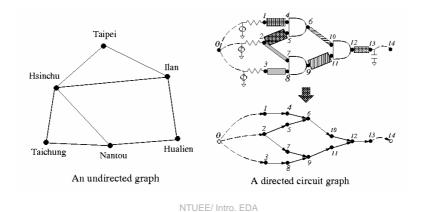
Unit 2: Algorithmic Graph Theory

- Course contents:
 - Introduction to graph theory
 - Basic graph algorithms
- Reading
 - Chapter 3
 - Reference: Cormen, Leiserson, and Rivest, Introduction to Algorithms, 2nd Ed., McGraw Hill/MIT Press, 2001.



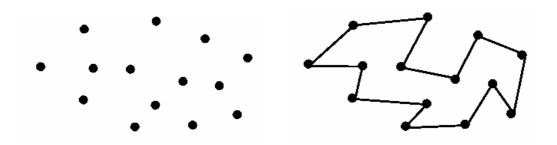
Unit 2

Algorithms

- Algorithm: A well-defined procedure for transforming some input to a desired output.
- Major concerns:
 - Correctness: Does it halt? Is it correct?
 - Efficiency: Time complexity? Space complexity?
 - Worst case? Average case? (Best case?)
- Better algorithms?
 - How: Faster algorithms? Algorithms with less space requirement?
 - Optimality: Prove that an algorithm is best possible/optimal?
 Establish a lower bound?

Example: Traveling Salesman Problem (TSP)

- Instance: A set of points (cities) P together with a distance d(p, q) between any pair p, q ∈ P.
- **Output:** What is the shortest circular route that starts and ends at a given point and visits all the points.



• Correct and efficient algorithms?

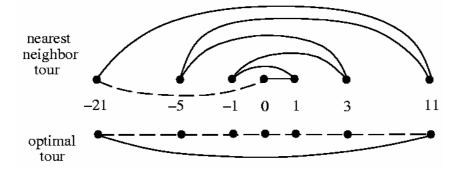
Unit 2

NTUEE/ Intro. EDA

Nearest Neighbor Tour

- 1. pick and visit an initial point p_{0} ;
- 2. $P \leftarrow p_0$;
- 3. *i* ← 0;
- 4. while there are unvisited points do
- 5. visit p_i 's closet unvisited point p_{i+1} ;
- 6. $i \leftarrow i + 1;$
- 7. return to p_0 from p_i .

• Simple to implement and very efficient, but incorrect!



A Correct, but Inefficient Algorithm

1. $d \leftarrow \infty$; 2. for each of the *n*! permutations π_i of the *n* points 3. **if** $(\cos t(\pi_i) \le d)$ **then** 4. $d \leftarrow \cos t(\pi_i)$; 5. $T_{min} \leftarrow \pi_i$; 6. **return** T_{min} .

- **Correctness:** Tries all possible orderings of the points ⇒ Guarantees to end up with the shortest possible tour.
- Efficiency: Tries n! possible routes!
 - 120 routes for 5 points, 3,628,800 routes for 10 points, 20 points?
- No known efficient, correct algorithm for TSP!

U	ni	t 2

NTUEE/ Intro. EDA

Example: Sorting

- **Instance:** A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$.
- Output: A permutation $\langle a_1', a_2', \dots, a_n' \rangle$ such that $a_1' \leq a_2' \leq \dots \leq a_n'$.

Input: <8, 6, 9, 7, 5, 2, 3>

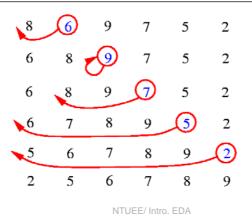
Output: <2, 3, 5, 6, 7, 8, 9 >

• Correct and efficient algorithms?

