual classes
2. Draw them as classes in a UML class diagram
3. Add associations and attributes

1) STRATEGIES TO FIND THE CONCEPTUAL CLASS

1. Reuse or modify existing models
- They are published, well-crafted domain models and data models for
many common domains such as inventory, finance, health etc.
2. Use of category list

S.No | Conceptual Class Category | Examples

1 Business Transactions Sale,Payment

2 Roles of people Cashier,Customer

3 Catalogs Product catalog, Flight
catalog

4 Records of Finance Receipt,ledger

3. ldentify noun phrases
—> Linguistic analysis i.e identify noun and noun phrases in textual
description of a domain.
- Eg. POS domain
A list of candidate classes for the domain is generated.

Sale Cashier
CashPayment Customer
SalesLineltem Store

Item ProductDescription

YEAR/SEM: 111/V CS6502-00AD Page 39

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Register ProductCatalog
Ledger
Register ltem Store Sale
Sales Cashier Customer Manager
Lineltem “ anag
Product Product
Payment Catalog Epecification

Fig: Initial POS domain model

DESCRIPTION CLASS
A description class contains information that describes something else.
Eg: ProductDescription- records price, picture and text description of an item.

ProductDescription

; Item
description Describes
price 1 serial number
itemID

USE OF A DESCRIPTION CLASS
Description class is used when,

e There needs to be a description about an item or service,independent of the current
existence of any examples of those items or services.

e Deleting instances of things they describe results in a loss of information that needs to be
maintained.

e It reduces redundant or duplicated information.

Flight
Described-by
* 1

FlightDescription B¢
date [|

number
time

*

Describes-flights-to
1

Airport

name

Fig: Description Class

YEAR/SEM: I11/V CS6502-00AD Page 40

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

ASSOCIATION

An association is a relationship between classes that indicates some meaningful and interesting
connection.

association N

o

R ds- t
Register 7 ecores currer; Sale

Fig: Association

ASSOCIATION NOTATION

An association is represented as a line between classes with a capitalized association
name.

The end of an association contains a multiplicity expression indicating the numerical
relationship between instances of the classes.

Register 1 Records-curreht 1 Sale
L

association name\ multiplicity \
Fig: UML notation for association

MULTIPLICITY

Multiplicity defines how many instances of a class A can be associated with one instance of a
class B.

Store 3 Stocks ltem

\;_.I*

multiplicity of the role H

Fig: Multiplicity on an association

YEAR/SEM: I11/V CS6502-00AD Page 41

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

MULTIPLE ASSOCIATION BETWEEN TWO CLASSES

Fliesto 1

Flight Flies-from Alrport

+* 1

Fig: Multiple associations

ATTRIBUTE

e An attribute is a logical data value of an object.

e Itis useful to identify those attributes of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under development.

Records-sale-of

Described-by | i
Product
Product Specification
Catalog Contains —
i 1 description
| price
1 temlD
g-- * EEE{I'b'—"’ Describef
Sales *
Lineltem Store
Stocks ltem
quantity i | address i * ;-
narmne -
1.*
Conmtained-|n Logs- " Housas
completed
1 - 1.*
" -
Sale Fegister
pr—— Started-by Manager
Captured-on 1 1
time 1 i
1
Paid-by | | Initiated-by 1| + Records-saleson
1 1 1
FPayment Customer|

Cashier

amount

Fig: Partial Domain Model

YEAR/SEM: 111/V CS6502-00AD

Page 42

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

DOMAIN MODEL REFINEMENT

Refinement of Domain Model is done with,
e Generalization
e Specialization
e Conceptual Class Hierarchies

GENERALIZATION

Generalization is the activity of identifying commonality among concepts and defining
superclass (general concept) and subclass (specialized concept) relationships.

i superclass- maore general
Fayment | concept

subelass - more
" ' o o
Cash Credt Check Qreeanss specialized concept

Payment Fayment Fayment

Fig: Generalization-specialization hierarchy

GENERALIZATION AND CLASS SETS

e Conceptual subclasses and superclass set are related in terms of set membership
e All members of a conceptual subclass set are members of their superclass set.

Payment

' CashPayment CreditPayment) CheckPayment)

Fig:Venn diagram of set relationships

YEAR/SEM: I11/V CS6502-00AD Page 43

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

CONCEPTUAL SUBCLASS DEFINITION CONFORMANCE

Paymeat Pays-for Sale
amount : Money 1
Cash Credit Check
Payment Payment Payment

Fig: Subclass Conformance
e All Payments have an amount and are associated with sale.
e All Payment subclasses must conform to having an amount and paying for a sale- 100 %
rule.
e 100 % of the conceptual superclass’s definition should be applicable to the subclass. The
subclass must conform to 100% of the superclass
v’ Attribute
v Association

CONCEPTUAL SUBCLASS SET CONFORMANCE
e A Conceptual subclass should be a member of the set of the superclass
e Conceptual subclass is a kind of superclass
e CreditPayment is a kind of Payment- is-a rule

CORRECT CONCEPTUAL SUBCLASS
A potential subclass should conform to the
1) 100% rule (Definition Conformance)
2) lIs-a- Rule (Set membership conformance)

When to Define a Conceptual Subclass?
A conceptual class partition is a division of a conceptual class into disjoint subclasses.

Eg.

Cushomer

N

Mala Femala
Customer Cusiomer

Fig: Conceptual class partition

Create a conceptual subclass of a superclass when:
1. The subclass has additional attributes of interest.
2. The subclass has additional associations of interest.

YEAR/SEM: 11I/V CS6502-00AD Page 44

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

3. The subclass concept is operated on, handled, reacted to, or manipulated differently than
the superclass or other subclasses, in ways that are of interest.

4. The subclass concept represents an animate thing (for example, animal, robot) that behaves
differently than the superclass or other subclasses, in ways that are of interest.

When to Define a Conceptual Superclass?
When commonality is identified among subclasses, generalization is done.
Create a conceptual superclass in a generalization relationship to subclasses when:
1. The potential conceptual subclasses represent variations of a similar concept.
2. The subclasses will conform to the 100% and Is-a rules.
3. All subclasses have the same attribute which can be factored out and expressed in the

superclass.
4. All subclasses have the same association which can be factored out and related to the
superclass.
Eg:
Pays-for 1
Sale
superclass justified by commaon 7 1
attributes and associations e,
- FPayment
. additional associations H
amount : Money
Al]
each payment subclass is Cash C redit Check
handled differently Payment Payment Payment
*
|dentifies-credit-with Paid-with
CreditC ard Check

Fig: Justifying Payment Subclasses

ABSTRACT CONCEPTUAL CLASSES
If every member of a class C must also be a member of a subclass, then class C is called an abstract
conceptual class.

