Unit 2: Algorithmic Graph Theory

- Course contents:
- Introduction to graph theory
- Basic graph algorithms
- Reading
- Chapter 3
- Reference: Cormen, Leiserson, and Rivest, Introduction to Algorithms, $2^{\text {nd }}$ Ed., McGraw Hill/MIT Press, 2001.

Algorithms

- Algorithm: A well-defined procedure for transforming some input to a desired output.

- Major concerns:

- Correctness: Does it halt? Is it correct?
- Efficiency: Time complexity? Space complexity?
- Worst case? Average case? (Best case?)
- Better algorithms?
- How: Faster algorithms? Algorithms with less space requirement?
- Optimality: Prove that an algorithm is best possible/optimal? Establish a lower bound?

Example: Traveling Salesman Problem (TSP)

- Instance: A set of points (cities) P together with a distance $d(p, q)$ between any pair $p, q \in P$.
- Output: What is the shortest circular route that starts and ends at a given point and visits all the points.

- Correct and efficient algorithms?

Nearest Neighbor Tour

1. pick and visit an initial point p_{0};
2. $P \leftarrow p_{0}$;
3. $i \leftarrow 0$;
4. while there are unvisited points do
5. visit p_{i} 's closet unvisited point p_{i+1};
6. $i \leftarrow i+1$;
7. return to p_{0} from p_{i}.

- Simple to implement and very efficient, but incorrect!

A Correct, but Inefficient Algorithm

1. $d \leftarrow \infty$;
2. for each of the n ! permutations π_{i} of the n points
3. if $\left(\operatorname{cost}\left(\pi_{i}\right) \leq d\right)$ then
4. $\mathrm{d} \leftarrow \operatorname{cost}\left(\pi_{i}\right)$;
5. $\quad T_{\text {min }} \leftarrow \pi_{i}$;
6. return $T_{\text {min }}$.

- Correctness: Tries all possible orderings of the points \Rightarrow Guarantees to end up with the shortest possible tour.
- Efficiency: Tries n ! possible routes!
- 120 routes for 5 points, 3,628,800 routes for 10 points, 20 points?
- No known efficient, correct algorithm for TSP!

Example: Sorting

- Instance: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$.
- Output: A permutation $<a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}>$ such that $a_{1}{ }^{\prime}$ $\leq a_{2}{ }^{\prime} \leq \ldots \leq a_{n}{ }^{\prime}$.

Input: <8, 6, 9, 7, 5, 2, 3>
Output: <2, 3, 5, 6, 7, 8, $9>$

- Correct and efficient algorithms?

Insertion Sort

Graph

- Graph: A mathematical object representing a set of "points" and "interconnections" between them.
- A graph $G=(V, E)$ consists of a set V of vertices (nodes) and a set E of directed or undirected edges.
$-V$ is the vertex set: $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\},|V|=6$
$-E$ is the edge set: $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\},|E|=5$
- An edge has two endpoints, e.g. $e_{1}=\left(v_{1}, v_{2}\right)$
- For simplicity, use V for $|V|$ and E for $|E|$.

Example Graphs

- Any binary relation is a graph.
- Network of roads and cities
- Circuit representation

Terminology

- Degree of a vertex: degree $\left(v_{3}\right)=3$, degree $\left(v_{2}\right)=2$
- Subgraph of a graph:
- Complete (sub)graph: $V^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}, E^{\prime}=\left\{e_{1}, e_{2}, e_{3}\right\}$
- (Maximal/maximum) clique: maximal/maximum complete subgraph
- Selfloop
- Parallel edges
- Simple graph
- Multigraph

Terminology (cont'd)

- Bipartite graph $G=\left(V_{1}, V_{2}, E\right)$
- Path
- Cycle: a closed path
- Connected vertices
- Connected graph
- Connected components

A bipartite graph

Path $p=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$ Cycle $C=\left\langle v_{1}, v_{2}, v_{3}, v_{1}\right\rangle$

Terminology (cont'd)

- Weighted graph:
- Edge weighted and/or vertex weighted
- Directed graph: edges have directions
- Directed path
- Directed cycle
- Directed acyclic graph (DAG)
- In-degree, out-degree
- Strongly connected vertices
- Strongly connected components $\{\mathrm{v} 1\}\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5\}$
- Weekly connected vertices

Graph Representation: Adjacency List

- Adjacency list: An array Adj of |V | lists, one for each vertex in V. For each $u \in V, \operatorname{Adj}[u]$ pointers to all the vertices adjacent to u.
- Advantage: $O(V+E)$ storage, good for sparse graph.
- Drawback: Need to traverse list to find an edge.

