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UNIT 12:  ROTATIONAL MOTION
Approximate Time: Three 100-minute sessions

To every thing - turn, turn, turn
there is a season -- turn, turn, turn
and a time for every purpose under heaven.

--Pete Seeger
(With a little help from Ecclesiastes)

OBJECTIVES 

1. To understand the definitions of angular velocity and 
angular acceleration.

2. To understand the kinematic equations for rotational 
motion on the basis of observations.

3. To discover the relationship between linear velocity and 
angular velocity and between linear acceleration and 
angular acceleration.

4. To develop definitions for rotational inertia as a measure 
of the resistance to rotational motion.

5. To understand torque and its relation to angular 
acceleration and rotational inertia on the basis of both 
observations and theory.
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OVERVIEW
25 min  

 
Earlier in the course, we spent a session on the study of 
centripetal force and acceleration, which characterize 
circular motion.  In general, however, we have focused 
on studying motion along a straight line as well as the 
motion of projectiles.  We have defined several 
measurable quantities to help us describe linear and 
parabolic motion, including position, velocity, 
acceleration, force, and mass.  In the real world, many 
objects undergo circular motion and/or rotate while they 
move.  The electron orbiting a proton in a hydrogen 
atom, an ice skater spinning, and a hammer which 
tumbles about while its centre-of-mass moves along a 
parabolic path are just three of many rotating objects.  

Since many objects undergo rotational motion it is useful 
to be able to describe their motions mathematically.  The 
study of rotational motion is also very useful in obtaining a 
deeper understanding of the nature of linear and parabolic 
motion.

We are going to try to define several new quantities and 
relationships to help us describe the rotational motion of 
rigid objects, i.e., objects which do not change shape. These 
quantities will include angular velocity, angular 
acceleration, rotational inertia and torque.  We will then 
use these new concepts to develop an extension of Newton's 
second law to the description of rotational motion for 
masses more or less concentrated at a single point in space 
(e.g. a small marble) and for extended objects (like the 
tumbling hammer).
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SESSION ONE:  ROTATIONAL KINEMATICS 
5 min

Rigid vs. Non-rigid Objects
We will begin our study of rotational motion with a 
consideration of some characteristics of the rotation of 
rigid objects about a fixed axis of rotation.  The motions of 
objects, such as clouds, that change size and shape as time 
passes are hard to analyse mathematically.  In this unit we 
will focus primarily on the study of the rotation of particles 
and rigid objects around an axis that is not moving.  A 
rigid object is defined as an object which can move along a 
line or can rotate without the relative distances between its 
parts changing. 

           

Figure 12-1: Examples of a non-rigid object in the form 
of a cloud which can change shape and of a rigid object 
in the form of an empty coffee cup which does not 
change shape.

The hammer we tossed end over end in our study of centre-
of-mass and an empty coffee cup are examples of rigid 
objects.  A ball of clay which deforms permanently in a 
collision and a cloud which grows are examples of non-rigid 
objects. 

By using the definition of a rigid object just presented in 
the overview can you identify a rigid object?
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✍ Activity 12-1:  Identifying Rigid Objects
A number of objects are pictured below. Circle the ones 
which are rigid and place an X  through the ones which are 
not rigid.

   

 

10 min
A Puzzler
Use your imagination to solve the rotational puzzler 
outlined below.  It’s one that might stump someone who 
hasn't taken physics.
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✍Activity 12-2:  Horses of a Different Speed
You are on a white horse, riding off at sunset with your 
partner on a chestnut mare riding at your side.  Your horse 
has a speed of 4.0 m/s and your partner’s horse has a speed 
of 3.5 m/s, yet he or she constantly remains at your side.  
Where are your horses?  Make a sketch to explain your 
answer.

 

Review of the Geometry of Circles
Remember way back before you came to college when you 
studied equations for the circumference and the area of a 
circle?  Let's review those equations now, since you'll need 
them a lot from here on in.

✍Activity 12-3: Circular Geometry
(a) What is the equation for the circumference, C, of a 
circle of radius r?

r

(b) What is the equation for the area, A, of a circle of radius 
r?

