
Unit 2 1
NTUEE/ Intro. EDA

Unit 2: Algorithmic Graph Theory

․Course contents:
⎯ Introduction to graph theory

⎯ Basic graph algorithms

․Reading
⎯ Chapter 3

⎯ Reference: Cormen, Leiserson, and Rivest, Introduction to
Algorithms, 2nd Ed., McGraw Hill/MIT Press, 2001.

Unit 2 2
NTUEE/ Intro. EDA

Algorithms

․Algorithm: A well-defined procedure for transforming
some input to a desired output.

․Major concerns:
⎯ Correctness: Does it halt? Is it correct?

⎯ Efficiency: Time complexity? Space complexity?
Worst case? Average case? (Best case?)

․Better algorithms?
⎯ How: Faster algorithms? Algorithms with less space

requirement?

⎯ Optimality: Prove that an algorithm is best possible/optimal?
Establish a lower bound?

Unit 2 3
NTUEE/ Intro. EDA

․Instance: A set of points (cities) P together with a
distance d(p, q) between any pair p, q ∈ P.

․Output: What is the shortest circular route that starts
and ends at a given point and visits all the points.

․Correct and efficient algorithms?

Example: Traveling Salesman Problem (TSP)

Unit 2 4
NTUEE/ Intro. EDA

Nearest Neighbor Tour

․Simple to implement and very efficient, but incorrect!

1. pick and visit an initial point p0;
2. P ← p0;
3. i ← 0;
4. while there are unvisited points do
5. visit pi's closet unvisited point pi+1;
6. i ← i + 1;
7. return to p0 from pi.

Unit 2 5
NTUEE/ Intro. EDA

A Correct, but Inefficient Algorithm

․Correctness: Tries all possible orderings of the points ⇒
Guarantees to end up with the shortest possible tour.

․Efficiency: Tries n! possible routes!
⎯ 120 routes for 5 points, 3,628,800 routes for 10 points, 20 points?

․No known efficient, correct algorithm for TSP!

1. d ← ∞ ;
2. for each of the n! permutations πi of the n points
3. if (cost(πi) ≤ d) then
4. d ← cost(πi);
5. Tmin ← πi;
6. return Tmin.

Unit 2 6
NTUEE/ Intro. EDA

Example: Sorting

․Instance: A sequence of n numbers <a1, a2, …, an>.

․Output: A permutation <a1', a2', …, an'> such that a1'
≤ a2' ≤ … ≤ an'.

Input: <8, 6, 9, 7, 5, 2, 3>

Output: <2, 3, 5, 6, 7, 8, 9 >

․Correct and efficient algorithms?

Unit 2 7
NTUEE/ Intro. EDA

Insertion Sort

InsertionSort(A)
1. for j ← 2 to length[A] do
2. key ← A[j];
3. /* Insert A[j] into the sorted sequence A[1..j-1]. */
4. i ← j - 1;
5. while i > 0 and A[i] > key do
6. A[i+1] ← A[i];
7. i ← i - 1;
8. A[i+1] ← key;

Unit 2 8
NTUEE/ Intro. EDA

Graph

․Graph: A mathematical object representing a set of
“points” and “interconnections” between them.

․A graph G = (V, E) consists of a set V of vertices
(nodes) and a set E of directed or undirected edges.
⎯ V is the vertex set: V = {v1, v2, v3, v4, v5, v6}, |V|=6

⎯ E is the edge set: E = {e1, e2, e3, e4, e5}, |E|=5

⎯ An edge has two endpoints, e.g. e1 = (v1, v2)

⎯ For simplicity, use V for |V| and E for |E|.

Unit 2 9
NTUEE/ Intro. EDA

Example Graphs

․Any binary relation is a graph.
⎯ Network of roads and cities

⎯ Circuit representation

Unit 2 10
NTUEE/ Intro. EDA

Terminology

․Degree of a vertex: degree(v3) = 3, degree(v2) = 2

․Subgraph of a graph:

․Complete (sub)graph: V’ = {v1, v2, v3}, E’ = {e1, e2, e3}

․(Maximal/maximum) clique: maximal/maximum complete
subgraph

․Selfloop

․Parallel edges

․Simple graph

․Multigraph

Unit 2 11
NTUEE/ Intro. EDA

Terminology (cont’d)

․Bipartite graph G = (V1, V2, E)