Insertion Sort

InsertionSort(A)

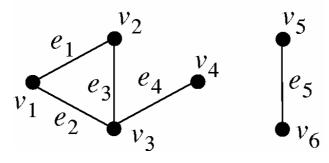
- 1. for $j \leftarrow 2$ to length[A] do
- 2. key $\leftarrow A[j];$
- 3. /* Insert A[j] into the sorted sequence A[1..j-1]. */
- 4. $i \leftarrow j 1;$
- 5. **while** *i* > 0 and *A*[*i*] > *key* **do**
- 6. $A[i+1] \leftarrow A[i];$
- 7. *i* ← *i* 1;
- 8. $A[i+1] \leftarrow key;$



Unit 2

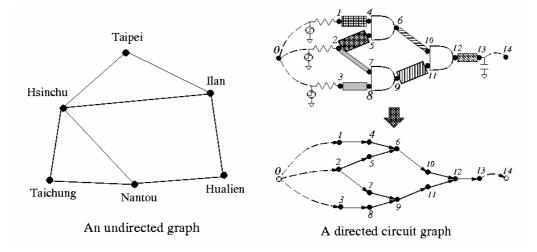
Graph

- Graph: A mathematical object representing a set of "points" and "interconnections" between them.
- A graph G = (V, E) consists of a set V of vertices (nodes) and a set E of directed or undirected edges.
 - *V* is the vertex set: $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, |V|=6$
 - *E* is the edge set: $E = \{e_1, e_2, e_3, e_4, e_5\}, |E|=5$
 - An edge has two endpoints, e.g. $e_1 = (v_1, v_2)$
 - For simplicity, use V for |V| and E for |E|.



Example Graphs

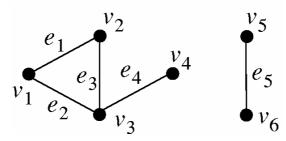
- Any binary relation is a graph.
 - Network of roads and cities
 - Circuit representation



Unit 2

NTUEE/ Intro. EDA

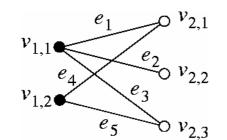
Terminology



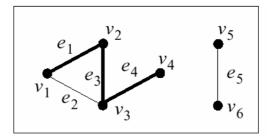
- Degree of a vertex: degree(v_3) = 3, degree(v_2) = 2
- Subgraph of a graph:
- Complete (sub)graph: $V = \{v_1, v_2, v_3\}, E = \{e_1, e_2, e_3\}$
- (Maximal/maximum) clique: maximal/maximum complete subgraph
- Selfloop
- Parallel edges
- Simple graph
- Multigraph

Terminology (cont'd)

- Bipartite graph $G = (V_1, V_2, E)$
- Path
- Cycle: a closed path
- Connected vertices
- Connected graph
- Connected components



A bipartite graph



Path $p = \langle v_1, v_2, v_3, v_4 \rangle$ Cycle $C = \langle v_1, v_2, v_3, v_1 \rangle$

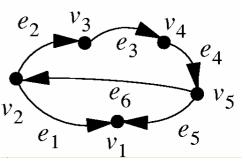
Unit 2

NTUEE/ Intro. EDA

11

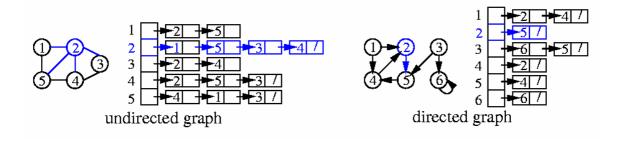
Terminology (cont'd)

- Weighted graph:
 - Edge weighted and/or vertex weighted
- Directed graph: edges have directions
 - Directed path
 - Directed cycle
 - Directed acyclic graph (DAG)
 - In-degree, out-degree
 - Strongly connected vertices
 - Strongly connected components {v1}{v2, v3, v4, v5}
 - Weekly connected vertices



Graph Representation: Adjacency List

- Adjacency list: An array Adj of |V| lists, one for each vertex in V. For each u ∈ V, Adj[u] pointers to all the vertices adjacent to u.
- Advantage: O(V+E) storage, good for **sparse** graph.
- Drawback: Need to traverse list to find an edge.



