Unit #16 - Differential Equations

Some problems and solutions selected or adapted from Hughes-Hallett Calculus.

Growth and Decay
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(a) (I) - Initial deposit is the bank balance/y value at time ¢ = 0.

(b) (IV) - grows the most quickly/has steepest slopes for same y values
(c) (II) and (IV)

(d) (II) and (III)

Wy HEe) )

(a) (I) - starts at H = 0 at ¢t = 0, starts rising towards 100 immediately.
(b) (IV) - The egg stays at 0 degrees for 20 minutes, then rises towards 100 degrees.
(c¢) (III) - The temperature starts at H = 0 at t = 0, but immediately begins to rise towards the room temperature, 20°.

The remaining graph, (1), is for an egg that was left in the fridge for 2 minutes, and then put out on the counter (long-term
temperatures is only 20 degrees).
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(b) You can solve this by separation of variables, or by recognizing that the solution is exponential.
S = Aeft
(c) If S(0) = 5, that allows us to find the value of A:

—
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5= Aek0

(d) If S(3) = 8, that allows us to find k:

d
() %2 = xq

(b) The solution will be exponential: Q = Qge ™"
(c) If the half-life is 3.8 hours, then

1
5@ = O
-1 1

(d) If Qo = 10 , Q(12) = 10e~918212 ~ 1.126 mg. So there will be approximately 1.126 mg left in the body after 12
hours.




(a) If the world population is growing roughly exponentially, and it requires a fixed amount of arable land to support
each person, then it makes sense that the rate of arable land must also be increasing roughly exponentially. An
exponential rate of increase can be specified by the DE A’(t) = kA(t).

Obviously, this is a crude approximation. First, you would need to demonstrate that the world population is in
fact growing exponentially. Secondly, you would have to discount the effect of technology in both making more land
available for agriculture, and its effect on increasing (or decreasing) crop yields per hectare.

(b) The solution to the DE is A(t) = Age*?.

A(0) = Ag = 10° if t = 0 represents 1950
A(30) =2 x 107 = 10%€**  as t = 30 represents 1980
92— 630k
k= L In2 ~ 0.0231
E

Solve for t when A(t) = 3.2 x 10° 3.2 x 10 = 10%0-0231¢
. In(3.2)
~0.0231

~ 50 years

According to this model, we will have every arable hectare in use at ¢ = 50, or in the year 2000. Hmmmm.

(a) You can use a half-life formula. We’ll solve the DE, though, for practice.

C' = —kC

Has solution ~ C = Cpe
Half-life is 5730 years: % = Cpe k5730

_ —In(})

~1.2 1074
=30 097 x 10

(b) In 1988, the amount of carbon is 0.91Cy:

0.91Cy = Cpe™
. In(0.91)

~ 780

From this calculation, it seems that the cloth was made from living plant material roughly 780 years ago. Since
the burial of a historic Jesus Christ would have occurred roughly 2,000 years ago, the claims of authenticity by the
discoverers are very suspect.




Velocity o Distance

dD
22 x D(t
o <P
dD
& —kD
dt

dD
(b) If we started at position D(0) = 0, this would give a derivative of e kE(0) = 0. A zero derivative indicates

that the function itself is constant, so D stays at zero. Since D = 0 will lead to o 0 for any value of ¢, we get

D(t) = 0.

In other words, when we let go of an object, and it has not yet moved, it will not accelerate, and so never move.

Hmmm....

Other Applications of Differential Equations

dH
— = —k(H — 200
pn ( )
dH
iables: =
Separate variables T — 200 kdt
Integrating both sides:  In|H — 200| = —kt + C
Exponentiate both sides: €™ #7200 — |7 — 200| = ¢~ *1+¢

H —200= Ae ™ if we let A= +¢¢

H =200+ Ae™*
If H(0) =20, 20 =200+ Ae°
A= —180
so H =200 — 180e "

The temperature of the yam over time is given by the formula H = 200 — 180e .