Eg:

. _.| abstract conceptual class “]

=~ Payment Is arabstract
// conceptual class & Payment
! nstance must conform to one
\
CashPayment CrediPayment CheckPayment | [9©F the subclasses:

/| casnPayment, creditPayment
// or CheckPayment.
"—\.____ __'_'_,_:-'P

Fig: Abstract Conceptual Classes

YEAR/SEM: I11/V CS6502-00AD Page 45

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

AGGREGATION

Aggregation is a vague king of association in the UML that loosely suggests whole-part
relationships

Eg:

Consists-of

Team O Player

COMPOSITION

Composition is a strong kind of whole-part aggregation and is useful to show in some other

models.
Eg:
Sale = . SalesLimeltem
Product > Product
Catalog 1 1.* Specification

YEAR/SEM: 111/V CS6502-00AD

Page 46

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UNIT IV
APPLYING DESIGN PATTERNS

System Sequence diagrams-Relationship between sequence diagrams and use cases-Logical
architecture and UML package diagram- Logical architecture refinement- UML class diagrams-
UML interaction diagrams- Applying GoF design patterns.

SYSTEM SEQUENCE DIAGRAM (SSD)

e A system sequence diagram (SSD) is a picture that shows, for a particular scenario of a
use case, the events that external actors generate, their order, and inter-system events.
e Sequence diagrams are an easy way of describing the behaviour of a system by viewing
the interaction between the system and its environment.
Eg:

system as black box
the name could be "NMextGenPOS" but "System” keefs i

the "" and underline imply an instance, and are explajne
later chapter on sequence diagram notation in the UML

Yy
external actor to i FProcess Sale Scenario
system =0

o

arameters
return value(s) h P

associated with the total with t
previous message 0 g —————_WOlRIWIhlaxes _________. I

- Cashier System
I makeNewSale() __:
box may enlose ar I "':
iteration area | |
| I
| i 3 i]
the * [_] is an iterati . enterltem(itemID, quantity) >
marker and clause l I
indicating the box is for ! description. total [
iteration T . 1
| * [more items] I
! i
] |
| endSale() ol a message Wltk
) L)
|
I I
| I

it is an abstractig
——-—--1 Mepresenting the

an abstraction that system event of

[
| i
I I
; | y ! i
ignores presentation}” : mal-ceF’ayment{amou%t] #: ?g;enqgﬁttg:ta by
and medium I : some mechanisn
|
the return line is | change due, receipt :

optional if nothing is |
returned

Fig: SSD for a Process Sale scenario

YEAR/SEM: I11/V CS6502-00AD Page 47

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UML Perspective of Sequence Diagram

e Use Cases describe how external actors interact with the software system.

e During this interaction an actor generates system events to a system requesting for some
system operation to handle the event.

e UML Sequence Diagrams are thereby a notation to depict actor interactions and the
operations initiated by them.

Why to draw SSD?

1. To investigate and define system behaviour before proceeding with a detailed
design of how a software application will work.
System Behaviour-description of what a system does rather how it does. Such a
kind of description is clearly depicted by system sequence diagram.

2. To know what events are coming into the system,so that software can be designed
to handle those events and execute a response.
Three events that affects the software system

i. External events from actors

ii. Timer events
iii. Faults or Exceptions

RELATIONSHIP BETWEEN SEQUENCE DIAGRAMS AND USE CASES

- Cashier System

: makeMewSalel() I
Simple cash-offpocess Safrenario: : ."I

T T
1. Customer arrives at a POS checHout : enterltem(item|D, quantity) _J
with goods and/or services to purchpse. : |
2. Cashier starts a new sale. I I
3. Cashier enters item identifier. ! description, total Jl
4. System records sale line item ang :"" _________________ HETT T |
presents item description, price, ang l * [more items] :
running total. : i
Cashier repeats steps 3-4 until indicaa | |
done. ! endSale() »!
5. System presents total with taxes i T
calculated. ! _ !
6. Cashier tells Customer the total, and - total withfaxes __________. I
asks for payment. | |
7. Customer pays and System handles I :
payment. L makePayment(amount} p

: l

l l

Ir+ __________ change due receipt _______ _I

YEAR/SEM: I11/V CS6502-00AD Page 48

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

SYSTEM EVENTS AND SYSTEM BOUNDARY

System Event

A system event is an external event that directly stimulates the software.

System Boundary

The system boundary is usually chosen to be the software (and possibly hardware) system itself.
Q

. Cashier | System
I

makeMew3ale()

enterltemiitemiD, quanlit'_-,f}

endsale() I

makePayment{amnunt]

|
o

¥ ___¥Y ¥ v

system boundary H

Fig: Defining System Boundary

NAMING SYSTEM EVENTS AND OPERATIONS
e System Events should be expressed at the abstract level of intention rather than in terms
of the physical input device
e Choose event and operation names at an abstract level.
Eg:

%

) System
L c 3 shier

better name H

enteritemiitemID, quantity)

o]

v

o scan({itemlD, quantity)

worse name H

k4

Fig: Naming System Events

Start the name of a system event with a verb such as add, enter, insert, make etc.

YEAR/SEM: I11/V CS6502-00AD Page 49

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

LOGICAL ARCHITECTURE AND UML PACKAGE DIAGRAMS

Logical Architecture

e Logical Architecture is the organization of software classes into packages, subsystems
and layers.

e Logical Architecture does not depict how these elements are deployed across different
operating system processes or across physical computers in a network.

UML Package Diagram

e UML Package diagrams are used to represent the logical architecture of a system- the
layers, subsystems, packages.

e UML Package diagram is a way of grouping elements such as classes, other packages,
use cases etc.

LOGICAL ARCHITECTURE REFINEMENT

Presentation |

Swing &, Text o],

not the Java di ick
P T “=p .., | used in guic
ProcessSale -.| Swing libraries. but ProcessSale n
experiments
Frame our GUI classes Console

based on Swing

Domain |
Sales Pricing
| Register | | Sale | PricingStrategy sinterfaces
Factory SalePricingStrategy
Senvicefcoess Payments
: vinterfaces
ii:;zeg CreditPayment CreditAuthornzation
ikl ServiceAdapter
Inventory POSRuleEngine Taxes
xinterfaces . . ainterfaces
Inventory Adapter POSRuleEngineFacade ITax CalculatorAdapter

Technical Services |

Persistence — — A general —
LogdJ Jess [*e-. | purpose third- SOAP
DEFacade party rules
engine

Fig: Partial Logical Layered Architecture in NextGen application

1. The Logical Architecture consists of three layers,
e Ul (User Interface) Layer
e Domain Layer

YEAR/SEM: 111/V CS6502-00AD Page 50

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Technical Services Layer

2. Ul Layer allows the user to manipulate a system and/or system to indicate the effects of
user’s manipulation.

Java swing can be used to design UI.