․Path

․Cycle: a closed path

․Connected vertices

․Connected graph

․Connected components

A bipartite graph Path p = <v1, v2, v3, v4>
Cycle C = <v1, v2, v3, v1 >

Unit 2 12
NTUEE/ Intro. EDA

Terminology (cont’d)

․Weighted graph:
⎯ Edge weighted and/or vertex weighted

․Directed graph: edges have directions
⎯ Directed path

⎯ Directed cycle

⎯ Directed acyclic graph (DAG)

⎯ In-degree, out-degree

⎯ Strongly connected vertices
Strongly connected components {v1}{v2, v3, v4, v5}

⎯ Weekly connected vertices

Unit 2 13
NTUEE/ Intro. EDA

Graph Representation: Adjacency List

․Adjacency list: An array Adj of |V | lists, one for each
vertex in V. For each u ∈ V, Adj[u] pointers to all the
vertices adjacent to u.

․Advantage: O(V+E) storage, good for sparse graph.

․Drawback: Need to traverse list to find an edge.

Unit 2 14
NTUEE/ Intro. EDA

Graph Representations: Adjacency Matrix

․Adjacency matrix: A |V| r |V| matrix A = (aij) such that

․Advantage: O(1) time to find an edge.

․Drawback: O(V2) storage,suitable for dense graph.

․How to save space if the graph is undirected?

Unit 2 15
NTUEE/ Intro. EDA

Explicit Edges and Vertices

Unit 2 16
NTUEE/ Intro. EDA

Tradeoffs between Adjacency List and Matrix

Unit 2 17
NTUEE/ Intro. EDA

Depth-First Search (DFS) [Cormen]

․color[u]:

white (undiscovered) →
gray (discovered) →
black (explored: out

edges are all discovered)

․d[u]: discovery time (gray)

․f[u]: finishing time (black)

․π[u]: predecessor

․Time complexity: O(V+E)

(adjacency list).

DFS(G)
1. for each vertex u ∈ V[G]
2. color[u] ← WHITE;
3. π [u] ←NIL;
4. time ← 0;
5. for each vertex u ∈ V[G]
6. if color[u] = WHITE
7. DFS-Visit(u).

DFS-Visit(u)
1. color[u] ← GRAY;
/* White vertex u has just been

discovered. */
2. d[u] ← time ← time +1;
3. for each vertex v ∈ Adj[u]

/* Explore edge (u,v). */
4. if color[v] = WHITE
5. π [v] ← u;
6. DFS-Visit(v);
7. color[u] ← BLACK;

/* Blacken u; it is finished. */
8. f[u] ← time ← time+1.

Unit 2 18
NTUEE/ Intro. EDA

DFS Example [Cormen]

․ color[u]: white → gray → black.

․Depth-first forest: Gπ = (V, Eπ), Eπ = {(π[v], v) ∈ E | v ∈ V, π[v] ≠ NIL}

⎯ {u v x y} {w z}

Unit 2 19
NTUEE/ Intro. EDA

DFS Pseudo Code in Text

Unit 2 20
NTUEE/ Intro. EDA

DFS Application 1: Topological Sort
․ A topological sort of a directed acyclic graph (DAG) G = (V, E) is a

linear ordering of V s.t. (u, v) ∈ E ⇒ u appears before v.
Topological-Sort(G)
1. call DFS(G) to compute finishing times f[v]

for each vertex v
2. as each vertex is finished, insert it onto the

front of a linked list
3. return the linked list of vertices

․ Time complexity: O(V+E) (adjacent list).

Unit 2 21
NTUEE/ Intro. EDA

DFS Application 2: Hightower’s Maze Router

․A single escape point on each line segment.

․If a line parallels to the blocked cells, the escape point
is placed just past the endpoint of the segment.

․Time and space complexities: O(L), where L is the # of
line segments generated.

Unit 2 22
NTUEE/ Intro. EDA

Breadth-First Search (BFS) [Cormen]

BFS(G,s)
1. for each vertex u ∈ V[G]-{s}
2. color[u] ←WHITE;
3. d[u] ← ∞;
4. π [u] ← NIL;
5. color[s] ←GRAY;
6. d[s] ← 0;
7. π[s] ←NIL;
8. Q ← {s};
9. while Q ≠ ∅
10. u ← head[Q];
11. for each vertex v ∈ Adj[u]
12. if color[v] = WHITE
13. color[v] ←GRAY;
14. d[v] ← d[u]+1;
15. π [v] ← u;
16. Enqueue(Q,v);
17. Dequeue(Q);
18. color[u] ←BLACK}.