(c) If someone told you that the area of a circle was A = πr, 
how could you refute them immediately?  What's wrong 
with the idea of area being proportional to r?
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Distance from an Axis of Rotation and Speed
Let's begin our study by examining the rotation of objects 
about a common axis that is fixed.  What happens to the 
speeds of different parts of a rigid object that rotates about 
a common axis?  How does the speed of the object depend 
on its distance from an axis?  You should be able to answer 
this question by observing the rotational speed of your own 
arms.

        

Figure 12-2: A rigid system of masses rotating about an 
axis

For this observation you will need:

 • A partner
 • A stopwatch
 • A metre stick

Spread your arms and slowly rotate so that your fingertips 
move at a constant speed.  Let your partner record the 
time as you turn.

              

Figure 12-3: Rotating arms featuring elbows and hands
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✍ Activity 12-4: Twirling Your Arms – Speed vs. 
Radius
(a) Measure how long it takes your arm to sweep through a 
known angle.  Record the time and the angle in the space 
below.

(b)  Calculate the distance of the paths traced out by your 
elbow and your fingers as you rotated through the angle 
you just recorded.  (Note: What do you need to measure to 
perform this calculation?)  Record your data below.

(c) Calculate the average speed of your elbow and  the 
average speed of your fingers.  How do they compare?

(d) Do the speeds seem to be related in any way to the 
distances of your elbow and of your finger tips from the 
axis of rotation?  If so, describe the relationship 
mathematically.

(e) As you rotate, does the distance from the axis of 
rotation to your fingertips change?

(f) As you rotate, does the distance from the axis of rotation 
to your elbows change?

(g) At any given time during your rotation, is the angle 
between the reference axis and your elbow the same as the 
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angle between the axis and your fingertips, or do the 
angles differ?

(h)At any given time during your rotation, is the rate of 
change of the angle between the reference axis and your 
elbow the same as the rate of change of the angle between 
the axis and your fingertips, or do the rates differ?

(i) What happens to the linear velocity ,     

€ 

r 
v , of your fingers 

as you rotate at a constant rate?  Hint: What happens to 
the magnitude of the velocity, i.e., its speed?  What 
happens to its direction?

(j) Are your finger tips accelerating?  Why or why not?

20 min
Radians, Radii, and Arc Lengths
An understanding of the relationship between angles in 
radians, angles in degrees, and arc lengths is critical in the 
study of rotational motion.  There are two common units 
used to measure angles—degrees and radians.

1. A degree is defined as 1/360th of a rotation in a 
complete circle.

2. A radian is defined as the angle for which the arc along 
the circle is equal to its radius as shown in Figure 12-4.
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s
r

! = 1 radian

! = 1 radian!

when s = r.

Figure 12-4: A diagram defining the radian

How much pie do 

you want, honey? About a 

radian. ?

In the next series of activities you will be relating angles, 
arc lengths, and radii for a circle. To complete these 
activities you will need the following:
  
  • A drawing compass
  • A flexible ruler
  • A protractor
  • A pencil

✍ Activity 12-5: Relating Arcs, Radii, and Angles
(a) Let's warm up with a review of same very basic 
mathematics.  What should the constant of proportionality 
be between the circumference of a circle and its radius?  
How do you know?

(b) Now, test your prediction. You and your partners 
should draw four circles each with a different radius.  
Measure the radius and circumference of each circle.  
Enter your data into a spreadsheet and graphing routine 
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capable of doing simple fitting.  Affix the plot in the space 
below. 

(c) What is the slope of the line that you see (it should be 
straight)?  Is that what you expected?  What is the % 
discrepancy between the slope you obtained from your 
measurements and that which you predicted in part (a)?

(d) Approximately how many degrees are in one radian?  
Let's do this experimentally.  Using the compass draw a 
circle and measure its radius.  Then, use the flexible ruler 
to trace out a length of arc, s, that has the same length as 
the radius.  Next measure the angle in degrees that is 
subtended by  the arc.

(e) Theoretically, how many degrees are in one radian?  
Please calculate your result to three significant figures.  
Using the equation for the circumference of a circle as a 
function of its radius and the constant π = 3.1415927... 
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figure out a general equation to find degrees from radians.  
Hint: How many  times does a radius fit onto the 
circumference of a circle?  How many degrees fit in the 
circumference of a circle?