Domain Layer is responsible for representing concepts of the business, information about
the business situation and business rules.

Technical Services layer are used to depict high level or low level technical services such
as persistence etc.

Presentation |

Swing

ProcessSale
Frame

rd

1

Fal
T

| \
‘|" Domain \ |

5@]\

| &
‘,..-} Register | | Sale L._

——

—

1

?

Pricing

1 — —
ServiceAocess "‘ Payments

—

! -
S sinterfaces
B N \ CreditPayment | | ICreditAuthorization
aciony \ ServiceAdapter
f' Inventory ."1 POSRuleEngine Tanes
winterfaces RS o sinterfaces
l lInwentoryédapter POSRuleEngineFacade TaxCalculatorAdapter
[7 Ly
\ D—
\ | ~ / _ ry
| Technical Services | ! .f\ .
\ Persistence — — Y ~ -
_Il.' —
Logd) Jess SOAP e
DBFacade

Fig: Coupling between layers and packages
1. Inter Layer and Inter Package Coupling
1. Dependency lines are used to communicate coupling between packages or types in
packages.
2. Many elements of the packages may share the dependency
From Process Sale Frame to Register
From Process Sale Frame to Sale
From Sale to PosRule Engine Fagade
From PosRule Engine to Jess
From Inventory to SOAP etc.

®o0 o

YEAR/SEM: I11/V CS6502-00AD Page 51

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

2. Partial Package Coupling

Presentation |
Swing Text
[&
\ -
\gomain £ |
L .
Sales . __ ¥ Fricing
\ A
Sennicefccess [N T Fayments [=
Py — Y \| POSRuUleENgINe
|
I- rivertory - - ;..-— .II
\ T, . L /
Y
b Technical Senv . | H"I ‘I.f
N o~ %~ 7
4 persistence Logd) Jess SOAP |

Fig: Partial Package Coupling

3. Inter Layer and Inter Package Interaction Scenarios

a. Package diagrams are static in nature

b. To understand the dynamic actions i,e how the objects across the layers connect and
communicate with each other, interaction diagrams should be drawn

c. Logical View of the architecture focuses on the collaborations as they cross the layer and
package boundaries

d. A set of interaction diagrams illustrate architecturally significant scenarios that depicts
the large scale or big ideas in design

Applying UML

1. The package of a type can optionally be shown by qualifying the type with UML path
name expression <package Name> :: <Type Name>
Eg: Domain :: Sales :: Register

2. Subsystem stereotype (<<subsystem>>) used in the diagram is a special kind of package
with behaviour and interfaces.

YEAR/SEM: I11/V CS6502-00AD Page 52

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UL notation UML path

| | LML notation Mote that a subsylem can be modeled 35 an abject In the UML
name to Indicate packaging

This I5 useful In this case where | don't know or want to describe the detals of how qhe
JEEE rule engine works, but [ust want o show collaboration with It

P'DPET{LHEFE{ - m asingletons 3
- o - IE:t = -
f_:' M .JEML :I:luman.:i B EEE:E”-E: ME.“ -csl.:n_ls_g';fr.
Pmcess =32 | proouct Sales: e Perpistence- || SEDULSE
SakeFame Eegiater Catalog Egje EmEme Fac Zlsgs
| entaritem | | | | | |
8. atvl,| enterttem | | | | | |
’—% 5pEC I | | | | I
| B
‘. e id)
L — | | | I
" I si,:-e': = Qet0nect...) :J| I
I

some.JessCal E-I'lr'El'.E"T'. 5aia) I

D
Sy

understand the system, and thus are highlighted In this diagram. This diagram suppors communicating ih

Polnts of crossing Interesting boundanies or |ayers. These are aspecially notewarthy for people wha n
logical view of the architecturda UP tamm) becauss it emphasizes amhitecturally significant Information.

Fig: An architecturally significant interaction diagram
COLLABORATIONS WITH LAYERS PATTERN

Two design decisions at an architectural level
1. What are big parts?
2. How they are connected?

Simple packages versus Subsystems
1. Packages groups the factory and strategies used
Packages are used to represent the different layers of source code.
Eg: Pricing, Payroll, Foundation Packages such as java.util
2. Subsystems are a type of stereotyped component that represent independent, behavioural
units in a system.
Eg: Persistence, POS Rule Engine, Jess

Facade
e Facade is the most common pattern of access for packages that represent subsystems.
e Facade is a GoF design pattern

YEAR/SEM: 111/V CS6502-00AD Page 53

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e Public facade object defines the services for the subsystem and clients collaborate with
the facade not internal subsystem components.

Session Facades and the application layer

not a subsrsterrﬁ

asubsystems
POSRuleEngine

POSRuleEngineF acade

Pricing
e
~

asubsystems S

Pemsistence .

— Y
DBFacade wsubsystemas
Jess

Fig: Subsystem Stereotype

Presentation

Swing

ProcessSale
Frame

ProcessRental
Frame

Application $

!

'

ProcessSale
SessionF acade

ProcessRental
SessionF acade

HandleRetuns
SessionFacade

A

Application session
facade cbjects that
maintain session
state and control
workflow related to

some work—often
by use case.

Domain

Sales |

Rentals |

I
'

| Register | |

Sale | | Rental | |

Session fagade is the one where each session instance represents a session with one client.

Controller

e Controller Pattern describes common choices in client side handlers for system operation
requests emitting form the Ul layer.

YEAR/SEM: 111V

CS6502-00AD

Page 54

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Presentation |
GRASP Controiler
wing patiem suggests
hese cammon
| | ProcessSale | choices of oojects
Frame to handle system
A operation requests.
7 S,
S BN
s Apdugation |
=5
rd Proc=ss Sale I:I
,l" ‘SecElonF acade
Dioman j.- makeMewSalke
e | entertem
Regster | | i
makeNswSae
entestem

Fig: Controller
System Operations and Layers

The System operations being invoked on the system are requests being generated by an actor via
the Ul layer onto the Application or Domain Layer.

Presentation | _
Swing makeMawsaia))

ZSystem enterltem|)
. Caghler Pracess5ale endSalel)
I Frams
I makENewsale]) o
- Cashis
|Lenteritem (i, guantiy |
! i makeMawSae])
I' descrigtion, total | enteritemy)
* [mare ltems) - endsakf) @,
i |] = Domaln .,
o I.l

Endalel I Reglsier
| o |

makeNewSak)
I , I enterttemy)

-r*. the system operations handied by the system In an S50 represent the .'I
operation calls on the Application or Domaln [ayer from the Presentation

Fig: System Operations in SSD using Layers

Upward Collaboration with observer
Observer Pattern is used for upward collaboration i.e when the lower application or domain layer
needs to communicate with the upward Ul Layer via observer pattern.
1. Ul objects in the higher Presentation layer implement an interface such as Property
Listener or Alarm Listener, and are subscribers or listeners to events coming from objects
in the lower layers.