Unit 2

NTUEE/ Intro. EDA

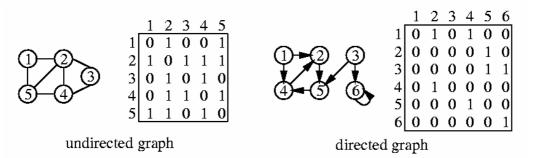
13

Graph Representations: Adjacency Matrix

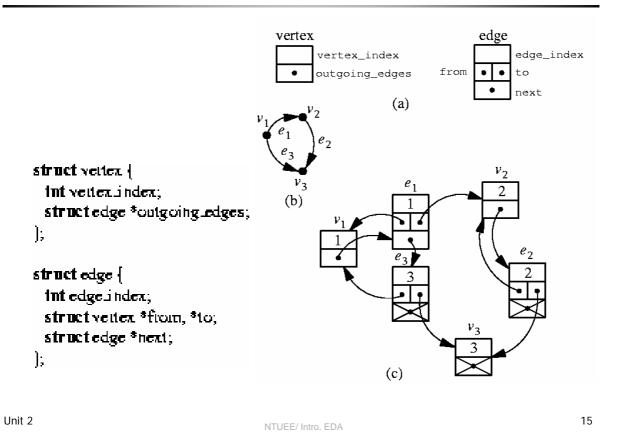
• Adjacency matrix: A $|V| \times |V|$ matrix $A = (a_{ij})$ such that

 $a_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{array} \right.$

- Advantage: O(1) time to find an edge.
- Drawback: $O(V^2)$ storage, suitable for **dense** graph.
- How to save space if the graph is undirected?



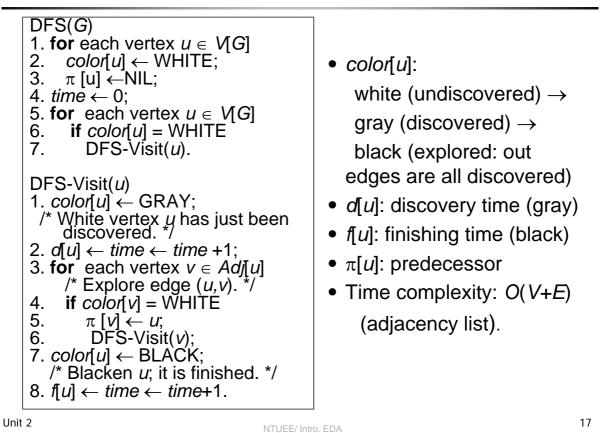
Explicit Edges and Vertices



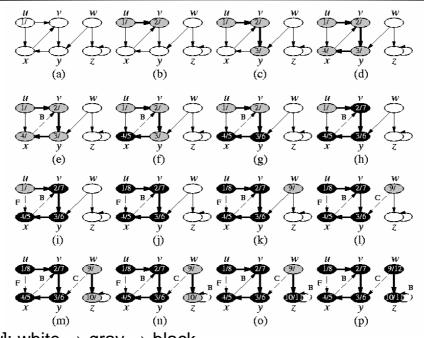
Tradeoffs between Adjacency List and Matrix

Comparison	Winner
Faster to find an edge?	matrix
Faster to find vertex degree?	list
Faster to traverse the graph?	list $O(V + E)$ vs. matrix $O(V^2)$
Storage for sparse graph?	list $O(V + E)$ vs. matrix $O(V^2)$
Storage for dense graph?	matrix (small win)
Edge insertion or deletion?	matrix $O(1)$
Weighted-graph implementation?	?
Better for most applications?	list

Depth-First Search (DFS) [Cormen]



DFS Example [Cormen]



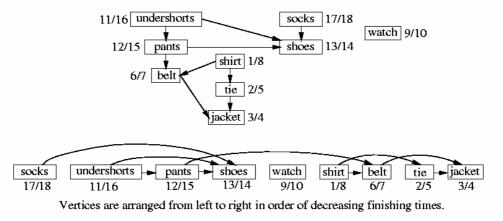
- *color*[*u*]: white \rightarrow gray \rightarrow black.
- Depth-first **forest**: $G_{\pi} = (V, E_{\pi}), E_{\pi} = \{(\pi[v], v) \in E \mid v \in V, \pi[v] \neq \text{NIL}\}$ - $\{u \rightarrow v \rightarrow x \rightarrow y\} \{w \rightarrow z\}$

DFS Pseudo Code in Text

```
/* Given is the graph G(V, E) */
      struct vertex {
                                                     main ()
         . . .
                                                     ł
        int mark;
                                                       for each v \in V
      };
                                                          v.mark \leftarrow 1:
      dfs(struct vertex v)
                                                       for each v \in V
      ł
                                                          if (v.mark)
         v.mark \leftarrow 0;
                                                            dfs(v);
         "process v";
                                                     }
         for each (v, u) \in E {
           "process (v, u)";
           if (u.mark)
             dfs(u);
         }
      }
Unit 2
                                                                                       19
                                       NTUEE/ Intro. EDA
```

