
Name: Teacher:	TT • 4 T		Period		Date: Class:	
			ds & Ba	ses &		
67	25	63	74	8	86	19
Holmium	Mn Manganese	Europium	W Tungsten	Oxygen	Radon	K Potassium

The following pages are practice questions for this unit, and will be submitted for homework!

You must complete:

- Unit Vocabulary ALL QUESTIONS
- Acid or Base ALL QUESTIONS
- Conjugate Acid/Base Pairs ALL QUESTIONS
- o pH/Indicator Practice ALL QUESTIONS
- Neutralization Practice ALL QUESTIONS
- Acids and Metals ALL QUESTIONS
- Titration Practice **ALL QUESTIONS**

DUE:

Name:	e: Offi	cial Class:		Date:
Teach	her:Perio	vd:	_Class:	
	Unit Vocabula	ary		
Direct	ctions: Use your notes and the orange review book to he		followin	g words.
٠	Acidity:			
•	Alkalinity:			
•	Arrhenius acid:			
•	Arrhenius base:			
•	Bronsted Lowery acid:			
•	Bronsted Lowery base:			
•	Electrolyte:			
•	Hydrogen ion:			
•	Hydronium ion:			
•	Hydroxide ion:			
•	Amphoteric:			
•	Conjugate Acid:			
•	Conjugate Base:			
•	Indicator:			
•	Neutralization:			
•	pH scale:			
•	Salt:			
•	Titration:			
•	Endpoint:			

Teacher:	Period:	Class:	
	Acid or Base		

Official Class:

Directions: Fill in the table indicating if the property is characteristic of an acid or base.

Property	Acid or Base	Property	Acid or Base
Tastes sour		Tastes bitter	
Forms OH-		pH 4	
HCl(aq)		KOH(aq)	
pH 12		Forms H ₃ O ⁺	

Conjugate Acid/Base Pairs

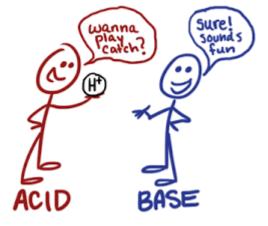
Directions: Fill in the blanks using your notes and your knowledge of chemistry.

 Acids are defined as proton (H⁺) donators. They donate protons to the base. Bases are defined as proton acceptors. They accept protons from the acid.

$HC1 + NH_3 \iff NH_4^+ + C1^-$

- According to Bronsted-Lowry theory, acid-base reactions involve a transfer of a proton.
- Above, the acid on the left, _____, transfers (donates) a proton (H⁺) and becomes a base on the right, _____.
- The donating acid and the base it becomes are called *conjugate acid base pairs*.
- The base on the left, _____, accepts a proton (H⁺) and becomes an acid on the right, _____. This is also a conjugate pair.

Directions: Label the acid, base, conjugate acid, and conjugate base in each of the following reactions.


1. HCl + NH₃ \rightarrow NH₄⁺ + Cl⁻

Name:

```
3. PO_4^{3-} + HNO \rightarrow NO_3^{-} + HPO_4^{2-}
```

2. $OH^- + HCN \rightarrow H_2O + CN^-$

4. $HCO_3^- + HCl \rightarrow H_2CO_3 + Cl^-$

Date:

HNO ₂ H ₂ O	H_2O		_	
H ₂ O				$HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
	F⁻	HF	OH-	
				$\rm NH_3 + HCN \rightarrow \rm NH_4^+ + CN^-$
		H ₂ O	ClO ₃ -	
HSO4 ⁻	PO4 ³⁻			
				- ALL QUESTIONS
irections:	Use the grap	h below to com	plete the table.	pH Versus Hydronium Ion Concentration
	[H ₃ O+] (M) pH	Acid or Bas	Bleach

	F	 14	
Stomach		12	
fluids		10.:	
Lemon juice			
		8	+
Blood		펍	
		6.	-
Seawater		-	
		4.	
Bleach		_	
		2.	
		0.	
		· ·	100

Directions: Circle one to complete the table.

Name: ____

Teacher:

Directions: Fill in the following table.

Hydronium Ion Concentration (M)

10-6

10-8

10-10

10-12

10-14

Seawater,

Milk 🛛

Tomato juice

Lemon juice

10-2

Stomach fluids (gastric juice)

10-4

Aqueous ammonia Milk of magnesia •

• Blood

_ Official Class: _____ Date: _____ _Period: _____ Class: _____

	If an ACID is added	If a BASE is added
рН	Increases or Decreases	Increases or Decreases
[H ⁺] or [H ₃ O ⁺]	Increases or Decreases	Increases or Decreases
[OH ⁻]	Increases or Decreases	Increases or Decreases
Solution becomes more	Acidic or Basic	Acidic or Basic

Directions: Answer the following questions and fill in the chart. Remember:

