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2.0 Objectives

At the end of the unit you will be able to

• Simplify Boolean expressions using algebraic method

• Describe sum of products and product of sums and convert them  into canonical 

form

• Design karnaugh maps and use them to simplify Boolean expressions

• Implementing Boolean expressions using NAND and NOR gates

• Describe  half  adder,  full  adder,  half  subtractor,  full  subtractor,  parallel  binary 

adder and BCD adder

• Find, based on input conditions, the output of an encoder and decoder

• Determine the output of multiplexer and demultiplexer based on input conditions



2.1 Introduction

We have studied so far  logic  gates and Boolean algebra.  Boolean algebra and 

theorems are used for the manipulations of logical expressions. It has also been seen that 

a  logical  expression  can  be  realized  by  using  the  logic  gates.  The  number  of  gates 

required and the number of input terminals for the implementation of a logical expression, 

in general, get reduced considerably if the expression can be simplified. Therefore, the 

simplification of logical expression is very important as it saves the hardware required to 

design a specific system

We know that logical expressions are implemented by connecting specific logic 

gates. These logic gates produce a specific output for certain specified combinations of 

input  variables,  with  no  storage  involved.  These  circuits  are  commonly  known  as 

combinational circuits. In combinational circuits, the output level is always dependent on 

the combinations of the input levels.

The combinational circuits can be specified in one of the following ways:

• A set of statements

• Boolean expression, and

• Truth table.

In this section we will continue our study of combinational circuits and we will 

further study various methods of simplifications of logical circuits. 

2.2 Simplification of Boolean Expressions:

Simplification of Boolean functions is mainly used to reduce the gate count of a 

design. Less number of gates means less power consumption, sometimes the circuit works 

faster and also when number of gates is reduced, cost also comes down. There are many 

ways to simplify a logic design; some of them are given below. We will be looking at 

each of these in detail in the next few pages.

• Algebraic Simplification.

 Simplify symbolically using theorems/postulates.

 Requires good skills

• Karnaugh Maps.

 Diagrammatic technique using 'Venn - diagram'.



 Limited to not more than 6 variables

Some of the examples are given here:

1. Simplify the Boolean expression

XY′Z′+XY′Z′W+XZ′

The above expression can be written as

XY′Z′ (1+W) +XZ′

=XY′Z′+XZ′            as 1+W=1

=XZ′ (Y′+1)

=XZ′                         as Y′+1=1

2. Simplify the Boolean expression

X+X′Y+Y′+(X+Y′) X′Y

The above expression can be written as

X+X′Y+Y′+XX′Y+Y′X′Y

=X+X′Y+Y′                  as   XX′=0,    and YY′=0

=X+Y+Y′                     as X+X′Y=X+Y

=X+1                            as Y+Y′=1

=1                                 as X + 1=1

3. Simplify the Boolean expression

Z(Y+Z) (X+Y+Z)

The above expression can be written as

(ZY+ZZ)(X+Y+Z)

= (ZY+Z) (X+Y+Z)              as   ZZ=Z

=Z(X+Y+Z)                          as    Z+ZY=Z

=ZX+ZY+ZZ

=ZX+ZY+Z                as ZZ=Z,

=ZX+Z                                  as Z+ZY=Z

=Z                                          as Z+ZX=Z



4. Simplify the Boolean expression

(X+Y)(X′+Z)(Y+Z)

The above expression can be written as

(XX′+XZ+YX′+YZ)(Y+Z)

=(XZ+YX′+YZ) (Y+Z)                          as    XX′=0

=XZY+YYX′+YYZ+XZZ+YX′Z+YZZ

=XZY+YX′+YZ+XZ+YX′Z+YZ          as    YY=Y, ZZ=Z

Rearranging the terms we get

 XZY+XZ+YX′+YX′Z+YZ                   as YZ+YZ=YZ

=XZ(Y+1) +YX′+YZ (X′+1)                 as Y+1=1, X′+1=1

=XZ+YX′+YZ

Now it seems that it cannot be reduced further. But apply the following trick:

The above expression can be written as

XZ+YX′+YZ(X+X′)                            as X+X′=1

=XZ+YX′+YZX+YZX′

Rearranging the terms we get

XZ+YXZ+Y X′+YX′Z

=XZ (1+Y) +YX′ (1+Z)

=XZ+YX′   as 1+Y=1, 1+Z=1

2.2.1 Sum of Products:

A sum of products expression consists of several product terms logically added. A 

product term is a logical product of several variables. The variables may or may not be 

complemented. The following are the examples of sum of products expressions.