Graph Representations: Adjacency Matrix

- Adjacency matrix: $\mathrm{A}|V| \times|V|$ matrix $A=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

- Advantage: $O(1)$ time to find an edge.
- Drawback: $O\left(V^{2}\right)$ storage,suitable for dense graph.
- How to save space if the graph is undirected?

Explicit Edges and Vertices

Tradeoffs between Adjacency List and Matrix

Comparison	Winner
Faster to find an edge?	matrix
Faster to find vertex degree?	list
Faster to traverse the graph?	list $O(V+E)$ vs. matrix $O\left(V^{2}\right)$
Storage for sparse graph?	list $O(V+E)$ vs. matrix $O\left(V^{2}\right)$
Storage for dense graph?	matrix (small win)
Edge insertion or deletion?	matrix $O(1)$
Weighted-graph implementation?	$?$
Better for most applications?	list

```
DFS(G)
    1. for each vertex \(u \in V[G]\)
    2. color \([u] \leftarrow\) WHITE;
    3. \(\pi[\mathrm{u}] \longleftarrow \mathrm{NIL}\);
    4. time \(\leftarrow 0\);
    5. for each vertex \(u \in V[G]\)
    6. if color \([u]=\) WHITE
    7. DFS-Visit( \(u\) ).
    DFS-Visit(u)
    1. color \([u] \leftarrow\) GRAY;
    /* White vertex \(u\) has just been
    2. \(d[u] \leftarrow\) time \(\leftarrow\) time +1 ;
    3. for each vertex \(v \in \operatorname{Adj}[u]\)
        /* Explore edge (u,v). */
    4. if color \([v]=\) WHITE
5. \(\pi[v] \leftarrow u\);
6. DFS-Visit( \(v\) );
7. color \([u] \leftarrow\) BLACK;
        /* Blacken \(u\); it is finished. */
    8. \(f[u] \leftarrow\) time \(\leftarrow\) time +1 .
```

DFS(G)

1. for each vertex $u \in V[G]$
2.
3. $\pi[\mathrm{u}] \leftarrow \mathrm{NIL}$,
4. for each vertex $u \in V[G]$
5. if color $[u]=$ WHITE
6. DFS-Visit(u).

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY;
discovered. $\neq 1$ has just been
2. $d[u] \leftarrow$ time \leftarrow time +1 ;
3. for each vertex $v \in \operatorname{Adj}[u]$
4. if color $[v]=$ WHITE
5. $\pi[v] \leftarrow u$;
6. DFS-Visit(v);
7. color $[u] \leftarrow$ BLACK;
/* Blacken u; it is finished. */
8. $f[u] \leftarrow$ time \leftarrow time +1 .

- color[u]:
white (undiscovered) \rightarrow gray (discovered) \rightarrow
black (explored: out edges are all discovered)
- $d[u]$: discovery time (gray)
- flu]: finishing time (black)
- $\pi[u]$: predecessor
- Time complexity: $O(V+E)$
(adjacency list).

- color[u]: white \rightarrow gray \rightarrow black.
- Depth-first forest: $G_{\pi}=\left(V, E_{\pi}\right), E_{\pi}=\{(\pi[v], v) \in E \mid v \in V, \pi[v] \neq \mathrm{NIL}\}$ $-\{u \rightarrow v \rightarrow x \rightarrow y\}\{w \rightarrow z\}$

DFS Pseudo Code in Text

```
/* Given is the graph G(V,E) */
struct vertex {
    int mark;
};
dfs(struct vertex v)
{
        v.mark }\leftarrow0\mathrm{ ;
    "process v";
        for each (v,u) \inE {
            "process (v,u)";
            if (u.mark)
                dfs(u);
        }
    }
```


DFS Application 1: Topological Sort

- A topological sort of a directed acyclic graph (DAG) $G=(V, E)$ is a linear ordering of V s.t. $(u, v) \in E \Rightarrow u$ appears before v.

Topological-Sort(G)

1. call DFS(G) to compute finishing times $f[v]$ for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

- Time complexity: $O(V+E)$ (adjacent list).

Vertices are arranged from left to right in order of decreasing finishing times.

DFS Application 2: Hightower's Maze Router

- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.
- Time and space complexities: $O(L)$, where L is the \# of line segments generated.

