CCM6+7+ 2015-16

 Unit 10 Angle Relationships

 Unit 10 Angle Relationships}

Name

Teacher

Projected Test Date

Main Concepts	Page(s)
Unit 10 Vocabulary	$2-6$
Measuring Angles with Protractors	$7-11$
Classifying Angles (Acute, Right, Obtuse, Straight, Reflex)	$12-17$
Angle Relationships (2 or more angles): Complementary, Supplementary, Vertical, and Adjacent	$18-21$
Parallel Lines with Transversals	$22-34$
Sides of Triangles and Classify Triangles	$35-36$
Triangle Sum Theorem	$37-40$
Exterior Angle Theorem	$41-47$
Mixed Angle Practice	$48-52$
Study Guide	$53-55$

CCM6 Plus/7 Plus - Unit 10: Angle Relationships and Geometric Properties Vocabulary

Acute Angle	An angle that measures less than 90 degrees
Acute Triangle	A triangle whose angles are all less than 90°
Adjacent Angles	Angles that share a vertex and a side but no points in their interiors
Alternate Exterior Angles	Pairs of angles found on the exterior of two lines and on opposite sides of the transversal
Alternate Interior Angles	Pairs of angles found on the interior of two lines and on opposite sides of the transversal
Angle	Two rays meet at an endpoint
Angle Sum Theorem	The sum of the interior angles of any triangle is equal to 180°
Angle Angle Criterion	If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar
Complementary Angles	Two angles whose sum is 90 degrees
Congruent Angles	Angles that have the same measure
Congruent Triangles	Triangles whose corresponding sides are congruent and corresponding angles are congruent - these triangles are the same shape and size
Corresponding	Similar in character, form or function
Corresponding Angles	A pair of angles formed by a transversal and two lines
Deductive Reasoning	To arrive at a conclusion using facts, definitions, rule or properties
Equilateral Triangle	A triangle with three congruent sides
Exterior Angle	An angle formed by a side and the extension of an adjacent side
Intersecting	A single point where two lines meet or cross
Interior Angle	An angle inside a polygon
Isosceles Triangle	A triangle with at least two congruent sides
Line Segment	A straight line with exactly two endpoints
Non-adjacent Angles	Two angles that do not have a common side or a common vertex (not touching)
Obtuse Angle	An angle that measures more than 90 degrees but less than 180
Obtuse Triangle	A triangle with one obtuse angle

Parallel	Side by side lines, surfaces, or objects having the same continuous distance apart
Parallel lines	Lines that lie in the same plane but never intersect
Perpendicular	Intersecting to form right angles
Protractor	An instrument used to measure angles in degrees
Ray	A part of a line with exactly one endpoint
Remote Interior Angles	The remote interior angles are the two angles that are inside the triangle and opposite from the exterior angle
Right Angle	An angle that measures exactly 90°
Right Triangle	A triangle with one right angle
Same Side Interior Angles	Lie on the same side of the transversal between the other two lines
Scalene Triangle	A triangle with no congruent sides
Straight Angle	An angle that measures exactly 180°
Supplementary Angles	Two angles whose sum is 180 degrees
Transversal	A line that cuts through two or more parallel lines
Triangle	A closed figure consisting of three line segments
Triangle Exterior Angle Theorem	The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles
Triangle Sum Theorem	The three angles of any triangle will always total 180°
Vertical Angles	A pair of non-adjacent angles formed by the intersection of two straight lines; vertical angles are congruent

Acute Angle		
Obtuse Angle		
Straight Angle		
Right Angle		
Reflex Angle		
Acute Triangle		
Obtuse Triangle		
Right Angle		
Complementary		
Angles		
Supplementary		
Angles		
Vertical Angles		

CCM6+7+ Unit 10 Angle Relationships ~ Page 5

Protractor		
Compass		
(in geometry)		
Scalene		
Triangle		
Isosceles		
Triangle		
Ray		
Triangle		

Angle		
Line		
Line Segment		
Vertex		
Adjacent		
Angles		

Measuring Angles

Write the measure of each given angle below.

