

Unit 10: Acids and Bases

PROPERTIES

OF
ACIDS \&

BASES

Properties of an Acid:

Tastes sour

Electrolytes

Has a pH of less than 7

Produce hydrogen gas
When they react with Metals

Acids dissociate in water to generates $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in solution

- can also be depicted as a $\left[\mathrm{H}^{+}\right]$
- $\left[\mathrm{H}^{+}\right]$known as a hydrogen ion or a proton

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

How do we classify as acid as weak or strong?

- We look at the degree to which they ionize in water.
- Strong acids completely ionize: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HClO_{4}
- Weak acids only partially ionize
- Look at K_{a} values to determine degree of dissociation

No.	Acid	K_{a}	$\mathrm{p} K_{3}$
1	Hydroiodic acid (HI)	3.16×10^{9}	-9.5
2	Hydrobromic acid (HBr)	1.0×10^{9}	-9
3	Hydrochloric acid (HCl)	1.0×10^{6}	-6
4	Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	1.0×10^{3}	-3
5	Hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$	55	-1.74
6	Nitric acid $\left(\mathrm{HNO}_{3}\right)$	28.2	-1.45
7	Trifluoroacetic acid $\left(\mathrm{CF}_{3} \mathrm{COOH}\right)$	5.62×10^{-1}	0.25
8	Oxalic acid $(\mathrm{HOOC}-\mathrm{COOH})$	5.37×10^{-2}	1.27
9	Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	1.75×10^{-5}	4.76

Strong Acids		HCl, $\mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$
HCI	Hydrochloric	Strong, reacts quickly with tissue, found in stomach acid, used in fertilizer and explosives. Sometimes called muriatic acid.
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric	Strong, more damaging to tissue and clothing than HCl, gets hot when diluted. Gives up $1_{\text {st }}$ hydrogen easily as a strong acid, gives up $\mathbf{2 n d}^{\text {ndydrogen }}$ as a weak acid.
HNO_{3}	Nitric	Strong, reacts quickly with tissue, used for fertilizer and explosives manufacturing. Reacts with many metals to form NO_{2}, a common component of city smog.
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric	Weak, even though it can give up to $3 \mathrm{H}^{\prime}$'s, it doesn't give them up easily. It dissociates poorly.
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic	Weak, soft drink acid, easily decomposes into water and CO_{2}. $\mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\begin{gathered} \hline \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\ \mathrm{Or} \\ \mathrm{CH}_{3} \mathrm{COOH} \end{gathered}$	Acetic Acid	Weak. Vinegar is 5\% acetic acid. Used to make plastics. An organic acid - the 2nd formula given to the left is the "organic" way to write the formula. The bolded hydrogen is the one that is released when it dissociates.

Monoprotic Acids - acids that only donate one hydrogen when they dissociate. Ex: $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
Polyprotic Acids - acids that give up more than one hydrogen. Typically the 1st dissociation is "strong" and the 2nd dissociation is "weak.

Properties of a Base (alkalis):

Neutralization

Chemical reaction between an acid and a base.

Products are a salt (ionic compound) and water.

ACID + BASE \rightarrow SALT + WATER

What salt is produced?

$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathbf{N a C l}+\mathrm{H}_{2} \mathbf{O}$
 strong strong neutral

- Write out the balanced equation for the neutralization reaction between sulfuric acid and sodium hydroxide.
- Phosphoric acid and potassium hydroxide
- Ammonia and hydrochloric acid

Neutralization

Salts can be neutral, acidic, or basic.
Neutralization does not mean $\mathrm{pH}=7$.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ weak strong ?

So...

Orange juice, with a pH of 3 has 10 times as much free H^{+} as tomato juice with a pH of 4

Lemon juice, with a pH of 2 has ___ times as many H^{+} as black coffee with a pH of 5

Indicators

These are chemicals that change color in the presence of an acid or a base.

There are a number of different indicators that change color at different pH 's.

Methyl orange

Figure 19.11 Acid-base indicators respond to pH changes over a specific range. Methyl orange (left group) is shown at pH 2, 4, and 6 (left to right). Bromthymol blue (right group) is shown at $\mathrm{pH} 5,7$, and 9.

pH 2.0

Bromthymol blue

pH 5.0
pH 9.0

Theories of acids and bases

Arrhenius Acid - compounds that contain hydrogen and can dissolve in water to release hydrogen

$$
\mathrm{HCl} \rightarrow \mathrm{H}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})
$$

Arrhenius Base- compounds that contain hydroxide and can dissolve in water to release hydroxide

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})
$$

Bronsted-Lowry Definition

Acid - any substance that can donate a hydrogen ion (proton)

Base-any substance that can accept a hydrogen ion (proton).

Bronsted-Lowry Definition

Acids are proton $\left(\mathrm{H}^{+}\right)$donors

Bases are proton $\left(\mathrm{H}^{+}\right)$acceptors

| $\underset{(\mathrm{aq})}{ }+$ |
| :--- | :--- |
| $\mathrm{HA}_{2} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ |
| bacid |$\quad \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\quad \mathrm{A}^{-}(\mathrm{aq})$

Hydrogen chloride

Bronsted-Lowry Definition

The acid on one side reacts to become the base on the other side.

The only difference between and acid and its conjugate base is a proton $(\mathrm{H}+)$.

Bronsted-Lowry Definition

What are the acid/base pairs in these equations?