  

(e) If an object moves 30 degrees on the circumference of a 
circle of radius 1.5 m, what is the length of its path?

(f) If an object moves 0.42 radians on the circumference of 
a circle of radius 1.5 m, what is the length of its path?

(g) Remembering the relationship between the speed of 
your fingers and the distance, r, from the axis of your turn 
to your fingertips, what equations would you use to define 
the magnitude of the average "angular" velocity, <ω> ?  
Hint: In words, <ω>  is defined as the amount of angle 
swept out by the object per unit time.  Note that the 
answer is not simply θ/t!

!1

!2

t1

t2

x

y

(h) How many radians are there in a full circle consisting 
of  360o?
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(i) When an object moves in a complete circle in a fixed 
amount of time, what quantity (other than time) remains 
unchanged for circles of several different radii? 

10 min 
Relating Linear and Angular Quantities
It’s very useful to know the relationship between the 
variables s, v, and a, which describe linear motion and the 
corresponding variables θ, ω, and α, which describe 
rotational motion.  You now know enough to define these 
relationships.

✍ Activity 12-6: Linear and Angular Variables
(a) Using the definition of the radian, what is the general 
relationship between a length of arc, s, on a circle and the 
variables r and θ in radians.

 

(b) Assume that an object is moving in a circle of constant 
radius, r.  Take the derivative of s with respect to time to 
find the velocity of the object.  By using the relationship 
you found in part (a) above, show that the magnitude of 
the linear velocity, v, is related to the magnitude of the 
angular velocity, ω, by the equation v = ωr.

(c) Assume that an object is accelerating in a circle of 
constant radius, r.  Take the derivative of v with respect to 
time to find the acceleration of the object.  By using the 
relationship you found in part (b) above, show that the 
linear acceleration, at, tangent to the circle is related to the 
angular acceleration, α, by the equation at = αr.
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10 min
The Rotational Kinematic Equations for Constant α
The set of definitions of angular variables are the basis of 
the physicist's description of rotational motion.  We can 
use them to derive a set of kinematic equations for 
rotational motion with constant angular acceleration that 
are similar to the equations for linear motion. 

Figure 12-5: A massless 
string is wound
around a spool of radius r. 
The mass falls with a 
constant acceleration, a

✍ Activity 12-7: The Rotational Kinematic 
Equations
Refer to Figure 12-5 and answer the following questions.

(a) What is the equation for θ in terms of y and r?

(b) What is the equation for ω in terms of v and r?

(c) What is the equation for α in terms of a and r?
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(d) Consider the falling mass in Figure 12-5 above.  
Suppose you are standing on your head so that the positive 
y-axis is pointing down.  Using the relationships between 
the linear and angular variables in parts (a), (b), and (c), 
derive the rotational kinematic equations for constant 
accelerations for each to the linear kinematic equations 
listed below.  Warning: Don't just write the analogous 
equations!  Show the substitutions needed to derive the 
equations on the right from those on the left.

(a) v = vo + at     ω =              

                          
(b) y = yo + vot + ½at2           θ =

 
(c) v2 = vo2 + 2ay ω2 =  
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SESSION TWO: TORQUE, ROTATIONAL INERTIA,  & NEWTON'S LAWS
25 min

Causing and Preventing Rotation
Up to now we have been considering rotational motion 
without considering its cause.  Of course, this is also the 
way we proceeded for linear motion.  Linear motions are 
attributed to forces acting on objects.  We need to define 
the rotational analogue to force.  

Recall that an object tends to rotate when a force is applied 
to it along a line that does not pass through its centre-of-
mass.  Let's apply some forces to a rigid bar.  What 
happens when the applied forces don't act along a line 
passing through the centre-of-mass of the bar?