1. Measure = \qquad

2. Measure $=$ \qquad

3. Measure $=$ \qquad

4. Measure $=$ \qquad

5. Measure $=$ \qquad

On a separate page, using a protractor, draw the following angles and label them with the given letter as the vertex.
A) 125°
B) 30^{0}
C) 165°
D) a right angle

Drawing the angles from the bottom of page 6:

Find the measure of each angle in degrees.

$$
m \angle C A B=\quad m \angle D A B=\quad m \angle E A B=
$$

$m \angle C A F=$ \qquad $m \angle D A F=$ \qquad $m \angle E A F=$ \qquad

$$
m \angle R P Q=\ldots \quad m \angle S P Q=\ldots \quad \text { ___ } m \angle T P Q=
$$

PRACTICE MEASURING ANGLES

Part 1:

Fill the blank with the appropriate vocabulary word.

1. $A(n)$ \qquad angle is an angle that measures less than 90°.
2. $A(n)$ \qquad angle is an angle that measures more than 90°.
3. $A(n)$ \qquad angle is an angle that measures exactly 90°.

Part 2:

For each angle, first write an estimate measurement, then the actual measurement, and last identify the type of angle.

Estimated Measure: \qquad
Actual Measure: \qquad
Type of Angle: \qquad

Estimated Measure: \qquad
Actual Measure: \qquad
Type of Angle: \qquad

Estimated Measure: \qquad
Actual Measure: \qquad
Type of Angle: \qquad

Estimated Measure: \qquad
Actual Measure: \qquad
Type of Angle: \qquad

Part 3:

Using the figure below, name the set(s) of angles that are obtuse and the set(s) of angles that are acute.
6.

Part 4: Reflection

Based on today's vocabulary, what are some things you think that we will study? What are your strengths and weaknesses in this area? How might you plan to study the vocabulary piece of this unit?
\qquad

ANGLES

Complementary Angles: \qquad
\qquad
Supplementary Angles: \qquad
\qquad
Vertical Angles: \qquad

Adjacent Angles: \qquad

Find the missing angles in the following examples. Make sure you tell the reason that you know each measure.

Is there more than one way to solve this? \qquad Explain: \qquad

Use what you know to find the angle measures on the following problem.

$m \angle \mathrm{SAX}$ is 118° and the $m \angle \mathrm{MAX}$ is 65°
Find the measure of $\angle \mathrm{SAM}$

Find the missing measures of all angles below and label them on the drawing.

Find the missing measure below.

Find the missing measure below.

Challenge. Find the value of x in the diagram. Then find the measure of each angle.
1.

2. $m \angle \mathrm{VUT}=175^{\circ}$
$m \angle \mathrm{VUJ}=17 \mathrm{x}-3$,
$m \angle \mathrm{JUT}=17 \mathrm{x}+8$. Find x then find the measure of each angle.

3.

Find the missing angles in the following. Make sure you tell the reason that you know each measure.

$$
\begin{aligned}
& m \angle 1=\underline{135^{\circ}} \\
& m \angle 2=
\end{aligned}
$$

because \qquad because \qquad

$$
m \angle 3=
$$

\qquad because \qquad
$m \angle 4=$ \qquad because \qquad
Is there more than one way to solve this? \qquad Explain: \qquad
2. Use what you know to find the angle measures on the following problem.

$m \angle \mathrm{SAX}$ is 100° and the $m \angle \mathrm{MAX}$ is 70°
Find the measure of $\angle \mathrm{SAM}$
3. Find the missing measures of all angles below and label them on the drawing.

Find the missing measures below.
4. \uparrow

Find the missing measure below.
6.

7.

9.

10.

Vocabulary Review: Write in words and draw a diagram to define each of the following words.

1. Complementary Angles
2. Supplementary Angles
3. Adjacent Angles 4. Vertical Angles

Use the figure to the right to answer the following questions.
6. If $m \angle 5=95^{\circ}$. Then $m \angle 6=$ \qquad .
7. If $m \angle 3=115^{\circ}$ then $m \angle 6=$ \qquad -.
9. If $m \angle 6=2 x$ and $m \angle 4=78$, then $x=$ \qquad .

10. $m \angle 5=4 x+12$ and $m \angle 4=x+8$, then $x=$ \qquad What is the measure of Angle 5? \qquad What is the measure of angle 4 ? \qquad

Use the figure below to answer the following questions yes or no?