(b)
If H =200—180e "
and H(30) =120
then 120 = 200 — 180e 3%
—30k __ —_80 4

2180 9

1 4

Solve for k: e

Note that this constant is correct if we measured ¢ in minutes. The calculation would be identical except for a factor

of 60 if you measured ¢ in hours.



(a) Let T represent the temperature of the body. Newton’s Law of Heating and Cooling states that

dr

-, = T_Troom =—k(T -
= —h( ) = k(T — 68)

(b) Solve by separation of variables:

dT
=—kdt
T — 68

Integrating: In|T — 68| = -kt +C
Exponentiate: T—68=Ade ™ if A=+e”

T = Ae * 468
Let 9 AM be t = 0: 90.3 = A+ 68
A=223
Let 10 AMbet =1:  89.0 =22.3¢* +68
k = 0.06006

Solve for time when T" was 98.6 = normal body temp:
98.6 = 22.3¢~0-06006¢ 1 68
t=-5.27

It looks like the time of death was roughly 5 hours before 9 AM, or just before 4 AM.

dT
(a) o= —k(T — Teyt), where T is the temperature in the house, and T,,; is the temperature outside the house.

(b) If we assume that the exterior temperature is 10 degrees during the whole power outage, we can solve the DE to get
the temperature over time.



dT
We can start with the differential equation — = —k(T" — 10), which leads after separation of variables to:

dt
T = Ae " +10
Let ITPMbet=0: 68=A+10
A =58
At 10PM, t=9: 57 =>58%+10

1 58
k= 9 In (4—7) ~ (0.023366

At 7AM, t =18 T =588 +10
= 48.06

At 7 AM, the temperature will have dropped only down to 48 degrees, or well above freezing (32 degrees Fahrenheit).
There is no risk of the pipes freezing by morning.

(c) We assumed that the temperature outside the house would always be 10 degrees, which is a gross over-simplification.
Since we would expect the outside temperature to drop between 10 PM and 7 AM, that would mean the house cools
more during that period than our model predicts, so the temperature at 7 AM would likely be lower than 48 degrees.

dH
Tt~ /—k:dt
In|H —50| = -kt +C
H = Ae ¥ + 50 if we define A = +e©

H(0)=90 — A =40
H(55)=80 — 30 = 40e "5
—1
h=— In(3/4) ~ 0.05754
Find ¢t when H =60 60 = 40e~** + 50

, _ In(10/40)

~ 24minut
—k minutes

It will take around 24 minutes for the drink to cool down to 60 degrees F.

Let y(t) be the depth of water in the barrel at time ¢. If the barrel is roughly cylindrical, the rate of water flow out will



be proportional to the rate of change of the water depth:
dy

a =T
Separating and integrating: / y 2 dy = / —k dt
2y=—-kt+C
Att=0,y=36. 2V36=0+C
=12
1 2 (12 — kt)2
_ 2
Att=1,y =35 35:%
140 = (12 — k)?
Vv140 =12 — k

k=12 — /140 ~ 0.168
(12 — (0.168)t)*

So our formula for y is y =~ 1

A 12
This will give y =0 at ¢t ~ 0168~ 71.4 hours

It will take around 71 hours, or three days, for the barrel to empty out due to the leak.

(a) Since the rate of change of weight is equal to

1
Rate of weight change = m(lntake - Amount to maintain weight)
. aw 1
so the DE is % = 3500 —— (I —20W)

(b)

1
/I 20W W = /3500

1

2
1n|I 20W| = o5t + G if Gy = =200
11— 20W| = 6350t+02 = el
I —20W = Aeﬁt if A= —+e2
1 s,
W= o (I—Aesso )



¢) Using part (b), we have W = 150 + 10e~ 30, This means that W — 150 as t — oco.
(c)

160
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14. Water leaks from a vertical cylindrical tank through a small hole in its base at a rate proportional to the square
root of the volume of water remaining. If the tank initially contains 200 liters and 20 liters leak out during the
first day, when will the tank be half empty? How much water will there be after 4 days?

dv
o= —kVV
Separating and solving leads to /V*l/2 dV = /7]{ dt
WV = —kt+C
VV = —§t+02 (let Cy = g)
kt\?
V= (c - 2)

Use V(0) =200: 200 = (Cy — 0)?