The Rotational Analogue of Force – What Should It Be? 
If linear equilibrium results when the vector sum of the 
forces on an object is zero (i.e., there is no change in the 
motion of the centre of mass of the object), we would like to 
demand that the sum of some new set of rotational 
quantities on a stationary non-rotating object also be zero.  
By making some careful observations you should be able to 
figure out how to define a new quantity which is analogous 
to force when it comes to causing or preventing rotation.  
For this set of observations you will need:

  • A vertical pivot
  • A clamp stand to hold the pivot
  • An aluminum rod with holes drilled in it
  • Two identical spring scales
  • A ruler

                

Figure 12-6: Aluminum Rod with Holes and Spring Balances
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✍ Activity 12-8: Force and Lever Arm Combinations
 (a) Set the aluminum rod horizontally on the vertical pivot.  

Try pulling horizontally with each scale when they are 
hooked on holes that are the same distance from the pivot 
as shown in diagram (a) above.  What ratio of forces is 
needed to keep the rod in equilibrium? 

(b) Try moving one of the spring scales to some other hole 
as shown in Figure 12-6.  Now what ratio of forces is 
needed to keep the rod from rotating?  How do these ratios 
relate to the distances?  Try this for several different 
situations and record your results in the table below. 

Original 
Force (N)

Original 
Distance (cm)

Balancing 
Force (N)

Balancing 
Distance (cm)

1

2

3

4
(c) What mathematical relationship between the original 
force and distance and the balancing force and distance 
give a constant for both cases?  How would you define the 
rotational factor mathematically?  Cite evidence for your 
conclusion.

(d) Show quantitatively that your original and final 
rotational factors are the same within the limits of 
experimental uncertainty for all four of the situations you 
set up.
 

The rotational factor that you just discovered is officially 
known as torque and is usually denoted by the Greek letter 
τ ("tau", which rhymes with "cow").  The distance from the 
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pivot to the point of application of a force you applied with 
the spring scale is defined as the lever arm for that force.

Seeking a "Second Law" of Rotational Motion 
Consider an object of mass m moving along a straight line.  
According to Newton's second law an object will undergo a 
linear acceleration a when it is subjected to a linear force  
where     

€ 

r 
F = m

r 
a .  Let's postulate that a similar law can be 

formulated for rotational motion in which a torque τ is 
proportional to an angular acceleration α.  If we define the 
constant of proportionality as the rotational inertia, I, then 
the rotational second law can be expressed by the equation

   τ = Iα

(I is also commonly called the moment of inertia. Actually, 
τ and α are vector quantities. For now we will not worry 
about including vector signs as the vector nature of τ and α 
will be treated in the next unit.)

We need to know how to determine the rotational inertia, 
I, mathematically.  You can predict, on the basis of direct 
observation, what properties of a rotating object influence 
the rotational inertia.  For these observations you will need 
the following equipment.

• A vertical pivot
• A clamp stand to hold the pivot
• An aluminum rod with holes drilled in it
• Two aluminum "point masses" that mount over 

holes in the rod
• A metre stick

This observation relates a fixed torque applied by you to 
the resulting angular velocity of a spinning rod with 
masses on it.  When the resulting angular acceleration is 
small for a given effort, we say that the rotational inertia 
is large.  Conversely, a small rotational inertia will lead to 
a large rotational acceleration.  In this observation you can 
place masses at different distances from an axis of rotation 
to determine what factors cause rotational inertia to 
increase.

Centre a light aluminum rod on the almost frictionless 
pivot that is fixed at your table.  With your finger, push the 
rod at a point about halfway between the pivot point and 
one end of the rod.  Spin the rod gently with different mass 
configurations as shown in the diagram below.
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Figure 12-7: Causing a rod to rotate under the influence of a constant 
applied torque for three different mass configurations. 

✍ Activity 12-9: Rotational Inertia Factors
(a) What do you predict will happen if you exert a constant 
torque on the rotating rod using a uniform pressure 
applied by your finger at a fixed lever arm?  Will it 
undergo an angular acceleration, move at a constant 
angular velocity, or what?

(b) What do you expect to happen differently if you use the 
same torque on a rod with two masses added to the rod as 
shown in the middle of Figure 12-7? 

(c) Will the motion be different if you relocate the masses 
farther from the axis of rotation as shown in Figure 12-7 
on the right?