9. Are $\angle 1$ and $\angle 2$ complementary angles?
10. Are $\angle 2$ and $\angle 3$ adjacent angles?
11. Are $\angle 2$ and $\angle 4$ vertical angles?
12. Are $\angle 5$ and $\angle 3$ vertical angles?
13. Are $\angle 3$ and $\angle 4$ supplementary angles?

For each given angle find its complement and supplement. If none exists, write "none".
15. $m \angle A=54$
16. $m \angle A=95$
17. $m \angle A=90$
18. $m \angle A=112$
comp: \qquad
comp: \qquad
comp: \qquad
comp: \qquad
supp: \qquad
supp: \qquad
supp: \qquad
supp: \qquad

For questions $19-24$ set up and label a diagram, solve for the variable, and then find the angles given.

19. $\angle 1$ and $\angle 2$ are supplementary angles. If $m \angle 1=3 x+12$ and $m \angle 2=7 x-32$, find $x, m \angle 1$ and $m \angle 2$.
Equation used to solve: $\quad \mathrm{x}=\square$.
20. $\angle 1$ and $\angle 2$ are complementary. If $m \angle 1=6 \mathrm{x}+2$ and $\mathrm{m} \angle 2=4 \mathrm{x}+8$, find $\mathrm{x}, \mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$.

Equation used to solve: \qquad
$\mathrm{x}=$ \qquad
$m \angle 1$ \qquad
$m \angle 2$

Concept Map: Angles

Building A Bench

You are building a bench to add to the flower garden at the local library. The seat of the bench will be parallel to the ground. The legs that you are creating will be two boards crossed to make an x shape under the seat of the bench. The angle at the top part of the x will need to be 150° to safely support the bench seat and make it the right height. Draw a sketch below of the bench and then fill in all of the angle measures for the 12 angles that are formed by the crossed boards that are supporting the bench seat. Include the angles created by the ground and the bottom of the supports.

Angles Created from Parallel Lines cut by a Transversal Line

A transversal is a line that intersects two or more lines (in the same plane). When lines intersect, angles are formed in several locations. Certain angles are given "names" that describe "where" the angles are located in relation to the lines. These names describe angles whether the lines involved are parallel or not parallel.

Remember that:

- the word INTERIOR means BETWEEN the lines.
- the word EXTERIOR means OUTSIDE the lines.
- the word ALTERNATE means "alternating sides" of the transversal.

When the lines are parallel:
 Alternate Interior Angles (measures are equal)
 The name clearly describes "where" these angles are located.

Look carefully at the diagram below:

Hint: If you draw a Z on the diagram, the alternate interior angles are found in the corners of the Z . The Z may also be a backward Z .

If two parallel lines are cut by a transversal, the alternate interior angles are congruent.

If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.

When the lines are parallel: Alternate Exterior Angles (measures are equal)
 The name clearly describes "where" these angles are located.

Look carefully at the diagram below:

If two parallel lines are cut by a transversal, the alternate exterior angles are congruent.

If two lines are cut by a transversal and the alternate exterior angles are congruent, the lines are parallel.

When the lines are parallel: Corresponding Angles (measures are equal)

Unfortunately, the name of these angles does not clearly indicate "where" they are located. They are located:

- on the SAME SIDE of the transversal
- one INTERIOR and one EXTERIOR
- and they are NOT adjacent (they don't touch).
(They lie on the same side of the transversal,
in corresponding positions.)

Hint: If you took a picture of one corresponding angle and slid the angle up (or down) the same side of the transversal, you would arrive at the other corresponding angle.

Also: If you draw an F on the diagram, the corresponding angles can be found in the "corners" of the F. The F may be backward and/or upside-down.

DRAW CIRCLES to find CORRESPONDING ANGLES!

Theorem:

If two parallel lines are cut by a transversal, the corresponding angles are congruent.

If two lines are cut by a transversal and the corresponding angles are congruent, the lines are parallel.

When the lines are parallel:
Interior Angles on the Same Side of the Transversal
(measures are supplementary)
Their "name" is simply a description of where the angles are located.

Theorem:
If two parallel lines are cut by a transversal, the interior angles on the same side of the transversal are supplementary.