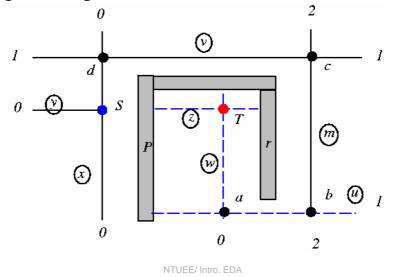
DFS Application 1: Topological Sort

- A topological sort of a directed acyclic graph (DAG) G = (V, E) is a linear ordering of V s.t. (u, v) ∈ E ⇒ u appears before v.
 - Topological-Sort(G)
 - 1. call DFS(*G*) to compute finishing times f[v] for each vertex *v*
 - 2. as each vertex is finished, insert it onto the front of a linked list
 - 3. return the linked list of vertices
- Time complexity: O(V+E) (adjacent list).



DFS Application 2: Hightower's Maze Router

- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.
- Time and space complexities: *O*(*L*), where *L* is the # of line segments generated.



Unit 2

Breadth-First Search (BFS) [Cormen]

BFS(G,s)

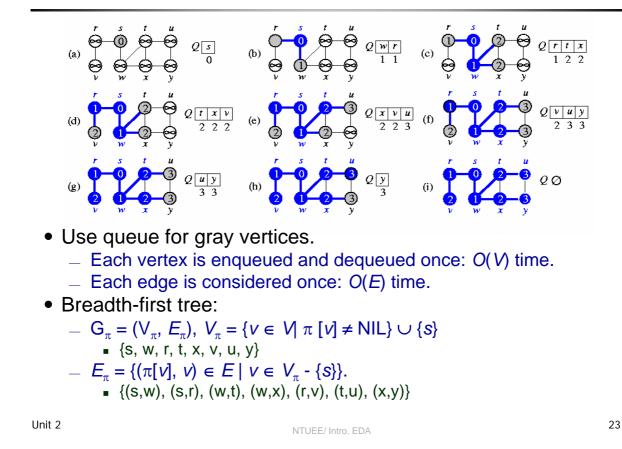
1. for each vertex $u \in V[G]$ -{*s*} 2. $color[u] \leftarrow WHITE;$ 3. $d[u] \leftarrow \infty;$ 4. π [u] \leftarrow NIL; 5. *color*[*s*] \leftarrow GRAY; 6. $d[s] \leftarrow 0;$ 7. *π*[*s*] ←NIL; 8. $Q \leftarrow \{s\};$ 9. while $Q \neq \emptyset$ 10. $u \leftarrow head[Q];$ 11. for each vertex $v \in Adj[u]$ 12. if color[v] = WHITE13. $color[v] \leftarrow GRAY;$ 14. $d[v] \leftarrow d[u]+1;$ 15. π [*V*] \leftarrow *U*; 16. Enqueue(Q, v); 17. Dequeue(Q);18. $color[u] \leftarrow BLACK$.

color[u]:

white (undiscovered) → gray (discovered) → black (explored: out edges are all discovered)

- *d*[*u*]: distance from source *s*
- $\pi[u]$: predecessor of u
- Use queue for gray vertices
- Time complexity: O(V+E) (adjacency list).

BFS Example [Cormen]

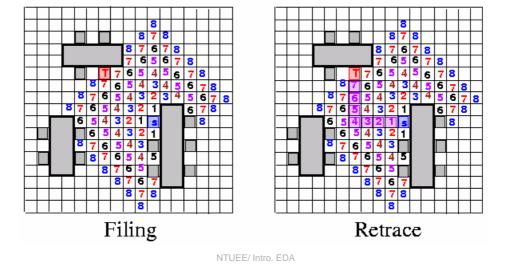


BFS Pseudo Code in Text

bfs(struct vertex v){ main () struct fifo *Q; ł struct vertex u, w; for each $v \in V$ $Q \leftarrow 0;$ v.mark $\leftarrow 1$; $shift_in(Q, v);$ for each $v \in V$ **do** { $w \leftarrow \text{shift_out}(Q);$ if (v.mark) { "process w"; for each $(w, u) \in E$ { v.mark $\leftarrow 0$; "process (w, u)"; bfs(v);if (*u*.mark) { } u.mark $\leftarrow 0$; } $shift_in(Q, u);$ } } } while $(Q \neq ())$ }