(d) While applying a constant torque, observe the rotation 
of: 
(1) the rod, (2) the rod with masses placed close to the axis 
of rotation, and (3) the rod with the same masses placed 
far from the axis of rotation.  Look carefully at the motions.  
Does the rod appear to undergo angular acceleration or 
does it move at a constant angular velocity?

(e) How did your predictions pan out?  What factors does 
the rotational inertia, I, depend on?
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10 min
The Equation for the Rotational Inertia of a Point 
Mass
Now that you have a feel for the factors on which I 
depends, let's derive the mathematical expression for the 
rotational inertia of an ideal point mass, m, which is 
rotating at a known distance, r, from an axis of rotation.  
To do this, recall the following equations for a point mass 
that is rotating:    

  a = αr  τ = rF

✍ Activity 12-10: Defining I Using the Law of 
Rotation

Show that if F=ma and τ = Iα:, then I for a point mass 
that is rotating on an ultra-light rod at a distance r from 
an axis is given by 
   I = mr2 

45 min  
Rotational Inertia for Rigid Extended Masses 
Because very few rotating objects are point masses at the 
end of light rods, we need to consider the physics of 
rotation for objects in which the mass is distributed over a 
volume, like heavy rods, hoops, disks, jagged rocks, human 
bodies, and so on.  We begin our discussion with the 
concept of rotational inertia for the simplest possible ideal 
case, namely that of one point mass at the end of a light 
rigid rod as in the previous activity.  Then we will present 
the general mathematical expression for the rotational 
inertia for rigid bodies.  In our first rigid body example you 
will show how the rotational inertia for one point mass can 
easily be extended to that of two point masses, a hoop, and 
finally a cylinder or disk. 

The Rotational Inertia of Point Masses and a Hoop
Let's start by considering the rotational inertia at a 
distance r from a blob of clay that approximates a point 
mass where the clay blob is a distance r from the axis of 
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rotation.  Now, suppose the blob of clay is split into two 
point masses still at a distance r from the axis of rotation.  
Then consider the blob of clay split into eight point masses, 
and, finally, the same blob of  clay fashioned into a hoop as 
shown in the diagram below.

 
Figure 12-8: Masses rotating at a constant radius

✍ Activity 12-11: The Rotational Inertia of a Hoop
(a) Write the equation for the rotational inertia, I, of the 
point mass shown in diagram (a) of Figure 12-8 above in 
terms of its total mass, M, and the radius of rotation of the 
mass, r.   

(b) Write the equation for the rotational inertia, I, of the 
two "point"  masses shown in diagram (b) of Figure 12-8 
above in terms of  its individual masses m and their 
common radius of rotation r. By replacing m with M/2 in 
the equation, express I as a function of the total mass M of 
the two particle system and the common radius of rotation 
r of the mass elements.

(c) Write the equation for the rotational inertia, I, of the 
eight "point" masses shown in diagram (c) of Figure 12-8 
above in terms of its individual masses m and their 
common radius of rotation r.  By replacing m with M/8  in 
the equation, express I as a function of the total mass M of 
the eight  particle system and the common radius of 
rotation r of the mass elements.

(d) Write the equation for the rotational inertia, I, of the N 
"point" masses shown in diagram (d) of Figure 12-8 above 
in terms of its individual masses m and their common 
radius of rotation r.  By replacing m with M/N in the 
equation, express I as a function of the total mass M of the 
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N particle system and the common radius of rotation r of 
the mass elements.

(e) What is the equation for the rotational inertia, I, of a 
hoop of radius r and mass M rotating about its centre?

The Rotational Inertia of a Disk
The basic equation for the moment of inertia of a point 
mass is mr2.  Note that as r increases I increases, rather 
dramatically, as the square of r.  Let's apply this fact to the 
consideration of the motion of a matched hoop and disk 
down an inclined plane.  To make the observation of 
rotational motion your class will need one set-up of the 
following demonstration apparatus:

• A hoop and cylinder  with the same mass and radius as 
the cylinder

• An inclined plane
 

✍ Activity 12-12: Which Rotational Inertia is 
Larger?
(a) If a hoop and a disk both have the same outer radius 
and mass, which one will have the largest rotational 
inertia (i.e., which object has its mass distributed farther 
away from an axis of rotation through its centre)?  Why?