If two lines are cut by a transversal and the interior angles on the same side of the transversal are supplementary, the lines are parallel.

岩妾	＜	\bigcirc	¢	$>$	－			－	\bigcirc	$山$		z	ェ	ш	\pm		－	∞		\bigcirc
	¿	융	앙	웅	\bigcirc				잉			－		는			年	封		\％

\pm
10
$\underset{\sim}{\sim}$
ஸ
N
\dot{N}
∞
10
\sim
N
$\stackrel{N}{N}$
co
\div
0
N
\cdots
∞
N
0
∞
\bigcirc
∞
\pm
0
N
\cdots

Use the figure at the right to answer problems 1-8.

Classify each pair of angles as one of the following:
(a) alternate interior angles
(b) corresponding angles
(c) alternate exterior angles
(d) vertical angles
(e) supplementary angles
(f) none

1. \qquad $\angle 9 \& \angle 16$
2. \qquad $\angle 9 \& \angle 11$
3. \qquad $\angle 15$ \& $\angle 11$
4. \qquad $\angle 9 \& \angle 15$
5. \qquad $\angle 10 \& \angle 15$
6. \qquad $\angle 13 \& \angle 14$
7. \qquad $\angle 12$ \& $\angle 15$
8. \qquad $\angle 14$ \& $\angle 11$
9.

$$
\begin{aligned}
& \mathrm{m} \angle 2=97^{\circ} \quad \mathrm{m} \angle 6=83^{\circ} \\
& \mathrm{m} \angle 3= \\
& \mathrm{m} \angle 10= \\
& \mathrm{m} \angle 5= \\
& \mathrm{m} \angle 9= \\
& \mathrm{m} \angle 16=
\end{aligned}
$$

Find the value of x given that $s / / t$

10. $\mathrm{m} \angle 4=77^{\circ}, \mathrm{m} \angle 8=4 \mathrm{x}+57$
11. $m \angle 3=5 x+13, m \angle 5=53^{\circ}$

12. $m \angle 1=6 x-5, m \angle 7=115^{\circ}$

Find the value of x that makes $i \| k$.
13.

15.

Determine the missing angles.
17.

18.

19.

20.

Parallel Lines

Name the relationship as alternate interior, corresponding, or alternate exterior.

Find the missing measures on all the angles below.

2.

3.

4.

Kuta Software - Infinite Geometry
Parallel Lines and Transversals

Name \qquad

Identify each pair of angles as corresponding, alternate interior, alternate exterior, or consecutive interior.
1)

2)

3)

5)

6)

7)

8)

9)

10)

Find the measure of each angle indicated.
11)

12)

13)

14)

15)

16)

17)

18)

Solve for \boldsymbol{x}.
19)

20)

21)

22)

23)

24)

Find the measure of the angle indicated in bold.
25)

26)

27)

28)

Classifying Triangles by Sides:

Name each type and draw a picture of each.

Classifying Triangles by Angles:

Name each type and draw a picture of each.

Using a ruler, measure each side of each triangle (in cm to nearest tenth).
What do you notice about the relationship between the two shorter sides and the longest side?

Can you draw a triangle with sides of 2, 3, and 7? EXPLAIN:
Can you draw a triangle with sides of 5,5 , and 12 ? EXPLAIN:
Can you draw a triangle with sides of 5, 3, and 7? EXPLAIN:

After your investigation, complete the following statement:
In any triangle, the sum of the two \qquad sides will be \qquad than the length of the longest side.

Fill in the missing information for each triangle named.

TRIANGLE	Length of Side 1	Length of Side 2	Length of Side 3	Sum of all Sides	Name of Triangle by Sides
Triangle MAD	12 mm		12 mm	42 mm	
Triangle ZEN		15 mm			Equilateral Δ
Triangle POD	5 mm	9 mm		28 mm	
Triangle CAT				60 mm	Equilateral Δ
Triangle CRY		8 mm	13 mm	29 mm	Isosceles Δ

Identify the missing measurement for each triangle below and then classify the triangle by its angles. DO NOT USE A PROTRACTOR. (Triangles shown are not to scale.)