Breadth-First Search (BFS) [cormen]

```
BFS(G,s)
    1. for each vertex \(u \in V[G]-\{s\}\)
    2. color \([u] \leftarrow\) WHITE;
    3. \(d[u] \leftarrow \infty\);
    4. \(\pi[\mathrm{u}] \leftarrow \mathrm{NIL}\);
    5. color[s] \(\leftarrow\) GRAY;
    6. \(d[s] \leftarrow 0\);
    7. \(\pi[\mathrm{s}] \leftarrow \mathrm{NIL}\);
    8. \(Q \leftarrow\{s\} ;\)
    9. while \(Q \neq \varnothing\)
    10. \(u \leftarrow\) head[ \(Q]\);
    11. for each vertex \(v \in \operatorname{Adj}[u]\)
    12. if color[v] = WHITE
    13. color \([v] \leftarrow G R A Y\);
    14. \(d[v] \leftarrow d[u]+1\);
    15. \(\quad \pi[v] \leftarrow u\);
    16. Enqueue \((Q, v)\);
    17. Dequeue \((Q)\);
    18. color \([u] \leftarrow\) BLACK \(\}\).
```

- color[u]:
white (undiscovered) \rightarrow gray (discovered) \rightarrow black (explored: out edges are all discovered)
- $d[u]$: distance from source s
- $\pi[u]$: predecessor of u
- Use queue for gray vertices
- Time complexity: $O(V+E)$ (adjacency list).
(a)

(d)

(g)

(b)

(c)

(e)

(f)

(h)

(i)

- Use queue for gray vertices.
- Each vertex is enqueued and dequeued once: $O(V)$ time.
- Each edge is considered once: $O(E)$ time.
- Breadth-first tree:
$-G_{\pi}=\left(V_{\pi}, E_{\pi}\right), V_{\pi}=\{v \in V \mid \pi[v] \neq \mathrm{NIL}\} \cup\{s\}$
- $\{\mathrm{s}, \mathrm{w}, \mathrm{r}, \mathrm{t}, \mathrm{x}, \mathrm{v}, \mathrm{u}, \mathrm{y}\}$
$-E_{\pi}=\left\{(\pi[v], v) \in E \mid v \in V_{\pi}-\{s\}\right\}$.
- $\{(\mathrm{s}, \mathrm{w}),(\mathrm{s}, \mathrm{r}),(\mathrm{w}, \mathrm{t}),(\mathrm{w}, \mathrm{x}),(\mathrm{r}, \mathrm{v}),(\mathrm{t}, \mathrm{u}),(\mathrm{x}, \mathrm{y})\}$

BFS Pseudo Code in Text

```
main ()
\{
    for each \(v \in V\)
        \(v\).mark \(\leftarrow 1\);
    for each \(v \in V\)
        if ( \(v\).mark) \{
            \(v\).mark \(\leftarrow \mathbf{0}\);
            \(\mathrm{bfs}(v)\);
        \}
\}
```

bfs(struct vertex v)
\{
struct fifo * Q;
struct vertex u, w;
$Q \leftarrow()$;
shift_in (Q, v);
do $\{w \leftarrow$ shift_out (Q);
"process w ";
for $\operatorname{each}(w, u) \in E\{$
"process (w, u) ";
if (u.mark) $\{$
u.mark $\leftarrow 0$;
$\operatorname{shift} \operatorname{in}(Q, u)$;
\}
\}
\} while $(Q \neq())$

BFS Application: Lee's Maze Router

- Find a path from S to T by "wave propagation."
- Discuss mainly on single-layer routing
- Strength: Guarantee to find a minimum-length connection between 2 terminals if it exists.
- Weakness: Time \& space complexity for an $M \times N$ grid: $O(M N)$ (huge!)

Filing

Retrace

BFS + DFS Application: Soukup's Maze Router

- Depth-first (line) search is first directed toward target T until an obstacle or T is reached.
- Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: $O(M N)$, but 10--50 times faster than Lee's algorithm.
- Find a path between S and T, but may not be the shortest!

Shortest Paths (SP)

- The Shortest Path (SP) Problem

- Given: A directed graph $G=(V, E)$ with edge weights, and a specific source node s.
- Goal: Find a minimum weight path (or cost) from s to every other node in V.
- Applications: weights can be distances, times, wiring cost, delay. etc.
- Special case: BFS finds shortest paths for the case when all edge weights are 1.

Unit 2

Weighted Directed Graph

- A weighted, directed graph $G=(V, E)$ with the weight function $w: E \rightarrow \mathrm{R}$.
- Weight of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle: w(p)=\sum_{i=1}^{k} w\left(V_{i-1}, V_{i}\right)$.
- Shortest-path weight from u to $v, \delta(u, v)$:

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there is a path from } u \text { to } v, \\ \infty & \text { otherwise. }\end{cases}
$$

- Warning! negative-weight edges/cycles are a problem.
- Cycle $<e, f, e>$ has weight $-3<0 \Rightarrow \delta(s, g)=-\infty$.
- Vertices h, i, j not reachable from $s \Rightarrow \delta(s, h)=\delta(s, i)=\delta(s, j)=\infty$.
- Algorithms apply to the cases for negative-weight edges/cycles??