BFS Application: Lee's Maze Router

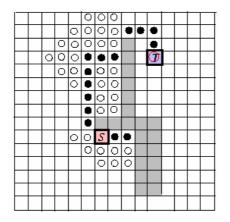
- Find a path from S to T by "wave propagation."
- Discuss mainly on single-layer routing
- Strength: Guarantee to find a minimum-length connection between 2 terminals if it exists.
- Weakness: Time & space complexity for an M × N grid: O(MN) (huge!)



Unit 2

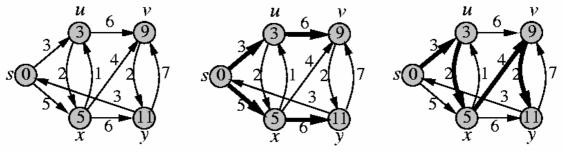
BFS + DFS Application: Soukup's Maze Router

- Depth-first (line) search is first directed toward target *T* until an obstacle or *T* is reached.
- Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: *O*(*MN*), but 10--50 times faster than Lee's algorithm.
- Find a path between S and T, but may not be the shortest!



• The Shortest Path (SP) Problem

- Given: A directed graph G=(V, E) with edge weights, and a specific source node s.
- **Goal:** Find a minimum weight path (or cost) from *s* to every other node in *V*.
- Applications: weights can be distances, times, wiring cost, delay. etc.
- **Special case:** BFS finds shortest paths for the case when all edge weights are 1.



Unit 2

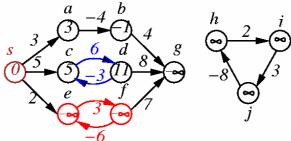
Weighted Directed Graph

NTUEE/ Intro. EDA

- A weighted, directed graph G = (V, E) with the weight function $w: E \rightarrow R$.
 - Weight of path $p = \langle v_0, v_1, ..., v_k \rangle$: $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$.
 - = Shortest-path weight from u to v, $\delta(u, v)$:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

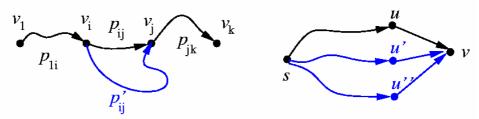
- Warning! negative-weight edges/cycles are a problem.
 - − Cycle <*e*, *f*, *e*> has weight $-3 < 0 \Rightarrow \delta(s, g) = -\infty$.
 - − Vertices *h*, *i*, *j* not reachable from $s \Rightarrow \delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$.
- Algorithms apply to the cases for negative-weight edges/cycles??



NIUEE/ Intro. EDA

Optimal Substructure of a Shortest Path

- Subpaths of shortest paths are shortest paths.
 - Let $p = \langle v_1, v_2, ..., v_k \rangle$ be a shortest path from vertex v_1 to vertex v_k , and $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j , $1 \le i \le j \le k$. Then, p_{ij} is a shortest path from v_i to v_j . (NOTE: reverse is not necessarily true!)
- Suppose that a shortest path *p* from a source *s* to a vertex *v* can be decomposed into $s \stackrel{p'}{\leadsto} u \to v$. Then, $\delta(s, v) = \delta(s, u)$
 - + w(u, v).
- For all edges $(u, v) \in E$, $\delta(s, v) \le \delta(s, u) + w(u, v)$.



Unit 2

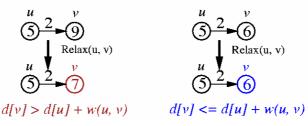
subpaths of shortest paths

29

Relaxation

Initialize-Single-Source(*G*, *s*) 1. for each vertex $v \in V[G]$ 2. $d[v] \leftarrow \infty$; /* upper bound on the weight of a shortest path from *s* to $v^*/$ 3. $\pi[v] \leftarrow \text{NIL}$; /* predecessor of $v^*/$ 4. $d[s] \leftarrow 0$; *Relax*(*u*, *v*, *w*) 1. if d[v] > d[u] + w(u, v)2. $d[v] \leftarrow d[u] + w(u, v)$; 3. $\pi[v] \leftarrow u$;

- $d[v] \le d[u] + w(u, v)$ after calling Relax(u, v, w).
- *d*[*v*] ≥ δ(*s*, *v*) during the relaxation steps; once *d*[*v*] achieves its lower bound δ(*s*, *v*), it never changes.
- Let $s \rightsquigarrow u \rightarrow v$ be a shortest path. If $d[u] = \delta(s, u)$ prior to the call Relax(u, v, w), then $d[v] = \delta(s, v)$ after the call.