․color[u]:

white (undiscovered) →
gray (discovered) →
black (explored: out edges

are all discovered)

․d[u]: distance from source s

․π[u]: predecessor of u

․Use queue for gray vertices

․Time complexity: O(V+E)
(adjacency list).

Unit 2 23
NTUEE/ Intro. EDA

BFS Example [Cormen]

․Use queue for gray vertices.
⎯ Each vertex is enqueued and dequeued once: O(V) time.
⎯ Each edge is considered once: O(E) time.

․Breadth-first tree:
⎯ Gπ = (Vπ, Eπ), Vπ = {v ∈ V| π [v] ≠ NIL} ∪ {s}

{s, w, r, t, x, v, u, y}
⎯ Eπ = {(π[v], v) ∈ E | v ∈ Vπ - {s}}.

{(s,w), (s,r), (w,t), (w,x), (r,v), (t,u), (x,y)}

Unit 2 24
NTUEE/ Intro. EDA

BFS Pseudo Code in Text

Unit 2 25
NTUEE/ Intro. EDA

BFS Application: Lee’s Maze Router

․Find a path from S to T by “wave propagation.”

․Discuss mainly on single-layer routing

․Strength: Guarantee to find a minimum-length connection
between 2 terminals if it exists.

․Weakness: Time & space complexity for an M × N grid:
O(MN) (huge!)

Unit 2 26
NTUEE/ Intro. EDA

BFS + DFS Application: Soukup’s Maze Router

․Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

․Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle is reached.

․Time and space complexities: O(MN), but 10--50 times
faster than Lee's algorithm.

․Find a path between S and T, but may not be the shortest!

Unit 2 27
NTUEE/ Intro. EDA

Shortest Paths (SP)

․The Shortest Path (SP) Problem
⎯ Given: A directed graph G=(V, E) with edge weights, and a

specific source node s.

⎯ Goal: Find a minimum weight path (or cost) from s to every
other node in V.

․Applications: weights can be distances, times, wiring
cost, delay. etc.

․Special case: BFS finds shortest paths for the case
when all edge weights are 1.

Unit 2 28
NTUEE/ Intro. EDA

Weighted Directed Graph

․A weighted, directed graph G = (V, E) with the weight
function w: E → R.
⎯ Weight of path p = <v0, v1, …, vk>: w(p) = .

⎯ Shortest-path weight from u to v, δ(u, v):

․Warning! negative-weight edges/cycles are a problem.
⎯ Cycle <e, f, e> has weight -3 < 0 ⇒ δ(s, g) = - ∞.

⎯ Vertices h, i, j not reachable from s ⇒ δ(s, h) = δ(s, i) = δ(s, j) = ∞.

․Algorithms apply to the cases for negative-weight
edges/cycles??

11
(,)

k

i ii
w v v−=∑

Unit 2 29
NTUEE/ Intro. EDA

Optimal Substructure of a Shortest Path

․Subpaths of shortest paths are shortest paths.
⎯ Let p = <v1, v2, …, vk> be a shortest path from vertex v1 to

vertex vk, and pij = <vi, vi+1, …, vj> be the subpath of p from
vertex vi to vertex vj, 1 ≤ i ≤ j ≤ k. Then, pij is a shortest path
from vi to vj. (NOTE: reverse is not necessarily true!)

․Suppose that a shortest path p from a source s to a vertex v

can be decomposed into . Then, δ(s, v) = δ(s, u)

+ w(u, v).

․For all edges (u, v) ∈ E, δ(s, v) ≤ δ(s, u) + w(u, v).

Unit 2 30
NTUEE/ Intro. EDA

Relaxation

․ d[v] ≤ d[u] + w(u, v) after calling Relax(u, v, w).

․ d[v] ≥ δ(s, v) during the relaxation steps; once d[v] achieves its lower
bound δ(s, v), it never changes.

․ Let be a shortest path. If d[u] = δ(s, u) prior to the call
Relax(u, v, w), then d[v] = δ(s, v) after the call.