(b) Which object should be more resistant to rotation – the 
hoop or the disk?  Explain.  Hint: You may want to use the 
results of your observation in Activity 12-9(d).

Figure 12-9: A disk rolling down an incline
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(c) What will happen if a hoop and disk each having the 
same mass and outer radius are rolled down an incline?  
Which will roll faster?  Why?

Figure 12-10: A hoop rolling down an incline

(d) What did you actually observe, and how valid was your 
prediction?

It can be shown experimentally that the rotational inertia 
of any rotating body is the sum of the rotational inertias of 
each tiny mass element, dm, of the rotating body.  If an 
infinitesimal element of mass, dm, is located at a distance 
r from an axis of rotation then its contribution to the 
rotational inertia of the body is given by r2dm.  
Mathematical theory tells us that since the total rotational 
inertia of the system is the sum of the rotational inertias of 
each of its mass elements, the rotational inertia I is the 
integral of r2dm over all m.  This is shown in the equation 
below.

      

€ 

I = r2dm∫

When this integration is performed for a disk or cylinder 
rotating about its axis, the rotational inertia turns out to 
be

                                       

€ 

I =
1
2

Mr2

   

where M is the total mass of the cylinder and r is its 
radius.  See almost any standard introductory physics 
textbook for details of how to do this integral. 
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It is often convenient to define a distance from the pivot 
point where the total mass could be located to give the 
same rotational inertia. This distance is called the radius 
of gyration and is symbolized by k. 

radius of gyration: 
  

€ 

k =
I

M
 

A disk or cylinder can be thought of as a series of nested, 
concentric hoops. This is shown in the figure below.

+ + +

+ +

=
etc.

   Figure 12-11: A disk or cylinder as a set of concentric hoops 

It is instructive to compare the theoretical rotational 
inertia of a disk, calculated using an integral, with a 
spreadsheet calculation of the rotational inertia 
approximated as a series of concentric hoops.

Suppose the disk pictured above is a life-sized drawing of a 
disk that has a total mass, M, of 2.0 kg.  Assume that the 
disk has a uniform density and a constant thickness so 
that the piece of mass represented by each hoop is 
proportional to its cross sectional area.

✍ Activity 12-13: The Rotational Inertia of a Disk 
(6 points)
(a) Measure the radius of the disk shown in Figure 12-11.  
Use the equation shown below (obtained from integration) 
to calculate the theoretical value of the rotational inertia of 
the disk pictured in Figure 12-11.

 

                             

€ 

I =
1
2

Mr2 =
 

 
(b) Develop a set of equations to calculate the numerical 
value for I by considering I to be the sum of the ΔIis for 
each hoop of mass m = (ΔAi/A)M (where A is the total cross 
sectional area of the disk and ΔAi represents the area of 
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the i-th hoop).  Hints: (1)  Start by making the 
measurements needed to calculate the ΔA of the inner hoop 
and move out from there; (2) The area of the face of a disk 
of radius r is given by πr2.

ΔAi =

ΔIi =

I = 
(Express in terms of ∆I.)

(c) Create a spreadsheet with the values of ΔA and m for 
each hoop along with the value of rotational inertia 
contributed by each of the hoops.  Upload the spreadsheet 
using WebCT.  

(d) How closely does your numerical spreadsheet 
calculation for the total rotational inertia of the disk 
compare with the value you calculated theoretically?  
Write down the general equation for the % discrepancy and 
display the steps in your calculation of it below.

(e) How could you change your procedures to make the % 
discrepancy smaller?

(f) What is the radius of gyration of the disk?
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SESSION THREE:  VERIFYING NEWTON'S 2ND LAW FOR ROTATION
100 min

Experimental Verification that τ = Iα for a Rotating 
Disk   
In the last session, you used the definition of rotational 
inertia, I, and spreadsheet calculations to determine a 
theoretical equation for the rotational inertia of a disk.  
This equation was given by

       

€ 

I =
1
2

Mr2

Does this equation adequately describe the rotational 
inertia of a rotating disk system?  If so, then we should 
find that, if we apply a known torque, τ, to the disk system, 
its resulting angular acceleration, α, is actually related to 
the system's rotational inertia, I, by the equation


 
 
 τ = Iα
or


 
 
   

€ 

α =
τ

I

The purpose of this experiment is to determine if, within the 
limits of experimental uncertainty, the measured angular 
acceleration of a rotating disk system is the same as its 
theoretical value.  The theoretical value of angular 
acceleration can be calculated using theoretically 
determined values for the torque on the system and its 
rotational inertia.