$\mathrm{HBr}_{(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}{ }_{(1)} \Leftrightarrow$	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$	+	$\mathrm{Br}^{-}{ }^{(a q)}$
acid		base	Conjugate acid		Conjugate base
NH_{3} (aq)	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow$	$\mathrm{NH}_{4}^{+}{ }_{(\text {aq) }}$	+	$\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
base		acid	Conjugate acid		Conjugate base

Bronsted-Lowry Definition

Label the acid/base pairs.
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}{ }^{-}$
$\mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-}$
$\mathrm{OH}^{-}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Bronsted-Lowry Definition

Practice

Write the conjugate base for the following acids:
a. HClO_{4}
b. $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$

Write the conjugate acid for the following bases:
d. CN^{-}
e. $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{3} \mathrm{O}^{+}$

Which of the highlighted atoms or group of atoms makes acetaminophen a Brønsted-Lowry acid? Why?

Calculating pH and pOH

pH scale

We measure the strength of acids and bases using the pH scale.
$\mathrm{pH}=$ power of hydrogen

Each change on the pH scale is a power of ten.
pH scale goes from 0 to 14
0 to 7 - acid
7 - neutral
7 to 14 - base

The pit Scale

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=14$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1
$$

You can convert the concentrations of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in solutions in terms of pH and pOH

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$\mathrm{pH}+\mathrm{pOH}=14$

Figure 14.3
The pH scale and pH values of some common substances.

Calculating the pH using a calculator:

1. What is the pH of a solution where $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4}$

Step 1: Push the - key
Step 2: Push the log key
Step 3: Enter the number
-

- log
$-\log (1.0 E-4)$
$\mathrm{pH}=4.00$

Find the pH :
$[\mathrm{H}+]=3.5 \times 10-3 \mathrm{M}$
$[H+]=5.5 \times 10-14 \mathrm{M}$

Table 20.2

Relationship among [$\left.\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and pH

$\left[\mathrm{H}^{+}\right](\mathrm{mol} / \mathrm{L}) \quad\left[\mathrm{OH}^{-}\right](\mathrm{mol} / \mathrm{L})$			H Aqueous system
	1×10^{0}	1×10^{-14}	$0.0 \leftrightarrows 1 \mathrm{MHCl}$
	1×10^{-1}	1×10^{-13}	$1.0 \leftarrow 0.1 \mathrm{MHCl}$
	1×10^{-2}	1×10^{-12}	2.0 -Gastric juice
	1×10^{-3}	1×10^{-11}	3.0 Lemonju
	1×10^{-4}	1×10^{-10}	4.0 - Tomato juice
	1×10^{-5}	1×10^{-9}	$5.0 \longleftarrow$ Black coffee
	1×10^{-6}	1×10^{-8}	6.0
Neutral	1×10^{-7}	1×10^{-7}	$7.0 \longleftarrow$ Pure water
	1×10^{-8}	1×10^{-6}	$8.0 \sim^{\text {Blood }}$
	1×10^{-9}	1×10^{-5}	$9.0{ }^{\text {Sodium hydrogen carbonate, }}$
	1×10^{-10}	1×10^{-4}	$10.0 \longleftarrow$ Milk of magnesia
	1×10^{-11}	1×10^{-3}	11.0 匹Household ammonia
	1×10^{-12}	1×10^{-2}	12.0 Washing soda
	1×10^{-13}	1×10^{-1}	$13.0-0.1 \mathrm{M} \mathrm{NaOH}$
	1×10^{-14}	1×10^{0}	$14.0=1 \mathrm{M} \mathrm{NaOH}$

You can convert the concentrations of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in solutions in terms of pH and pOH

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$\mathrm{pH}+\mathrm{pOH}=14$

Figure 14.3
The pH scale and pH values of some common substances.

Calculating the pOH using a calculator:

What is the pOH of a solution where $\left[\mathrm{OH}^{-}\right]=3.4 \times 10^{-4}$

Find the pOH :
$[\mathrm{OH}-]=6.7 \times 10^{-13} \mathrm{M}$
$[\mathrm{OH}-]=5.5 \times 10^{-2} \mathrm{M}$

Calculating $\left[\mathrm{H}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right]$from pH and pOH

What is the $\left[\mathrm{H}^{+}\right]$of a solution with a pH of 6.7 ?

Step 1: Push the inv log key (2 ${ }^{\text {nd }} \log$)
Step 2: Push the - key
Step 3: Enter the pH
10^{\wedge}
10^-
10^- 6.7

$$
\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-7}
$$

$$
\begin{array}{ll}
\mathrm{pOH}=2.5 & {[\mathrm{OH}-]=?} \\
\mathrm{pH}=9.9 & {[\mathrm{H}+]=?}
\end{array}
$$

[H $]$		pH	pOH
2.09×10^{-3}			
		9.00×10^{-3}	
			5.67

Titrations

- Using a neutralization reaction to determine the concentration of an acid or base.
- Steps for titration:

1. Have a measured volume of acid of unknown concentration in flask (analyte).
2. Add several drops of indicator to the acid and swirl gently.
3. Add base of known concentration (titrant) dropwise into acid until indicator barely changes color.
4. The indicator changes color at the end point of the titration (should coincide with equivalence point).

In a titration, 33.21 mL of 0.3020 M rubidium hydroxide solution is required to exactly neutralize 20.00 mL of hydrofluoric acid solution. What is the molarity of the hydrofluoric acid solution?

A 35.00 mL sample of NaOH solution is titrated to an endpoint by 4.76 mL of 0.4122 M HBr solution. What is the molarity of the NaOH solution?