Initialize-Single-Source(G, s)
1. for each vertex v ∈ V[G]
2. d[v] ← ∞;

/* upper bound on the weight of a shortest path from s to v */
3. π[v] ←NIL; /* predecessor of v */
4. d[s] ← 0;

Relax(u, v, w)
1. if d[v] > d[u]+w(u, v)
2. d[v] ← d[u]+w(u, v);
3. π[v] ← u;

Unit 2 31
NTUEE/ Intro. EDA

Dijkstra's Shortest-Path Algorithm

․Idea:
⎯ search all shortest paths

In a smart way (use dynamic-programming, see next lecture)

⎯ Then choose a shortest path

Dijkstra(G, w, s)
1. Initialize-Single-Source(G, s);
2. S ← ∅ ;
3. Q ← V[G];
4. while Q ≠ ∅
5. u ← Extract-Minimum-Element(Q);
6. S ← S ∪ {u};
7. for each vertex v ∈ Adj[u]
8. Relax(u, v, w);

Unit 2 32
NTUEE/ Intro. EDA

Example: Dijkstra's Shortest-Path Algorithm

․Find the shortest path from vertex s to vertex v
⎯ s x u v ; Weight = 5+3+1

Unit 2 33
NTUEE/ Intro. EDA

Runtime Analysis of Dijkstra's Algorithm

․Q is implemented as a linear array: O(V2).
⎯ Line 5: O(V) for Extract-Minimum-Element, so O(V2) with the

while loop.

⎯ Lines 7--8: O(E) operations, each takes O(1) time.

․Q is implemented as a binary heap: O(E lg V).

․Q is implemented as a Fibonacci heap: O(E + V lg V).

Dijkstra(G, w, s)
1. Initialize-Single-Source(G, s);
2. S ← ∅ ;
3. Q ← V[G];
4. while Q ≠ ∅
5. u ← Extract-Minimum-Element(Q);
6. S ← S ∪ {u};
7. for each vertex v ∈ Adj[u]
8. Relax(u, v, w);

Unit 2 34
NTUEE/ Intro. EDA

Dijkstra’s SP Pseudo Code in Text

Unit 2 35
NTUEE/ Intro. EDA

Minimum Spanning Tree (MST)

․Given an undirected graph G = (V, E) with weights on
the edges, a minimum spanning tree (MST) of G is a
subset T ⊆ E such that
⎯ T has no cycles
⎯ T contains all vertices in V
⎯ sum of the weights of all edges in T is minimum.

․Number of edges in T is number of vertices minus one
․Applications: circuit interconnection (minimizing tree

radius), communication network (minimizing tree
diameter), etc.

Unit 2 36
NTUEE/ Intro. EDA

Prim's MST Algorithm

․Starts from a vertex and grows until the tree spans all the
vertices.
⎯ The edges in A always form a single tree.
⎯ At each step, a safe, minimum-weighted edge connecting a

vertex in A to a vertex in V - A is added to the tree.

MST-Prim(G,w,r)
1. Q ← V[G];
2. for each vertex u ∈ Q
3. key[u] ← ∞;
4. key[r] ← 0;
5. π[r] ← NIL;
6. while Q ≠ ∅
7. u ← Extract-Minimum-Element(Q);
8. for each vertex v ∈ Adj[u]
9. if v ∈ Q and w(u,v) < key[v]
10. π[v] ← u;
11. key[v] ← w(u,v)

Q
priority queue for vertices not
in the tree, based on key[].

Key[]
min weight of any edge
connecting to a vertex in the
tree.

Unit 2 37
NTUEE/ Intro. EDA

Example: Prim's MST Algorithm

Unit 2 38
NTUEE/ Intro. EDA

Time Complexity of Prim's MST Algorithm

․Straightforward implementation: O(V2) time
⎯ Lines 1--5: O(V).

⎯ Line 7: O(V) for Extract-Minimum-Element, so O(V2) with the while loop.

⎯ Lines 8--11: O(E) operations, each takes O(lgV) time.

․Run in O(E lg V) time if Q is implemented as a binary heap

․Run in O(E + VlgV) time if Q is implemented as a Fibonacci heap

MST-Prim(G,w, r)
1. Q ← V[G];
2. for each vertex u ∈ Q
3. key[u] ← ∞;
4. key[r] ← 0;
5. π[r] ← NIL;
6. while Q ≠ ∅
7. u ← Extract-Minimum-Element(Q);
8. for each vertex v ∈ Adj[u]
9. if v ∈ Q and w(u,v) < key[v]
10. πv] ← u;
11. key[v] ← w(u,v)

Unit 2 39
NTUEE/ Intro. EDA

Prim’s MST Pseudo Code in Text