Dijkstra's Shortest-Path Algorithm

Dijkstra(*G*, *w*, *s*)

- 1. Initialize-Single-Source(G, s);
- 2. $S \leftarrow \emptyset$;
- 3. $Q \leftarrow V[G];$
- 4. while $Q \neq \emptyset$
- 5. $u \leftarrow \text{Extract-Minimum-Element}(Q);$
- 6. $S \leftarrow S \cup \{u\};$
- 7. for each vertex $v \in Adj[u]$
- 8. Relax(*u*, *v*, *w*);

• Idea:

- search all shortest paths
 - In a smart way (use dynamic-programming, see next lecture)
- Then choose a shortest path

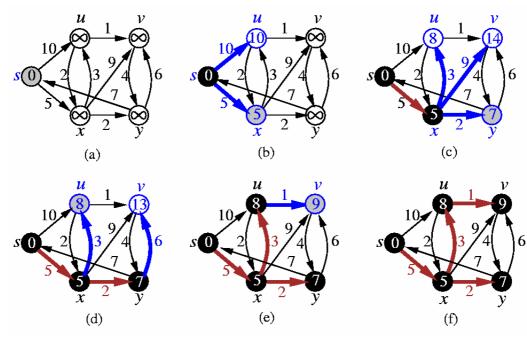
Unit 2

NTUEE/ Intro. EDA

31

Example: Dijkstra's Shortest-Path Algorithm

Find the shortest path from vertex s to vertex v
 _ s→x→u→v; Weight = 5+3+1



Runtime Analysis of Dijkstra's Algorithm

Dijkstra(*G*, *w*, *s*)

- 1. Initialize-Single-Source(G, s);
- 2. S ← Ø ;
- 3. Q ← V[G];
- 4. while $Q \neq \emptyset$
- 5. $u \leftarrow \text{Extract-Minimum-Element}(Q);$
- 6. $S \leftarrow S \cup \{u\};$
- 7. for each vertex $v \in Adj[u]$
- 8. Relax(*u*, *v*, *w*);
- Q is implemented as a linear array: $O(V^2)$.
 - Line 5: O(V) for Extract-Minimum-Element, so $O(V^2)$ with the **while** loop.
 - Lines 7--8: O(E) operations, each takes O(1) time.
- Q is implemented as a binary heap: $O(E \lg V)$.
- Q is implemented as a Fibonacci heap: $O(E + V \lg V)$.

Unit 2

NTUEE/ Intro. EDA

33

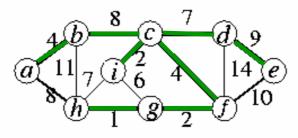
Dijkstra's SP Pseudo Code in Text

```
struct vertex {
  . . .
  int distance;
};
dijkstra(set of struct vertex V, struct vertex v_s, struct vertex v_t)
ł
  set of struct vertex T;
  struct vertex u, v;
  V \leftarrow V \setminus \{v_s\};
  T \leftarrow \{v_s\};
  v_s.distance \leftarrow 0;
  for each u \in V
    if ((v_s, u) \in E)
       u.distance \leftarrow w((v_s, u))
    else u.distance \leftarrow +\infty;
  while (v_t \notin T) {
      u \leftarrow "u \in V, such that \forall v \in V : u.distance \leq v.distance";
      T \leftarrow T \cup \{u\};
      V \leftarrow V \setminus \{u\};
      for each v "such that (u, v) \in E"
         if (v.distance > w((u, v)) + u.distance)
            v.distance \leftarrow w((u, v)) + u.distance;
  }
```

}

Minimum Spanning Tree (MST)

- Given an undirected graph G = (V, E) with weights on the edges, a minimum spanning tree (MST) of G is a subset T ⊆ E such that
 - T has no cycles
 - T contains all vertices in V
 - sum of the weights of all edges in *T* is minimum.
- Number of edges in T is number of vertices minus one
- Applications: circuit interconnection (minimizing tree radius), communication network (minimizing tree diameter), etc.