Making Connections - Parallel Lines and the Triangle Sum Theorem

How can I show that the sum of the interior angles of a triangle is equal to 180° using what I know about the relationships between the angles of parallel lines cut by a transversal?

Use the following figure to answer the questions that follow.

1. Knowing that angle 1 , angle B and angle 2 form a straight line, what is their sum?
2. What kind of angles are angle C and angle 2? What is their relationship?
3. What kind of angles are angle A and angle 1? What is their relationship?
4. Based on your answers to questions 1-3, how do you know that the sum of the angle A, angle B, and angle C is 180° ?

TRIANGLE SUM THEOREM:
 The sum of all 3 angles of a triangle ALWAYS EQUALS 180°.

Triangle Homework

For \#1-4, name the triangle

1) \qquad	2) \qquad
3)	4) \qquad

For numbers 5-8, find the missing side length.

5) The perimeter of an equilateral triangle is 45 cm . What is the length of each side?	6) If the perimeter of the triangle below is 36 in find the value of x and the length of each side.
7) Two sides of an isosceles triangle are 4 less than twice the value of the third side. If the perimeter of the triangle is 42 cm , what is the value of x ? What are the lengths of the 3 sides?	8) The perimeter of an equilateral triangle is 108 in . Find the length of each side. An isosceles triangle has the same perimeter, what can be the lengths of the sides?

For numbers 9-12, state whether the sides can form a triangle

9$) 2 \mathrm{~cm}, 6 \mathrm{~cm}, 4 \mathrm{~cm}$	$10) 9 \mathrm{~cm}, 11 \mathrm{~cm}, 4 \mathrm{~cm}$
11$) 15 \mathrm{~cm}, 7 \mathrm{~cm}, 9 \mathrm{~cm}$	$12) 60 \mathrm{~cm}, 60 \mathrm{~cm}, 20 \mathrm{~cm}$

Find the value of x and the measurement of each side:

1) $x=$ \qquad
Side 1= \qquad
Side $2=$ \qquad
Side 3= \qquad

2) $x=$ \qquad
Side 1= \qquad
Side $2=$ \qquad
Side 3= \qquad

3) $x=$ \qquad
Side 1= \qquad
Side $2=$ \qquad
Side 3= \qquad

CCM6+7+ Unit 10 Angle Relationships ~ Page 41

Triangles: Interior and Exterior Angles: In-class Worksheet (Middle School)
NAME: \qquad CLASS:

DATE: \qquad
A. Directions for problems 1-3

1) Click Demo.
2) Select Triangle Sum Theorem from the drop-down menu.
3) Select one of the three vertices from the drop-down Select theorem: Triangle Sum Theorem $\boldsymbol{\nabla}$ Select vertex: A V menu that will appear.
4) Step through the demo by clicking the navigation buttons at the bottom of the window. step through demo: (1) 2) 3)
5) Complete problems 1-3 on this worksheet.
1. Complete the Triangle Sum Theorem.

The sum of the measures of the angles \qquad
2. How is the Triangle Sum Theorem illustrated in the demo? \qquad
\qquad
\qquad
3. Review: Triangles are classified by sides (scalene, isosceles, equilateral) and by angles (acute, right, obtuse). This information is not stated in the demo.

Draw an example of each of the following triangles:

Isosceles right triangle	Scalene obtuse triangle	Acute equilateral triangle

Triangles: Interior and Exterior Angles: In-class Worksheet (Middle School)

B. Directions for problems 4-9

1) Click Practice.
2) In the Create Triangle panel, set up each problem on the computer to match the setup for each problem on this worksheet.

- Select Triangle Sum Theorem from the drop-down menu.
- Click three points to create a triangle similar to the one shown for each problem below.
- If needed, drag the vertices to adjust the shape of the triangle.

3) In the Measurements panel on the computer, select the first two angles for each problem in Setup.

Note: The angles to select in Setup will vary for each problem.

Select theorem: | Triangle Sum Theorem | \boldsymbol{v} |
| :--- | :--- |

Drag the vortices to change the angle measures.