- increasing or decreasing the pH by 1 changes the $[H^+]$ by a factor of 10^1 (10 times, "ten-fold")
- increasing or decreasing the pH by 2 changes the $[H^+]$ by a factor of 10^2 (100 times, hundred-fold)
- increasing or decreasing the pH by 3 changes the [H⁺] by a factor of 1000 (thousand-fold)

Name:	Official Class:	Date:
Teacher:	Period:	Class:

1. Describe what happens to the concentration of hydrogen ions in a solution if the pH is changed from 7 to 5.

- 2. Describe what is happening to the concentration of hydrogen ions in a solution if the pH is changed from 5 to 8.
- 3. Complete table

pH Change	[H ₃ O ⁺] increase or decrease	[OH ⁻] increase or decrease	More acidic or more basic?	By a factor of
6 to 8				
8 to 5				
3 to 7				
11 to 9				
14 to 13				
4 to 8				

Directions: Determine the approximate pH of each mystery solution.

- 1. Mystery solution #1 turns blue when bromcresol green is added and yellow when bromthymol blue is added.
- 2. Mystery solution #2 turns litmus red and is yellow when methyl orange is added.
- 3. Mystery solution #3 is clear when phenolphthalein is added but turns litmus paper blue.
- 4. Mystery solution #4 is blue in the presence of thymol blue and pink in the presence of phenolphthalein.
- 5. Mystery solution #5 is yellow in the presence of both bromthymol blue and methyl orange.

Name:		
	Period:Cla	ISS:
Neutralizati Directions: Predict the products in each of the followin neutral (Hint: use the criss-cross method if needed). M Use the space provided to show your work. Remember	ng reactions. Make sure y lake sure your equations	are balanced at the end.
1 HF (aq) + LiOH (aq) \rightarrow (aq) +	_ HOH (1)	
2 HNO _{3 (aq)} + KOH (aq) \rightarrow (aq) +	HOH (1)	
3 HCl (aq) + Ca(OH)2 (aq) \rightarrow (aq)	+ HOH (1)	
4HClO _{3 (aq)} +Mg(OH) _{2 (aq)} \rightarrow (aq) + HOH (l)	
5. <u>H</u> ₂ CO _{3 (aq)} + <u>NaOH</u> (aq) \rightarrow (aq)	+ HOH ()	

Acids and Metals

Directions: Predict the products of the following reactions. (Hint: acid + more active metal \rightarrow H_{2(g)} + salt

- 1. Zn (s) + 2HCl (aq) \rightarrow _____ + ____
- 2. Ag (s) + H₂SO₄ (aq) \rightarrow _____ + ____

Directions: Answer the following questions based on your knowledge of chemistry.

1. Because tap water is slightly acidic, water pipes made of iron corrode over time, as shown by the balanced ionic equation below. Explain, in terms of chemical reactivity, why copper pipes are less likely to corrode than iron pipes.

 $2Fe(s) + 6H^+(aq) \rightarrow 2Fe^{3+}(aq) + 3H_2(g)$

2. Many ancient cultural statues and buildings were made out of marble. Marble is a type of rock which contains the metal calcium in it. Explain, using Table J, why marble statues are damaged by acid rain.

Name:	_ Official Class:	Date:
Teacher:	Period:0	Class:

- 3. During a laboratory activity, a student reacted a piece of zinc with 0.1 M HCl(aq).
 - a. Complete the equation below by writing the formula of the missing products.

 $Zn + HCl \rightarrow __+ __$

b. Identify one metal that does not react spontaneously with HCl(aq).

Titration Practice

1. A 25.0-milliliter sample of $HNO_{3 (aq)}$ is neutralized by 32.1 milliliters of 0.150 M $KOH_{(aq)}$. What is the concentration of the acid?

2. How many milliliters of 0.200 M NaOH are needed to neutralize 100. mL of 0.100 M HCl?

3. In a titration, 20.0 milliliters of 0.15 M HCl(aq) is exactly neutralized by 18.0 milliliters of KOH(aq). What is the concentration of KOH?

- In a laboratory activity, 0.500 mole of NaOH_(s) is completely dissolved in distilled water to form 400. milliliters of NaOH_(aq). This solution is then used to titrate a solution of HNO_(aq).
 - a. What is the molarity of NaOH

Name:	Official Class: Date:
Teacher:	Period: Class:

b. If 26.4 milliliters of the NaOH solution is needed to exactly neutralize 44.0 milliliters of the HNO₃ solution, what is the molarity of the HNO₃ solution?

5. If 6.00M HI is neutralized by 50.0mL of 4.50M RbOH, what is the volume of the acid added?

6. **If 25.5mL H₃PO₄ is neutralized by 50.0mL of 2.00M LiOH, what is the molarity of the acid?

7. **If 65.0mL of 1.50M H_3PO_4 is neutralized by 25.0mL of Ca(OH)₂, what is the molarity of the base?