YEAR/SEM: 111/V CS6502-00AD Page 55

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

2. The lower layer objects directly sends messages to the upper layer Ul objects. Coupling
takes place only to the objects viewed as things that implement an interface.

PmpertTListener

L i
I _.JEEEEEEEI:JJI-.EL - Domain:: - 2 .
Swing:: Sales:: Comain::
SaleF Begister Sale

1 | |

| erjterlten'

Iﬂﬂhl entertem | |

I id I

| I I

I | makelineltem({spee, gtyy ,

l L ::-nz'mper.»J:Evgﬂ:[s. "sale. total”, total)

I

Fig: Observer Pattern

UML CLASS DIAGRAM:

Class diagram is a static diagram. It represents the static view of an application. The class
diagram describes the attributes and operations of a class and also the constraints imposed on
the system. The class diagrams are widely used in the modeling of object oriented systems
because they are the only UML diagrams which can be mapped directly with object oriented
languages.

Purpose:
5. Analysis and design of the static view of an application
6. Describe responsibilities of a system
7. Base for Component and Deployment Diagrams
8. Forward and Reverse Engineering

5. Describes the static view of the system

6. Shows the collaboration among the elements of the static view

7. Describes the functionalities performed by the system.

8. Construction of software applications using object oriented languages.

YEAR/SEM: 111/V CS6502-00AD Page 56

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Notations:

S.No

Name

Notation

Description

1

Class

Class Name

Attribute

Operation

Class is an entity
which describes a
group of objects
with same
properties &
behavior.

Generalization

Class1

Class3

Class2

Generalization
refersto a
relationship
between two
classes where one
class is a
specialized version
of another.

Association

Class3

Class4

Association
represent static
relationships
between classes.

Aggregation

Class1

<

Class3

Class2

Aggregation is a
vague kind of
association in the
UML that loosely
suggests whole-part
relationships.

Composition

Class1

Class2

Composition is a
strong kind of
whole-part
aggregation.

Multiplicity

class1

% class2

N

to
to

to
o

N

Multiplicity
specifies the
number of
instances of one
class that may
relate to a single
instance of an
associated class.

YEAR/SEM: 111V

CS6502-00AD

Page 57

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Sample Example — ATM System

Maintains

1 Bank
&code 1 1 ATMI nfo
&address &location
H &mangedBy
a
dmanages() ° Customer re :
®maintains() 1 : [Bonane ‘;dentrﬁes_()
Manages 1. &address ransactions()
Owns 1 &dob 1
Sowns() Identifies
1
(R 0.1 «
DebitCard : J ATMTransaction
&cardNo Account Modifies &transactionlD
&ownedBy Stype & date
. 4 +&owner |4 x Stype
Qaccess() -
A ¥modifies()
CurrentAccount Savings Account - I I I I .
&accountNo accountNo Withdrawl Query Transfer PINValidation
&balance &balance &amount &querylD &amount &oldPIN
. &type &accountNo &newPIN
Sdebit() Sdebit() Swithdrav... x) -
Qcredit() Qcredit() processing() pinChange()

UML INTERACTION DIAGRAM
Interaction diagrams are used to visualize the interactive behavior of the system. The Interactive
behaviour is represented in UML by two diagrams namely,
e Sequence Diagram- It emphasizes on time sequence of messages
e Collaboration Diagram- It emphasizes on structural organization of the objects that
send and receive messages.
Purpose:
5. To capture dynamic behaviour of a system
6. To describe the message flow in the system
7. To describe structural organization of the objects
8. To describe interaction among objects

I11. SEQUENCE DIAGRAM

Sequence diagram describes an interaction by focusing on the sequence of messages that
are exchanged, along with their corresponding occurrence specifications on the lifelines.
Uses:

5. To model flow of control by time sequence

6. To model flow of control by structural organizations
7. Forward engineering

8. Reverse engineering

YEAR/SEM: 111/V CS6502-00AD Page 58

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Notations:
S.No Name Notation Description
1 Lifeline [Instancel; Lifgline re_presents Fhe c!urat_ion
: during which an object is alive
| - - -
: and interacting with other
| objects in the system.
i
|
2 Message To send message from one
Message .
object to another.
3 Object [Instancel. It represents the e>.<istenc§ of
an object of a particular time.
4 Self message Self message is a message by
the object to itself.

Sample Example — ATM System

1- Insert ATM Card

L 2: Request PIN
T 3: PIN Entered o

4- Verify PIN

5: PIN OK ’]]
R :

6:- Request Option

I-rl 7: Option Entered e

8: Request Amount

9: Amount Entered

10: processTransaction()

=& 11: Transaction Successful I—I

S S e e
12: Dispense Cash D

13: Request to Take Cash

14: Take Cash

15: Request Continuation

17: Print Receipt

1

16: Teminate I:I
]

L]

>

YEAR/SEM: 111/V CS6502-00AD Page 59

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

IV. COLLABORATION DIAGRAM
Collaboration or Communication diagram is also used to model the dynamic behaviour of
the system. It emphasizes on structural organization of the objects that send and receive

messages.

4. Used to show the messages that flow from one object to another within the system and
the order in which they happen.

5. Used to track the source of the message from where it has been sent

6. Used to provide relationships and interactions among software objects

Notations:
S.No Name Notation Description

1 Link A Link is a connection
path between two objects

2 Message : 1:m39g : Communication between

Object 1 2:msg—> | OPlect2 objects takes place
<«— 3:msg through messages. A

sequence number is added
to show the sequential
order of messages.

3 Message Numbers included along

Sequencing

Number msg 1 opject1 [1:msg2—>

Object 2

1.1:ms 3‘

Object 3

with the messages
indicate the order of the
message in an interaction.

Sample Example — ATM System

1: Insert ATM Card
3: PIN Entered
7: Option Entered
9: Amount Entered
14: Take Cash
16: Terminate
e

C:
Customer

-
2: Request PIN
6: Request Option
8: Request Amount
12: Dispense Cash
13: Request to Take Cash
15: Request Continuation
17: Print Receipt
5: PIN OK

11: Transaction Successful

A \L 4: Verify PIN

10: processTransaction()

Acc - Account

YEAR/SEM: 111V

CS6502-00AD

Page 60

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

APPLYING GoF DESIGN PATTERNS

1. ADAPTER (GoF)
Adapter pattern works as a bridge between two incompatible interfaces. It is used to convert the
programming interface of one class into that of another.