4) Find the measure of the third angle in the triangle.
5) Click the Check Answers button to check your work. Correct as necessary.
6) For each new problem, click Clear to clear the triangle and all measurements. (The Clear button is located at the bottom of the Create Triangle panel)
clear
clear
7) Complete problems 4-9 and record your answers on this worksheet.
4. Acute triangle

Angle	Measure
$m \angle A$	$=$
$m \angle B$	$=$

$$
m \angle C=
$$

$m \angle A+m \angle B+m \angle C=$ \qquad
5. Acute triangle

Angle	Measure
$m \angle A=$	
$m \angle C=$	

$$
m \angle B=
$$

$$
m \angle A+m \angle B+m \angle C=
$$

\qquad

Triangles: Interior and Exterior Angles: In-class Worksheet (Middle School)
6. Obtuse triangle

Angle	Measure
$m \angle B$	$=$
$m \angle C$	$=$

$$
m \angle A=
$$

$$
m \angle A+m \angle B+m \angle C=
$$

7. Obtuse triangle

Angle	Measure
$m \angle A$	$=$
$m \angle B$	$=$

$$
m \angle C=
$$

$$
m \angle A+m \angle B+m \angle C=
$$

\qquad
8.

$m \angle A+m \angle B+m \angle C=$ \qquad
9. Right triangle

Angle	Measure
$m \angle B$	$=$
$m \angle C$	$=$

$$
m \angle A \quad=
$$

$m \angle A+m \angle B+m \angle C=$ \qquad

Triangles: Interior and Exterior Angles: In-class Worksheet (Middle School)

Extension

C. Directions for problems 10-15

1) Click Demo.
2) Select Exterior Angle Theorem from the drop-down menu.
3) Step through the demo using the navigation buttons at the bottom of the window.

Select theorem: Exterior Angle Theorem \mathbf{V}

continue
step through demo: (1) 2) 3 3) 4
4) Complete problems 10-15 on this worksheet.
10. Define an exterior angle \qquad
\qquad
11. Draw an exterior angle at $\angle A$.

12. In the above triangle, $\angle A, \angle B$, and $\angle C$ are called interior angles. Describe an interior angle \qquad
\qquad
13. Describe a remote interior angle \qquad
\qquad
14. Name the two remote interior angles of $\angle B C D$?
\qquad and \qquad

15. Exterior Angle Theorem: The measure of an exterior angle of a triangle \qquad
\qquad

Triangles: Interior and Exterior Angles: In-class Worksheet (Middle School)

D. Directions for problems 16-21

1) Click Practice.
2) Select Exterior Angle Theorem from the drop-down menu.

Select theorem: Exterior Angle Theorem
3) In the Create Triangle panel, set up each problem on the computer to match the setup for each problem on this worksheet. For each problem

- Click three points to create a triangle.
- Select a vertex and an exterior point from the dropdown menus.

Select vertex: $c \mid \nabla$ Select exterior point: $E \mid \nabla$

- In the Measurements panel, select the first given angle to set up the worksheet problem.

- Adjust the triangle until the given angle measure matches the problem.
- In the Measurements panel, select the second angle given on the worksheet.

4) Find the measure of the third angle.

Find:

5) Click the Check Answers button to check your work. Correct as necessary.
6) Important: For each new problem, click Clear (located at the bottom of the Create Triangle panel) to clear the triangle and all measurements.
7) Complete problems 16-21 and record your answers on this worksheet.
16.

Angle		Measure
$m \angle 1$	$=$	80
$m \angle 2$	$=$	

\square
18.

Angle		Measure
$m \angle 2$	$=$	125
$m \angle 4$	$=$	

$m \angle 1=$
20.

Angle	
$m \angle 1$	$=$
	Measure
$m \angle 4$	

$m \angle 2=$
17.

Angle	
$m \angle 4$	$=$
$m \angle 1$	$=$

\square
19.

Angle	
$m \angle 1$	$=$
	Measure
$m \angle 2$	$=$

$m \angle 4=$
21.

Angle	
$m \angle 4$	$=$
$m \angle 2$	$=$

$m \angle 1=$

Find each missing angle measure.