Unit 2

NTUEE/ Intro. EDA

Prim's MST Algorithm

MST-Prim(G,w,r) 1. $Q \leftarrow V[G]$; 2. for each vertex $u \in Q$ 3. key[u] $\leftarrow \infty$; 4. $key[r] \leftarrow 0;$ 5. $\pi[r] \leftarrow \text{NIL};$ 6. while $Q \neq \emptyset$ 7. $u \leftarrow \text{Extract-Minimum-Element}(Q);$ 8. for each vertex $v \in Adi[u]$ 9. if $v \in Q$ and w(u, v) < key[v]10. $\pi[v] \leftarrow u;$ 11. $key[v] \leftarrow w(u,v)$

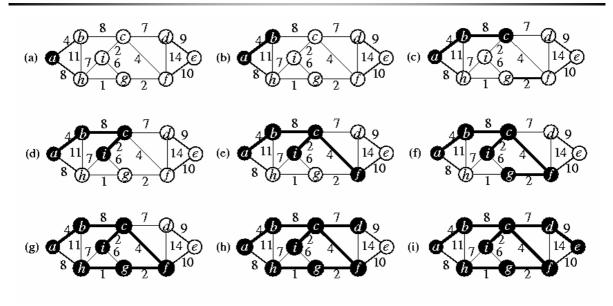
•0

priority queue for vertices not in the tree, based on key[].

• *Key[]* min weight of any edge connecting to a vertex in the tree.

- Starts from a vertex and grows until the tree spans all the vertices.
 - The edges in *A* always form a single tree.
 - At each step, a safe, minimum-weighted edge connecting a vertex in A to a vertex in V - A is added to the tree.

Example: Prim's MST Algorithm



Unit 2

NTUEE/ Intro. EDA

37

Time Complexity of Prim's MST Algorithm

MST-Prim(<i>G</i> , <i>w</i> , <i>r</i>)		
1. $Q \leftarrow V[G];$		
2. for each vertex $u \in Q$		
3. $key[u] \leftarrow \infty;$		
4. $key[r] \leftarrow 0;$		
5. $\pi[r] \leftarrow \text{NIL};$		
6. while $Q \neq \emptyset$		
7.	$u \leftarrow \text{Extract-Minimum-Element}(Q);$	
8.	for each vertex $v \in Adj[u]$	
9.	if $v \in Q$ and $w(u, v) < key[v]$	
10.	$\pi V] \leftarrow U;$	
11.	$key[v] \leftarrow w(u,v)$	

- Straightforward implementation: $O(V^2)$ time
 - _ Lines 1--5: O(V).
 - Line 7: O(V) for Extract-Minimum-Element, so $O(V^2)$ with the **while** loop.
 - Lines 8--11: O(E) operations, each takes $O(\lg V)$ time.
- Run in O(E Ig V) time if Q is implemented as a binary heap
- Run in O(E + VIgV) time if Q is implemented as a Fibonacci heap

Prim's MST Pseudo Code in Text

```
prim(set of struct vertex V)
{
  set of struct edge F;
  set of struct vertex W;
  struct vertex u;
  u \leftarrow "any vertex from V";
   V \leftarrow V \setminus \{u\};
   W \leftarrow \{u\};
   F \leftarrow \emptyset;
  for each v \in V
     \mathbf{if}\left((u,\,v)\in E\right)\{
        v.distance \leftarrow w((u, v));
        v.via\_edge \leftarrow (u, v);
     }
     else v.distance \leftarrow +\infty;
   while (V \neq \emptyset) {
       u \leftarrow "u \in V, such that \forall v \in V : u.distance \leq v.distance";
       W \leftarrow W \cup \{u\};
       V \leftarrow V \setminus \{u\};
        F \leftarrow F \cup \{u.via\_edge\};
       for each v "such that (u, v) \in E"
          if (v.distance > w((u, v))) {
             v.distance \leftarrow w((u, v));
             v.via\_edge \leftarrow (u, v);
          }
   }
}
```

Unit 2