Problem

How to resolve incompatible interfaces, or provide a stable interface to similar
components with different interfaces?
Solution:

Convert the original interface of a component into another interface, through an
intermediate adapter object.

UML motation to indicate something
implements a particular interface

o
:Begister . SAPAccountingAdapter lAccountin ter

P over
HTTﬂ

455"5I:EIT||-

makePayment

postSale] sale)

I
|
I
T —= s

a. .0

the Adapter adapis to
interfaces in other

components

Fig: Adapter Pattern
. SINGLETON (GoF)
e Singleton Pattern is a design pattern used to implement the mathematical concept of a
singleton, by restricting the instantiation of a class to one object.
e Singleton is a class which only allows a single instance of itself to be created and usually
give simple access to that instance.

Name: Singleton

Problem: Exactly one instance of a class is allowed-it is a singleton, objects need a global
and single point of access

Solution: Define a static method of the class that returns the singleton

YEAR/SEM: I11/V CS6502-00AD Page 61

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UML notatlon: this *1' can cotlonally be wsed to
Indicate that only one instance will b2 created (a

ungarined attribute or
method Indicates a
slalic (class level)
membsr, rather than .
an Instance mamber o

Elngleton)
Ta
ServicesFaciony
UML notatior: In 3 o | lnslance © ServicesF asiony Gorrrararanines
£lass box, an :

ACCOUNEINGANAPLEr T |ACCOLMtNgALaptar
ImventoryAdapier - linventory Adagter
taxCalcuatorAdanter | ITaxCalculatorAdapter

singleton E'.E!C

attrbute

gatinsiance]) | SanvicesFactony [+ SR avana

o

.+"| getAccountingAdaptar() : IAccountingAdapter

getinventoryAdapten) - limventoryAdapter
getTaxCalculaioradapien] | ITaxs alculaloradapier

¥ glathc method

{

I i Instance == null |

retwm Instancs

}
b

pubdlc statlc synchronized SendcesFactory getinstance()

Instance = new ServicesFactory)

A

Fig: Singleton Pattern

3. FACTORY PATTERN

Name: Factory

Eingiaton A

-| static

method

Problem: Who should be responsible for creating objects when there are special considerations,
such as complex creation logic, a desire to separate the creation responsibilities for better

cohesion, and so forth?

Solution: Create a Pure Fabrication object called a Factory that handles the creation.

Advantages of Factory objects

v’ Separate the responsibility of complex creation into cohesive helper objects.
v" Hide potentially complex creation logic.
v Allow introduction of performance-enhancing memory management strategies, such as

object caching or recycling.

In the below diagram, In ServicesFactory, the logic to decide which class to create is
resolved by reading in class name from an external source and then dynamically loading the
class. This is termed as Partial Data Driven Design.

YEAR/SEM: 111V

CS6502-00AD

Page 62

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

note that the factory methods

SenvicesFacto
v return objects typed to an

accountingAdapter © |Accountingfdapter .- interface rather than a class, so
inventornyAdapter - linventory Adapter ?hat the factpry can return any
taxCalculatorAdapter : ITaxCalculatoradapter T implementation of the interface

getAccountingAdapter() - IAccountingAdaptero"

getinventory Adapter() - linventory Adapter

getTaxCalculatorAdapter() - ITaxCalculatorAdapter
O..,

s
e

if { taxCalculatoradapter == null)

I a reflective or data-driven approach to finding the right class: read it from an
Il extemnal property

String className = System.getProperty("taxcalculator.class name”),
taxCalculatorAdapter = (ITaxCalculatorAdapter) Class_forMame(className) newlnstance();

retum taxCalculatorAdapier;

}

Fig: Factory Pattern
4. OBSERVER PATTERN

Problem

Different kinds of subscriber objects are interested in state changes or events of a
publisher object,and want to react in their own unique way when the publisher generates an
event. Moreover,the publisher wants to maintain low coupling to the subscribers. What to do?

Solution:

Define a “subscriber” or “listener” interface. Subscribers implement this interface. The
publisher can dynamically register subscribers who are interested in an event and notify them
when an event occurs.

sf : SaleFrame1 5:Gole propertyListeners
’ List<PropertyListener>

|
|
|
initialize(s : Sale) > :

addPropertyListener(sf G

add(sf) >

Fig: The observer SaleFramelsubscribes to the publisher Sale

YEAR/SEM: 111/V CS6502-00AD Page 63

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

The SaleFramel object is the observer/subscriber/listener. In the above diagram it subscribes to
interest in property events of the Sale, which is a publisher of property events. The Sale adds the
object to its list of PropertyListener subscribers.The Sale does not know about the SaleFramel
as a SaleFramel object,but only as a PropertyL.istener object,this lowers the coupling from the

model up to the view layer.

s Sale

setTotal(total) >

loop

Fig: The Sale publishes a property event to all its subscribers

publishPropertyEvent
("sale.total”, total)

onPropertyEvent(s, "sale.total", total)

propertylisteners| i | :
PropertyListener

>

In the above diagram, when the sale total changes, it iterates across all its registered subscribers,

and “publishes an event” by sending the onPropertyEvent message to each.

YEAR/SEM: 111V

CS6502-00AD

Page 64

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

UNIT -V
CODING AND TESTING

Mapping design to code-Testing: Issues in OO Testing-Class Testing-OO Integration Testing-
GUI Testing-O0 System Testing.

MAPPING DESIGN TO CODE

Implementation in an object-oriented programming language requires writing source code for,
e Class and Interface Definitions
e Method Definitions

Creating Class Definitions from DCD’s (Design Class Diagrams)

DCD’s depict the class or interface name, superclasses, method signatures, and simple attributes
of a class.

Defining a Class with Method Signature and Attributes

public class SalesLineltem
{
private int quantity;

public Sal;ésLineltem(F‘mductSpeciﬁcation spec, int gty) { ... }

public I".-'!a'.:aneyr getSubtotal{) { ... }

}

2 ProductSpecification
SalesLineltem: .

. description : Text
.* Described-by price :pMOHE'_I.-'

. 1 | temID : ItemID
getSubtotal() - Money | o "

quantity : | ntegeﬁ.

Fig: SalesLineltem in Java

Creating Methods from Interaction Diagrams

An interaction diagram shows the messages that are sent in response to a method invocation. The
sequence of these messages translates to a series of statements in the method definition.

YEAR/SEM: 111/V CS6502-00AD Page 65

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

enterltem(id, gty) — 2: makelLineltem(spec, gtyy—
‘Register Sale

1: spec = getSpecification(idw 2 1 create(spec. qty

-Product

Catalog

sl. SalesLineltem

1.1: spec := Iind(id}i

2.2 add(sl}l

I [
:Product J -SalesLineltem J
—

Fig: Interaction Diagram depicting enterltem message sent to Register instance

The enterltem message is sent to a Register instance; therefore, the enterltem method is defined
in class Register.

public void enterltem (ItemID itemID, int qty)

Message 1: A getSpecification message is sent to the ProductCatalog to retrieve a
ProductSpecification.