The following apparatus will be available to you:

 • A Rotating Cylinder System
 • A 20 g or 50 g hanging mass (for applying torque)
 • A clamp stand to mount the system on
 • String
 • A metre stick and a ruler
 • A Motion Detection System
 • A scale for determining mass

Theoretical Calculations
You'll need to take some basic measurements on the 
rotating cylinder system to determine theoretical values 
for I and τ.  Values of rotational inertia calculated from the 
dimensions of a rotating object are theoretical because they 
purport to describe the resistance of an object to rotation.  
An experimental value is obtained by applying a known 
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torque to the object and measuring the resultant angular 
acceleration.

✍ Activity 12-14: Theoretical Calculations
(a) Calculate the theoretical value of the rotational inertia of the 
stack of CDs using basic measurements of its radius and mass.  
Be sure to state units! If there’s a significant size hole in the 
centre, try to estimate the error involved in ignoring it.

For the CDs, ignoring the hole:

rd =                                                         Md = 

Id =

For the hole in the centre:

rh =                                                         Mh =

Ih =

ICD = Id – Ih = 

(b) Calculate the theoretical value of the rotational inertia of 
the spool using basic measurements of its radius and mass. 
Note: You'll have to do a bit of estimation here.  Be sure to 
state units.

rs =                                                         Ms =

Is =

(c) Calculate the theoretical value of the rotational inertia, I, of 
the whole system.  Don't forget to include the units.  Note: By 
noting how small the rotational inertia of the spool is compared 
to that of the disk, you should be able to convince yourself that 
you can neglect the rotational inertia of the rotating axle in your 
calculations.

  I =

(c) In preparation for calculating the torque on your system, 
summarize the measurements for the falling mass, m, and the 
radius of the spool in the space below.  Don't forget the units!
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  m =    rs = 

(d) Use the equation you derived in parts (b) and (c) of problem 
SP12-4 to calculate the theoretical value for the torque on the 
rotating system as a function of the magnitude of the hanging 
mass and the radius, rs, of the spool.

 τ =

(e) Based on the values of torque and rotational inertia of the 
system, what is the theoretical value of  the angular acceleration 
of the disk? What are the units? 

 αth =  

Experimental Measurement of Angular Acceleration
Devise a good way to measure the linear acceleration, a, of 
the hanging mass with a minimum of uncertainty and then 
use that value to determine α.  You will need to take 
enough measurements to find a standard deviation for 
your measurement of a and eventually α.  Can you see why 
it is desirable to make several runs for this experiment?  
Should you use a spread sheet? 

Note: The value of a is not the same as that of the gravitational 
acceleration, g. 

If you choose to use a graphical technique to find the 
acceleration be sure to include a copy of your graph and 
the equation that best fits the graph.  Also show all the 
equations and data used in your calculations.  Discuss the 
sources of uncertainties and errors and ways to reduce 
them.

Workshop Physics II: Unit 12 – Rotational Motion Page 12-27
Authors: Priscilla Laws, Robert Boyle, and John Luetzelschwab 

© 1990-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified for SFU by N. Alberding, 2005.



✍ Activity 12-15: Experimental Write-up for Finding 
α   (10 pts) 
Describe your experiment in detail in the space below.  Show 
your data and your calculations.
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Compare your experimental results for α to your 
theoretical calculation of α for the rotating system.  
Present this comparison with a neat summary of your data 
and calculated results.

✍ Activity 12-16: Comparing Theory with 
Experiment
(a) Summarize the theoretical and experimental values of 
angular acceleration along with the standard deviation for the 
experimental value.


 αth = 


 αexp =   σexp =

(b) Do theory and experiment agree within the limits of 
experimental uncertainty?
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