Optimal Substructure of a Shortest Path

- Subpaths of shortest paths are shortest paths.
- Let $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ be a shortest path from vertex v_{1} to vertex v_{k}, and $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from vertex v_{i} to vertex $v_{j}, 1 \leq i \leq j \leq k$. Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}. (NOTE: reverse is not necessarily true!)
- Suppose that a shortest path p from a source s to a vertex v can be decomposed into $s \stackrel{p^{\prime}}{\sim} u \rightarrow v$. Then, $\delta(s, v)=\delta(s, u)$ $+w(u, v)$.
- For all edges $(u, v) \in E, \delta(s, v) \leq \delta(s, u)+w(u, v)$.

subpaths of shortest paths

Relaxation

```
Initialize-Single-Source(G, s)
1. for each vertex v\inV[G]
2. d[v]\leftarrow\infty;
    /* upper bound on the weight of a shortest path from s to v*/
3. }\pi[\textrm{V}]\leftarrow\textrm{NIL}; /* predecessor of v*/
4. d[s]}\leftarrow0
Relax(u,v,w)
1. if d[v]>d[u]+w(u,v)
2. d[v]}\leftarrowd[u]+w(u,v)
3. }\pi[v]\leftarrowu
```

- $d[v] \leq d[u]+w(u, v)$ after calling Relax (u, v, w).
- $d[v] \geq \delta(s, v)$ during the relaxation steps; once $d[v]$ achieves its lower bound $\delta(s, v)$, it never changes.
- Let $s \leadsto u \rightarrow v$ be a shortest path. If $d[u]=\delta(s, u)$ prior to the call Relax (u, v, w), then $d[v]=\delta(s, v)$ after the call.

$d[v]>d[u]+w(u, v)$

$d[v]<=d[u]+w(u, v)$

Dijkstra's Shortest-Path Algorithm

Dijkstra(G, w, s)

1. Initialize-Single-Source(G, s);
2. $S \leftarrow \varnothing$;
3. $Q \leftarrow V[G]$;
4. while $Q \neq \varnothing$
5. $u \leftarrow$ Extract-Minimum-Element(Q);
6. $S \leftarrow S \cup\{u\}$;
7. for each vertex $v \in \operatorname{Adj}[u]$
8. $\operatorname{Relax}(u, v, w)$;

- Idea:
- search all shortest paths
- In a smart way (use dynamic-programming, see next lecture)
- Then choose a shortest path

Example: Dijkstra's Shortest-Path Algorithm

- Find the shortest path from vertex s to vertex v
$-s \rightarrow x \rightarrow u \rightarrow v$; Weight $=5+3+1$

(a)

(d)

(b)

(e)

(c)

(f)

Runtime Analysis of Dijkstra's Algorithm

Dijkstra(G, w, s)

1. Initialize-Single-Source (G, s);
2. $S \leftarrow \varnothing$;
3. $Q \leftarrow V[G]$;
4. while $Q \neq \varnothing$
5. $u \leftarrow$ Extract-Minimum-Element(Q);
6. $S \leftarrow S \cup\{u\}$;
7. for each vertex $v \in \operatorname{Adj}[u]$
8. $\operatorname{Relax}(u, v, w)$;

- Q is implemented as a linear array: $O\left(V^{2}\right)$.
- Line 5: $O(V)$ for Extract-Minimum-Element, so $O\left(V^{2}\right)$ with the while loop.
- Lines 7--8: $O(E)$ operations, each takes $O(1)$ time.
- Q is implemented as a binary heap: $O(E \lg V)$.
- Q is implemented as a Fibonacci heap: $O(E+V \lg V)$.