ProductSpecif ication spec = catalog. getSpecif ication(itemID);
Message 2: The makeLineltem message is sent to the Sale.
sale .makeL.ineltemf spec, qty);

Each sequenced message within a method, as shown on the interaction diagram, is mapped to a
statement in the Java method.

YEAR/SEM: 111/V CS6502-00AD Page 66

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

The Register-enterltem Method

public class Register ‘
private ProductCatalog catalog;
private Sale sale;
public Register(ProductCatalog pe) {...} ProductCatalog
public void endSale() {...} Looks-in 1
public void enterltem(ltemlID id, int gqty) {...} getSpecification(..)
public void makeNewSale() {...}
public void makePayment(Money cashTendered) {...}
}
1 Sale
Register date : Date
" 1 1 isComplete : Boolean
O Captures time : Time
endSale() becomeCom
. _ plete()
fnn;:ﬁ.r;lrtqe;nw[lsdg-_ét[?ml[]' gty - Integer) makeLineltem(...)
makePayment{cashTendered : Money) makePayment(...)
getTotal()
Fig: Register Class
{
ProductSpecification spec = catalog.getSpecification(id);
sale. makelineltem(spec, qty);
}
o°
enterltemid, qty}—= 2. makeLineltem(spec, qty+—=
:Reqister ‘Sale

1: spec = getSpecification{id)

'

Product
Catalog

Fig: The enterltem method
Collection Classes in Code

A collection class is a container which holds a number of items in a data structure and provides
various operations to manipulate the contents of the collection.

Collection object examples- List, Map etc.

YEAR/SEM: 111/V CS6502-00AD Page 67

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Java libraries contain collection classes such as ArrayList and Hash Map which implement the

List and Map interfaces.

Eg: Using ArrayList,the sale class can define an attribute that maintain an ordered List of

SalesLineltem instances.

Exceptions and Error Handling

Exception handling is a programming language construct to handle the occurrence of exceptions,
special conditions that change the normal flow of program execution. The point of exception
handling routines is to ensure that the code can handle error conditions. In terms of UML,
exceptions can be indicated in the property strings of messages and operation declarations.

public class Sale

{

}

private List lineltems = new ArrayList();
q

-

Sale

date : Date
isComplete . Boolean
time : Time

Contains

SalesLineltem

quantity - Integer

.| A collection class is necessary to K
| maintain attribute visibility to all the
SalesLineltems.

becomeComplete()
makeLineltem()
makePayment()
qetTtotal()

Fig: Adding a collection

Defining the Sale.makeLineltem Method

enterltem(id, qty) —=

YEAR/SEM: 111V

Reqister

L
F4

getSubtotal()

{
} "

*
I

*

lineltems_add{ new SalesLineltem({spec, qty) I

0]
-
*

o .,
2. makeLineltem{spec, gty

*

e "Sale

2. 2- addisl)

s
2.1: create(spec, qty

‘Saleslineliem

sl: SalesLineltem

Fig: Sale.makeLineltem method

CS6502-00AD

Page 68

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Order of Implementation

Store o Uses
address : Address 1 1
name : Text ProductSpecificatio
ProductCatalog

addSale(...) Contai description : Text
omains price . Money

1 y
Locks-n 1 1 1.* | itemID - ItemID
getSpecification(...)
Houses T)
1 1 Describes
N o Sale
*
Regeter date - Date SalesLineltem o
isComplete . Boolean -
Captures time : Time Contains L
- - 3 ; i1 guantity - Integer
endSale() 1 1 becomeComplete() -
enteritemi..) makeLineltem(...) getSubtotal()

makeMNewSale() makePayment(...)
makePayment(...) getTotak()

w 1
Logs-completed ¥ T Payment o

FPaid-by

amount - Money

Fig: Possible order of class implementation and testing
Test Driven or Test First Development (TDD)

e TDD is a software development process where the developers first writes a failing automated test
case that defines a desired improvement or new function,then produces code to pass that test and
finally refactors the new code to acceptable standards.

e TDD requires developers to create automated unit tests that define code requirements before
writing the code itself.

e In OO unit testing TDD style,test code is written before the class to be tested and the developer
writes unit testing code for nearly all production code.

Refactoring

Refactoring is a structured,disciplined method to rewrite or restructure existing code without
changing its external behaviour,applying small transformation steps combined with re-executing
tests each step.

YEAR/SEM: 111/V CS6502-00AD Page 69

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

NextGen POS Program Solution

Class Payment

public class Payment {
private Money amount:
public Payment(Money cashTendered){ amount = cashTendered; }
pubklic Money getBAmount() { return amount; } }

Class ProductCatalog

public class ProductCatalog {
private Map productSpecifications = new HashMap/() :

public ProductCatalog() [
J/ sample data
ItemID idl = new ItemID({ 100) ;
TtemID id2 new ItemID({ 200);

Money price = new Monev(3):

ProductSpecification ps:
ps = new Productipecification(idl, price, "product 1™ });
productSpecifications.put{ idl, ps):
ps = newWw Product3pecification(id2, price, "product 2"):
Productipecifications.puc(idzZ, ps):; 1}
public ProductSpecification getSpecification(ItemID id) {
return (Product3pecification)productipecifications.get(id)
}

TESTING

e Testing is an activity to check whether the actual results match the expected results and to

ensure that the system is defect free.
e Testing also helps to identify errors, gaps or missing requirements in contrary to the
actual requirements. It can be either done manually or using automated tools.

ISSUES IN OO TESTING

Traditional testing methods are not directly applicable to OO programs as they involve OO
concepts including encapsulation, inheritance, and polymorphism. These concepts lead to issues,
which are yet to be resolved. Some of these issues are listed below.

1. Basic unit of unit testing

e The class is natural unit for unit test case design.
e The methods are meaningless apart from their class.
e Testing a class instance (an object) can validate a class in isolation.

YEAR/SEM: 111/V CS6502-00AD Page 70

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e When individually validated classes are used to create more complex classes in an
application system, the entire subsystem must be tested as whole before it can be
considered to be validated (integration testing).

2. Implication of Encapsulation

e Encapsulation of attributes and methods in class may create obstacles while testing. As
methods are invoked through the object of corresponding class, testing cannot be
accomplished without object.

e In addition, the state of object at the time of invocation of method affects its behavior.
Hence, testing depends not only on the object but on the state of object also, which is
very difficult to acquire.