1.	2. In a triangle the measure of two of the angles is 35° and 65°. Find the measure of the third angle.
3. In triangle $D E F$ the measure of angle D is 33° and the measure of angle E is 97°. Find the measure of angle F.	4.
5. Triangle $A B C$ is a right triangle. The measure of angle A is 370 . Find the measures of angle B and C.	6. Four isosceles triangles cap the Smith Tower in Seattle. If one of the base angles measures 65°, what are the measures of the other two angles?
7. Find the missing angle measure without using a protractor. Triangle is not drawn to scale. Set up an equation and show your work.	8. Draw a triangle and give it the following measures then list the measure of all three angles. $m \angle 1=102^{\circ}, m \angle 2=x+2$, and $m \angle 3=x+20$. $m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad

9. Can you draw a right triangle that is also an isosceles triangle? Explain.
10. Can a triangle have more than one obtuse angle? Explain.

Tell if the following combinations are lengths that could create a triangle.
11. $3,5,9$
12. $8,8,8$
13. $7,8,2$

How did you determine the answers to \#11-13?
14. In congruent triangles, what is true about corresponding sides?
15. In congruent triangles, what is true about corresponding angles?

Find the Missing Angle Practice

Mark the diagram with the given information. Then, find the measure of the indicated angle.
31. $m \angle A=X, m \angle B=2 X . m \angle C=2 X+30^{\circ}$. Find $m \angle B$.

32. $\mathrm{m} \angle \mathrm{S}=2 \mathrm{x}, \mathrm{m} \angle \mathrm{A}=\mathrm{X}-23 . \mathrm{m} \angle \mathrm{D}=\mathrm{X}-17^{\circ}$.

Find $\mathrm{m} \angle \mathrm{S}$.

35. $m \angle W=x-22^{\circ}, m \angle X=3 x+19^{\circ}, m \angle Y=x-17^{\circ}$. Find $m \angle X$.

Find all of the missing angles.
1)

$\angle 1=$ \qquad
2)

$\angle 1=$ \qquad
$\angle 2=$ \qquad
$\angle 3=$ \qquad
$\angle 5=$ \qquad
$\angle 6=$ \qquad
$\angle 7=$ \qquad
$\angle 8=\quad 53^{\circ}$
$L 2=$ \qquad

$$
\angle 3=\quad 61^{\circ}
$$

$L 4=$ \qquad
$\angle 5=$ \qquad
$L 6=$ \qquad
$\angle 7=$ \qquad
$\angle 8=$ \qquad

4)

\qquad
6)

Math-Aids.Com

Triangle Angle Sum

Solve for the given variable.
1)

$\mathrm{n}=$ \qquad
2)

$$
f=
$$

\qquad
3)

$d=$ \qquad
4)

$$
v=
$$

\qquad
5)

$\mathrm{h}=$ \qquad
6)

$s=$ \qquad
7)

$a=$ \qquad
8)

$e=$ \qquad
妿- Math-Aids.Com

STUDY GUIDE

Unit 10 Review for Assessment

Define the following words:

- supplementary angles
- complementary angles
- equilateral triangle
- vertical angles
- adjacent angles
- parallel lines
- transversal
- acute triangle
- congruent angles
- obtuse triangle
- corresponding angles
- right triangle
- alternate interior angles
- isosceles triangle
- scalene triangle
- alternate exterior angles
- triangle sum theorem
are Name each triangle by its sides and lengths

5) Use the diagram to find the missing angle measures B and D.

6)

Find the measure of each angle in the figure at the right.

1. $m \angle 1$
2. $m \angle 2$
3. $m \angle 3$
4. $m \angle V W R$
he

Practice 9-2 Angle Relationships and Parallel Lines

ε
4. merevive

Use the figure at the right for Exercises 5-8.
5. Write an equation. \qquad
6. Find the value of x. \qquad
7. Find $m \angle A B D$. \qquad
8. Find $m \angle D B C$, \qquad

Use the figure at the right for Exercises 9-12.
9. Write an equation. \qquad
10. Find the value of x. \qquad
11. Find $m \angle M N Q$. \qquad
12. Find $m \angle M N R$.

In each figure, find the measures of $\angle 1$ and $\angle 2$.
13. Given $p \| q$.

$m \angle 1=$
$m \angle 2=$
14. Given $a \| b$.

$$
m \angle 1=
$$

$$
m \angle 2=
$$

15. Find a pair of complementary angles such that the difference of their measures is 12°.

148