So Cs =200
first day leak of 20 liters implies V(1) = 200 — 20 = 180
k(1))
So 180<v2 0(2)>

k
5= V200 — v180 = 0.726
so k =~ 1.452

Tank half empty is V. = 100: 100 = | v/200 — (0.726) ¢
——

k/2
10 = v/200 — 0.726¢
v/200 — 10
t= 0726 ~ 5.7 days to half-full

2
After 4 days: V= (\/200 - (0.726)(4))
~ 126 liters



/ L dy=/—kdt
y—a

Inly —a|=—-kt+C
—kt+C _ ,—kt,C

ly—al=e
y—a=Ae " if A=+
y=Ae F 44

(¢) At t — 00, y — a. Therefore, a represents the final fraction or proportion of the course that sticks with you in the
long term. The constant k is related to how quickly you forget all the material beyond a (larger k, faster forgetting).

Questions related to concentration are most easily started by looking at how the underlying amount of contaminant moves
around. In this case, this means looking at the actual volume of CO in the air, relative to the total amount of air. Once
we get a DE for the rate of change of CO volume, we can divide by the (constant) volume of the room, to get a DE in terms
of the rate of change of concentration. See the Compartmental Analysis section in Section 11.6 for a similar example.

(a) Let c(t) be the fraction (or percentage) of carbon dioxide in the air. If Q(¢) represents the quantity (volume, in m?)
of carbon monoxide in the room at time ¢,

(- QW QW

" Room volume 60

Rate of change of Q = (rate in of CO) — (rate out of CO)
Rate in = 5%(0.002m® /min)

Using unit analysis, Rate out = air flow rate (m®/min) x (percentage CO)

_ Q)
= (0.0002) "¢
©Q_ _ (00022
So i (0.05)(0.002) — (0.002) 0
Since ¢(t) = Q(t)/60, or Q = 60¢, we can change our variable to ¢(t):
@ — (0.05)(0.002) — (0.002)c
de  0.002



(b) Solving the DE, and using the initial condition of no CO at t =0 (¢(0) = 0):

1 0.002
/0.05—ch_ 60 ¥

0.002
—0.002
In|0.05 —¢| = 60 t—D
|0.05 — c| = e~ w0 2t=D — o =55 te—D
Solving for ¢: (0.05 —¢) = Ae™ S0t if A=te P
c(0)=0: 0.05=A
0.002t

SO 0.05 — c=0.05¢" 60
and finally ¢ = 0.05 — 0.05¢ &0 ¢

(c) As t — oo, e~ 0t

— 0, so ¢ — 0.05 4+ 0 = 0.05. This means that the CO concentration in the room eventually

reaches the concentration of CO in the incoming air, despite starting off clean at ¢t = 0.

We found in the earlier question that 0002
-002 4

¢ =0.05—0.05e™ o0
Remembering that 0.02% means a fraction of 0.0002, we set ¢ = 0.0002 and solve for ¢:

0'002t

0.0002 = 0.05 — 0.05¢™ @0
0.0002 — 0.05 _0.002,
— — ¢ 60
—0.05

. —60 (0.0498

= — ———— | & 120 mi
0.002 n 0.05 > 0 minutes

It will take roughly 120 minutes, or 2 hours, for the concentration in the room to reach dangerous levels.