3. Implication of Inheritance.

e Inheritance introduce problems that are not found in traditional software.

e Test cases designed for base class are not applicable to derived class always (especially,
when derived class is used in different context). Thus, most testing methods require some
kind of adaptation in order to function properly in an OO environment.

4. Implication of Genericity

e Genericity is basically change in underlying structure.
e We need to apply white box testing techniques that exercise this change.

5. Implications of Polymorphism

Each possible binding of polymorphic component requires a separate set of test cases.
Many server classes may need to be integrated before a client class can be tested.

It is difficult to determine such bindings.

It complicates the integration planning and testing.

6. Implications for testing processes
e Re-examine all testing techniques and processes.

CLASS TESTING

e Smallest testable unit is the encapsulated class
e Test each operation as part of a class hierarchy because its class hierarchy defines its
context of use.

YEAR/SEM: I11/V CS6502-00AD Page 71

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Testing OO Code

Class Integration
tests tests

alidation
tests

System
lests

Approach:
e Test each method (and constructor) within a class
e Test the state behavior (attributes) of the class between methods

How is class testing different from conventional testing?
e Conventional testing focuses on input-process-output, whereas class testing
focuses on each method, then designing sequences of methods to exercise states
of a class.But white-box testing can still be applied.

Class Testing Process

_—
results

o

test cases Why a loop?

software
engineer

Class Test Case Design

1. Identify each test case uniquely

- Associate test case explicitly with the class and/or method to be tested
2. State the purpose of the test
3. Each test case should contain:

a. A list of messages and operations that will be exercised as a consequence of the
test.

b. A list of exceptions that may occur as the object is tested.

c. A list of external conditions for setup (i.e., changes in the environment external
to the software that must exist in order to properly conduct the test)

d. Supplementary information that will aid in understanding or implementing the
test

e Automated unit testing tools facilitate these requirements.

YEAR/SEM: I11/V CS6502-00AD Page 72

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Challenges of Class Testing
e Encapsulation:
Difficult to obtain a snapshot of a class without building extra methods
which display the class state.
e Inheritance and polymorphism:
1. Each new context of use (subclass) requires re-testing because a
method may be implemented differently (polymorphism).
2. Other unaltered methods within the subclass may use the redefined
method and need to be tested.
e White box tests:
Basis path, condition, data flow and loop tests can all apply to individual
methods, but don’t test interactions between methods.

Testing Methods Applicable at the Class Level

1. Random testing - requires large numbers data permutations and combinations, and can
be inefficient

e Identify operations applicable to a class

e Define constraints on their use

e |dentify a minimum test sequence

e Generate a variety of random test sequences.

2. Partition testing - reduces the number of test cases required to test a class

e state-based partitioning - tests designed in way so that operations that cause
state changes are tested separately from those that do not.

e attribute-based partitioning - for each class attribute, operations are classified
according to those that use the attribute, those that modify the attribute, and those
that do not use or modify the attribute.

e category-based partitioning - operations are categorized according to the
function they perform: initialization, computation, query, termination.

3. Fault-based testing

e Dest reserved for operations and the class level

e uses the inheritance structure

e tester examines the OOA model and hypothesizes a set of possible defects that
may be encountered in operation calls and message connections and builds
appropriate test cases

e misses incorrect specification and errors in subsystem interactions.

OO INTEGRATION TESTING

Integration testing is the phase in software testing in which individual software modules are
combined and tested as a group. Integration testing takes as its input modules that have been unit
tested, groups them in larger aggregates, applies tests defined in an integration test plan to those
aggregates, and delivers as its output the integrated system ready for system testing.

Kinds of integration testing:
e big bang testing - An inappropriate approach to integration testing in which you
take the entire integrated system and test it as a unit

YEAR/SEM: 111/V CS6502-00AD Page 73

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Module_(programming)
https://en.wikipedia.org/wiki/Test_plan
https://en.wikipedia.org/wiki/System_testing

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e incremental testing - A integration testing strategy in which you test subsystems
in isolation, and then continue testing as you integrate more and more subsystems.

Integration applied three different incremental strategies:
e Thread-based testing: integrates classes required to respond to one input or event
e Use-based testing: integrates classes required by one use case
e Cluster testing: integrates classes required to demonstrate one collaboration

Inter-Class Test Case Design
e Test case design becomes more complicated as integration of the OO system
begins — testing of collaboration between classes
e Multiple class testing
e for each client class use the list of class operators to generate random test
sequences that send messages to other server classes
e for each message generated determine the collaborator class and the
corresponding server object operator
e for each server class operator (invoked by a client object message)
determine the message it transmits
e for each message, determine the next level of operators that are invoked
and incorporate them into the test sequence
e Tests derived from behavior models
e Use the state transition diagram (STD) as a model that represent the
dynamic behavior of a class.
e test cases must cover all states in the STD
e breadth first traversal of the state model can be used
e test cases can also be derived to ensure that all behaviors for the class have
been adequately exercised.

Testing Methods Applicable at Inter-Class Level
e Cluster Testing
e Is concerned with integrating and testing clusters of cooperating objects
e ldentify clusters using knowledge of the operation of objects and the system
features that are implemented by these clusters
e Approaches to Cluster Testing
e Use-case or scenario testing
e Testing is based on a user interactions with the system
e Has the advantage that it tests system features as experienced by
users
e Thread testing — tests the systems response to events as processing threads
through the system
e Object interaction testing — tests sequences of object interactions that stop
when an object operation does not call on services from another object
e Use Case/Scenario-based Testing
e Based on
e USe cases

YEAR/SEM: I11/V CS6502-00AD Page 74

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

e corresponding sequence diagrams
e ldentify scenarios from use-cases and supplement these with interaction diagrams
that show the objects involved in the scenario
e Concentrates on (functional) requirements
e Every use case
e Every fully expanded extension (<<extend>>) combination
e Every fully expanded uses (<<uses>>) combination
e Tests normal as well as exceptional behavior
e A scenario is a path through sequence diagram
e Many different scenarios may be associated with a sequence diagram
e using the user tasks described in the use-cases and building the test cases from the
tasks and their variants
e uncovers errors that occur when any actor interacts with the OO software
e concentrates on what the use does, not what the product does.

GUI TESTING

GUI testing is the process of ensuring proper functionality of the graphical user interface
(GUI) for a given application and making sure it conforms to its written specifications. In
addition to functionality, GUI testing evaluates design elements such as layout, colors, fonts, font
sizes, labels, text boxes, text formatting, captions, buttons, lists, icons, links and content.

GUI testing processes can be either manual or automatic, and are often performed by
third -party companies, rather than developers or end users. GUI testing can require a lot of
programming and is time consuming whether manual or automatic.