Dijkstra's SP Pseudo Code in Text

struct vertex \{
int distance;
\};
dijkstra(set of struct vertex V, struct vertex v_{s}, struct vertex $v_{\boldsymbol{t}}$)
\{
set of struct vertex T;
struct vertex u, v;
$V \leftarrow V \backslash\left\{v_{s}\right\} ;$
$T \leftarrow\left\{v_{s}\right\} ;$
v_{s}. distance $\leftarrow \mathbf{0}$;
for each $u \in V$
if $\left(\left(v_{s}, u\right) \in E\right)$
u.distance $\leftarrow w\left(\left(v_{s}, u\right)\right)$
else u. distance $\leftarrow+\infty$;
while ($v_{t} \notin T$) \{
$u \leftarrow " u \in V$, such that $\forall v \in V: u$.distance $\leq v$.distance";
$T \leftarrow T \cup\{u\} ;$
$V \leftarrow V \backslash\{u\} ;$
for each v "such that $(u, v) \in E$ "
if $(v$.distance $>w((u, v))+u$.distance $)$
v.distance $\leftarrow w((u, v))+u$.distance;
\}

Minimum Spanning Tree (MST)

- Given an undirected graph $G=(V, E)$ with weights on the edges, a minimum spanning tree (MST) of G is a subset $T \subseteq E$ such that
- T has no cycles
- T contains all vertices in V
- sum of the weights of all edges in T is minimum.
- Number of edges in T is number of vertices minus one
- Applications: circuit interconnection (minimizing tree radius), communication network (minimizing tree diameter), etc.

Prim's MST Algorithm

```
MST-Prim(G,w,r)
1. \(Q \leftarrow V[G]\);
2. for each vertex \(u \in Q\)
3. \(k e y[u] \leftarrow \infty\);
4. \(k e y[r] \leftarrow 0\);
5. \(\pi[r] \leftarrow \mathrm{NIL}\);
6. while \(Q \neq \varnothing\)
7. \(u \leftarrow\) Extract-Minimum-Element \((Q)\);
8. for each vertex \(v \in \operatorname{Adj}[u]\)
9. if \(v \in Q\) and \(w(u, v)<\operatorname{key}[v]\)
10. \(\quad \pi[v] \leftarrow u\);
11. \(\operatorname{key}[v] \leftarrow w(u, v)\)
```

- Starts from a vertex and grows until the tree spans all the vertices.
- The edges in A always form a single tree.
- At each step, a safe, minimum-weighted edge connecting a vertex in A to a vertex in $V-A$ is added to the tree.

Example: Prim's MST Algorithm

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(b)

(i)

Time Complexity of Prim's MST Algorithm

```
MST-Prim(G,w,r)
1. \(Q \leftarrow V[G]\);
2. for each vertex \(u \in Q\)
3. \(k e y[u] \leftarrow \infty\);
4. \(k e y[r] \leftarrow 0\);
5. \(\pi[r] \leftarrow \mathrm{NIL}\);
6. while \(Q \neq \varnothing\)
7. \(u \leftarrow\) Extract-Minimum-Element \((Q)\);
8. for each vertex \(v \in \operatorname{Adj}[u]\)
9. if \(v \in Q\) and \(w(u, v)<\operatorname{key}[v]\)
10. \(\quad \pi v] \leftarrow u\);
11. \(\operatorname{key}[v] \leftarrow w(u, v)\)
```

- Straightforward implementation: $\mathrm{O}\left(V^{2}\right)$ time
- Lines 1--5: O(V).
- Line 7: $O(V)$ for Extract-Minimum-Element, so $O\left(V^{2}\right)$ with the while loop.
- Lines 8--11: $O(E)$ operations, each takes $O(\mathrm{lg} V)$ time.
- Run in $O(E \lg V)$ time if Q is implemented as a binary heap
- Run in $\mathrm{O}(\mathrm{E}+\mathrm{VlgV})$ time if Q is implemented as a Fibonacci heap

Prim's MST Pseudo Code in Text

```
prim(set of struct vertex \(V\) )
\{
    set of struct edge \(F\);
    set of struct vertex \(W\);
    struct vertex \(u\);
    \(u \leftarrow\) "any vertex from \(V\) ";
    \(V \leftarrow V \backslash\{u\}\);
    \(W \leftarrow\{u\} ;\)
    \(F \leftarrow \emptyset\);
    for each \(v \in V\)
        if \(((u, v) \in E)\{\)
            \(v\).distance \(\leftarrow w((u, v))\);
            \(v\).via_edge \(\leftarrow(u, v)\);
        \}
        else \(v\).distance \(\leftarrow+\infty\);
    while \((V \neq \emptyset)\{\)
        \(u \leftarrow " u \in V\), such that \(\forall v \in V: u\).distance \(\leq v\).distance";
        \(W \leftarrow W \cup\{u\} ;\)
        \(V \leftarrow V \backslash\{u\} ;\)
        \(F \leftarrow F \cup\{u\).via_edge \(\} ;\)
        for each \(v\) "such that \((u, v) \in E\) "
            if \((v\).distance \(>w((u, v)))\{\)
                \(v\).distance \(\leftarrow w((u, v))\);
                \(v\).via_edge \(\leftarrow(u, v)\);
            \}
    \}```