Rate of change of salt amount (g/min) = Rate in — Rate out

Rate in (g/min) = Flow rate x Concentration
= (60 liters/min) x (10 g/liter) = 600 g/min
Rate out (g/min) = Flow rate x Concentration
= Flow rate x amount (g) / Pool volume (liters)
= (60 liters/min)(S(t) grams)/(2 x 10° liters)
=(3x107%)S(t)

ds
Finally, we get our DE: == = 600 — (3 107°)8



(b) The DE will be easier to solve if we factor out the constant in front of S:

d
s _ (3x107°)(2 x 107 — S)
dt
1
Separating and integrating: / mdS = (3x107%)dt

—In[2x 10" =S| =(3x107°)t+C
In[2x 10" -S| =(-3x107°)t - C
12 x 107 — S| = e(—3><10_5)t—C
Solve for S: 2x 107 — § = Ae(=3¥107)0if g = 4 C
S =2 x 107 — Ae(—3x107)1
Initially, the pool starts off with pure fresh water, so S(0) = 0:
0=2x10" — Ae°
A=2x107
So S =2x107(1 - e(=3x107")t)

(¢) As t — oo, e(=3%107%)t 0, so S — 2 x 107 grams. In other words, the salt concentration tends towards 2 x

107 grams/2 x 106 liters = 10 grams/liter, the same as the incoming water.

The Logistic Model

(a) We see that the growth follows the pattern we have seen many times before: slow growth when P is low, followed by

a rapid growth (around 2002-2004), followed by slower growth (2005-2006).

(b) The inflection point occurs when the rate of change of usage level changes from increasing to a decreasing rate.

i. 2001-2002: 14% increase
ii. 2002-2003: 15% increase
iii. 2003-2004: 20% increase
iv. 2004-2005: 5% increase



The fastest growth occurs between 2003-2004, and then the growth rate declines, so I would use that interval as
roughly the maximum slope point. Let’s say 2003 was when that occurred (though 2004 would also be a reasonable
answer).

If the maximum growth rate occurred in 2003, and the percentage of households with DVD players was 50% then,
using our logistic model the maximum number of households with DVD players in the long run will be 2x50% or
100% (or everyone: complete market penetration).

. 86.395
(c) Ast — o0, e 97868 = (50 P — Tr0 86.395. From this more quantitative solution (rather than our estimates

from part (b)), we expect over time the level of DVD-owning households to level off around 86%.

Our estimate in (b) was crude because of the very rapid DVD player adoption and the fact that we only had data
measured every year. If we had had data on a monthly basis, we likely could have come much closer to the real
inflection point and so a much more accurate estimate.

20. The growth of an animal population is governed by the equation

1000 dP
——— =100—-P
P dt
where P(t) is the number of individuals in the colony at time ¢. The initial population is known to be 200
individuals. Sketch a graph of P(t). Will there ever be more than 200 individuals in the colony? Will there ever
be fewer than 100 individuals? Explain.

Let’s frame the DE in our more standard form for logistic models:

dpP 1
dat 1000P(100_P)
= kP(L - P)

where k is related to the rate of growth, and L = 100 is the limiting population.

dP dP 1
If the initial population is 200, then — will initially be T m(200)(100 —200) < 0, so the population is initially

declining. This negative rate will be maintained until the population reaches the limiting population of 100.

There will never be fewer than 100 individuals, because once the population reaches 100, the derivative becomes 0, so the
population becomes constant.

150 200

P
100
|

50

0
L

12



dP
(a) The equilibrium population occurs when i 0, which means

0= 0.25P(1 — 0.0004P)
(P =0) or 1 —0.0004P = 0 = (P = 2500)

Since this model is logistic in form, the P = 0 equilibrium will only be reached if we start at zero population; in the
long run the population of carp will tend towards the equilibrium at P = 2500.

(b) The effect of losing 10% of the fish each year means there is a negative rate of change of 0.1 x P added to the earlier
growth rate information. The DE for this new model is therefore

dP

— = 0.25P(1 — 0.0004P) —0.1P
dt N~ - N——

origina‘lr model  10% loss term

dpP
We search for the equilibrium of this new model, setting i 0 again:

0 =0.25P(1 — 0.0004P) — 0.1P
0=0.25P —0.0001P%2 - 0.1P
0 = P(0.15 — 0.0001P)

So the equilibria are at P = 0 again (no fish) or at P = 0.15/0.0001 = 1500 fish. The regular loss of 10% of the fish
will result in a lower equilibrium than with the original model.