There are two types of interfaces in a computer application.

e Command Line Interface is where you type text and computer responds to that command.
e GUI stands for Graphical User Interface where you interact with the computer using
images rather than text.
Following are the GUI elements which can be used for interaction between the user and
application:

— True — False Fadio Buddon
— Check — Check C et Bosx

| Tt Box

| '-rl L—iE-‘I:'-E'D:IL

In the below example, if we have to do GUI testing we first check that the images should
be completely visible in different browsers. Also, the links are available, and the button should
work when clicked. Also, if the user resizes the screen, neither images nor content should shrink
or crop or overlap.

Need for GUI Testing
o A user doesn't have any knowledge about XYZ software/Application. It is the Ul
of the Application which decides that a user is going to use the Application further or not.

YEAR/SEM: 111/V CS6502-00AD Page 75

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

o A normal User first observes the design and looks of the Application/Software
and how easy to understand the Ul. If a user is not comfortable with the Interface or find
Application complex to understand he/she would never going to use that Application again.

What do you check in GUI Testing?

The following checklist will ensure detailed GUI Testing.
e Check all the GUI elements for size, position, width, length and acceptance of
characters or numbers. For instance, you must be able to provide inputs to the
input fields.

e Check if you can execute the intended functionality of the application using the
GUI

Check Error Messages are displayed correctly

Check for Clear separation of different sections on screen

Check Font used in application is readable

Check the alignment of the text is proper

Check the Color of the font and warning messages

Check that the images have good clarity

Check that the images are properly aligned

Check the positioning of GUI elements for different screen resolution.

Approach of GUI Testing
GUI testing can be done through three ways:

Manual Based Testing
Under this approach, graphical screens are checked manually by testers in conformance
with the requirements stated in the business requirements document.

B caiculstor =101 =] e
Tester checks for Wew EX Hdp
addition of two
numbers manually e
(16+64)
MClMRI HSlH-| M-|
A .._I CEI cI =| . - 18]
Ay B | o o o
a| s| 6| = | 1]
1| 2] 3] -] _
o | -l -]

Record and Replay

GUI testing can be done using automation tools. This is done in 2 parts. During Record ,
test steps are captured by the automation tool. During playback, the recorded test steps are
executed on the Application Under Test. Example of such tools - QTP .

YEAR/SEM: 111/V CS6502-00AD Page 76

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Tester checks for ST I T e Vew' Bt Fub ——

addition of two

numbers manually

(16+64) 0 9
])) e i) o] (o}] e

- == | p—p | ==
8 m— i BT

s el 51 s 1
o nppEEill | JinEnEs

|)) A NG|) |
Record Plo\gbw.k

Model Based Testing

Model-based testing is an application of model-based design for designing and optionally also
executing artifacts to perform software testing or system testing. Models can be used to represent
the desired behavior of a system under test (SUT), or to represent testing strategies and a test
environment.

oo ogros 1000
Input, First number 16 o
Input, FArst number 64 _”il _’f'_J ..'ﬂJ .:‘._’ _:_J
- || | o] <] GUI
A IS N N B
IS O
s _IJ_E_J_SJ_Ij
o =
Check for expected
output, 80

Model Based Testing
GUI Testing Test Cases

GUI Testing basically involves
1. Testing the size, position, width, height of the elements.
2. Testing of the error messages that are getting displayed.
3. Testing the different sections of the screen.
4. Testing of the font whether it is readable or not.
5. Testing of the screen in different resolutions with the help of zooming in and
zooming out like 640 x 480, 600x800, etc.
Testing the alignment of the texts and other elements like icons, buttons, etc. are
in proper place or not.
Testing the colors of the fonts.
Testing the colors of the error messages, warning messages.
. Testing whether the image has good clarity or not.
10. Testing the alignment of the images.
11. Testing of the spelling.
12. The user must not get frustrated while using the system interface.

S

© N

YEAR/SEM: 111/V CS6502-00AD Page 77

https://en.wikipedia.org/wiki/Model-based_design
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/System_under_test

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

13. Testing whether the interface is attractive or not.

14. Testing of the scrollbars according to the size of the page if any.
15. Testing of the disabled fields if any.

16. Testing of the size of the images.

17. Testing of the headings whether it is properly aligned or not.
18. Testing of the color of the hyperlink.

Challenges in GUI Testing

The most common problem comes while doing regression testing is that the application GUI
changes frequently. It is very difficult to test and identify whether it is an issue or enhancement.
The problem manifests when you don't have any documents regarding GUI changes.

OO SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to
evaluate the system's compliance with its specified requirements. System testing falls within the
scope of black-box testing, and as such, should require no knowledge of the inner design of the
code or logic.

Types of System Testing:
e Functional Testing
e Structure Testing
e Acceptance Testing
e Installation Testing
Functional Testing
Goal: Test functionality of system
« Test cases are designed from the requirements analysis document (better: user
manual) and centered around requirements and key functions (use cases)
« The system is treated as black box.
» Unit test cases can be reused, but new test cases have to be developed as well.
Structure Testing
Goal: Cover all paths in the system design
» Exercise all input and output parameters of each component.
* Exercise all components and all calls (each component is called at least once and
every component is called by all possible callers.)
* Use conditional and iteration testing as in unit testing.
Performance Testing
Goal: Try to break the subsystems
* Test how the system behaves when overloaded.
* Try unusual orders of execution
* Call a receive() before send()
* Check the system’s response to large volumes of data
* If the system is supposed to handle 1000 items, try it with 1001 items.
» What is the amount of time spent in different use cases?
* Are typical cases executed in a timely fashion?

YEAR/SEM: 111/V CS6502-00AD Page 78

https://en.wikipedia.org/wiki/Requirements
https://en.wikipedia.org/wiki/Black-box_testing

VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE

Types of Performance Testing
e Recovery testing: how well and quickly does the system recover from faults
e Security testing: verify that protection mechanisms built into the system will protect
from unauthorized access
e Stress testing: place abnormal load on the system
Volume testing: Test what happens if large amounts of data are handled
Configuration testing: Test the various software and hardware configurations
Compatibility test: Test backward compatibility with existing systems
Timing testing: Evaluate response times and time to perform a function
Environmental test - Test tolerances for heat, humidity, motion
Quality testing: - Test reliability, maintainability & availability
e Human factors testing: Test with end users
Acceptance Testing
Goal: Demonstrate system is ready for operational use
» Choice of tests is made by client
« Many tests can be taken from integration testing
» Acceptance test is performed by the client, not by the developer.
Alpha test:
» Sponsor uses the software at the developer’s site.
« Software used in a controlled setting, with the developer always ready to fix bugs.
Beta test:
» Conducted at sponsor’s site (developer is not present)
» Software gets a realistic workout in target environment.

YEAR/SEM: 111/V CS6502-00AD Page 79