(a) Let P be the population of elk over time. Initially, when P = 600 the net population rate of change was (birth rate)
- (death rate) = 35 - 15 = 20%.
When P reaches 800, the net population rate of change was (birth rate) - (death rate) = 30 - 20 = 10%.
If the rate of change of population is linear in P, then we have two points: R(600) = 0.2 and R(800) = 0.1. If

-1
R(P) = mP + b then we find the slope and intercepts and finally R(P) = mP +0.5

13



The differential equation that describes the population is then

dP 1 1
= ROP = (05— 35-P)P = 5= P(1000 — P)

2000 2000
This is a logistic growth model.

(b) The equilibrium population level will be one for which % = 0: subbing that into the DE gives P = 0 or (1000 — P) =
0 = P = 1000.
If the current population is 900 elk, we will have a positive rate of growth (P’ > 0), so the population will keep
growing until it approaches 1000.

(c) If 450 elk were added to the 900 elk to make 1350, the population would be greater than the limiting population of
1000, so we would expect the herd size to decline over time due to lack of resources.

More mathematically, if P = 1350, P’ = 5555(1350)(1000 — 1350) would be negative, meaning that P is decreasing.

(d) The population grew from 600 (one of our data points) up to 900 elk, at which point the 450 new elk were added.

1350

900
|

450 elk added

600
|

(a) The best way to sketch this slope field is to first find the equilibrium values , and then determine the sign of the

dP
derivative for other P values. By setting o 0, solving for P gives P =0 and P = 4 as equilibria.

14
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(b)

(¢) There are two equilibria: P = 0 and P = 4. Only the equilibrium at P = 0 is stable, because populations that start
near P = 0 converge towards it.
The equilibrium at P = 4 is not stable, because populations that start nearby (e.g P = 3, or P = 5) are pushed away
from P = 4 over time.

15



(a) See Figure 11.45.

(b) Figure 11.45 shows that for 0 < P < 6, the sign of dP/dt is negative. This means that P is decreasing over the
interval 0 < P < 6. As P decreases from P(0) = 5, the value of dP/dt gets more and more negative until P = 3.
Thus the graph of P against ¢ is concave down while P is decreasing from 5 to 3. As P decreases below 3, the slope
of dP/dt increases toward 0, so the graph of P against ¢ is concave up and asymptotic to the ¢-axis. At P = 3, there
is an inflection point. See Figure 11.46.

(c) Figure 11.45 shows that for P > 6, the slope of dP/dt is positive and increases with P. Thus the graph of P against
t is increasing and concave up. See Figure 11.46.

P
4P
di
8
6 - threshold
5
0 f P 3 ~—— inflection point
3 6
¢
-9 F 1
Figure 11.45 Figure 11.46

(d) For initial populations greater than the threshold value P = 6, the population increases without bound. Populations
with initial value less than P = 6 decrease asymptotically toward 0, i.e. become extinct. Thus the initial population
P = 6 is the dividing line, or threshold, between populations which grow without bound and those which die out.

(a) Don’t be thrown off by the rate they ask you to plot: they just want a graph of y versus P, where y = aP? — bP =
P(aP —b). This function is quadratic, and has roots at P = 0 and P = b/a. We will only sketch this for P > 0,
since P represents a population.

16



dP/dt

y:

P — population

(b) The information in (a) tells us when C;—f is positive and negative, which tells us our population is increasing or
decreasing.
i. P> b/a means dP/dt > 0 or P is increasing.
ii. 0 < P < b/a means dP/dt < 0 or P is decreasing.
iii. When P < %b/ a, dP/dt is most negative, or the population is decreasing most quickly.

This sounds a lot like the logistic model, where we get maximum slope at half of some special population, but the
rate here is negative. We can try to sketch out these ideas in a graph of P version t:

b/2a
]

dP
(c) As we saw with our analysis of e if the population begins below the threshold of b/a, the population will die off
towards zero. On the other hand, if the population begins above this threshold, it will continue to grow unboundedly.

17