1. XY+X'Y+XY'

2. AB+ABC+BC'

3. A+AB'+B'C

4. ABC+A'B+AB'C+A'BC'

Sometimes a product term may consist of a single variable.



2.2.2 Products of Sums:

A product of sums expression consists of several sum terms logically multiplied. 

A sum term is the logical addition of several variables. The variables may or may not be 

complemented. The following are examples of product of sums expressions:

A) (A+B) (A'+B')

B) A (B'+C') (B+C)

c) (X+Y') (X+Y+Z) (Y+Z)

Sometimes a sum term may consist of a single variable.

2.2.3 Canonical SOP and POS Forms:

When each term of a logic expression contains all variables, it’s said to be in the 

canonical form. When a sum of products form of logic expression is in canonical form, 

each product term is called minterm. Each minterm contains all variables. The canonical 

form of a sum of products expression is also called minterm canonical form or standard 

sum of  products.  Similarly,  when  a  product  of  sums  form of  logic  expression  is  in 

canonical form, each sum term is called a maxterm. Each maxterm contains all variables. 

The canonical form of a product of sums expression is also called maxterm canonical 

form or standard product of sums.

When a logic expression is not in the canonical form, it can be converted into 

canonical  form.  In  the  canonical  form  there  is  uniformity  in  the  expression,  which 

facilitates minimization procedure

The following are examples of the canonical form of sum of products expressions 

(or minterm canonical form):

(i). Z = XY + XY′

(ii). F = XYZ′ + X′YZ + X′YZ′ + XY′Z + XYZ

 

In case of 2 variables, the maximum possible product terms are 4, for 3 variables, the 

possible product terms are 8, for 4 variables 16, and for n variables, 2ⁿ.

In the above examples the expression (ii)  contains 5 out of 8 possible product terms. 

When the expression is in the canonical form all terms are mutually exclusive. It means 

that for a given set of values of the variables, when one of the terms is equal to 1, all 

others must be 0. Of course, it is possible that all terms may be 0.

The  following  are  examples  of  canonical  form  of  product  of  sums  expressions  (or 

maxterm canonical form).



(i). Z = (X + Y) (X + Y′)

(ii). F = (X′ + Y + Z′) (X′ + Y + Z) (X′ + Y′ + Z′)

The following table gives the minterms and maxterms for a three variable logical function 

where the number of minterms as well as maxterms is 2³ = 8. In general, for an n-variable 

logical function there are 2ⁿ minterms and an equal number of maxterms.

Variables Minterms Maxterms
A B C mi Mi

0 0 0 A' B' C' = m0 A + B + C = M0

0 0 1 A' B' C = m1 A + B + C' = M1

0 1 0 A' B C' = m2 A + B' + C = M2

0 1 1 A' B C = m3 A + B' + C' = M3

1 0 0 A B' C' = m4 A' + B + C = M4

1 0 1 A B' C = m5 A' + B + C' = M5

1 1 0 A B C' = m6 A' + B' + C = M6

1 1 1 A B C = m7 A' + B' + C' = M7

                                    Minterms and Maxterms for Three variables

As shown in the above table each minterm is represented by mi and each maxterm 

is  represented  by  Mi where  i is  the  decimal  number  equivalent  of  the  natural  binary 

number. With these shorthand notations logical functions can be represented as follows:

1. Y =  A' B' C’ + A’ B’ C + A’ B C + A B C’

  = m0 + m1 + m3 + m6

                                     = ∑m( 0, 1, 3, 6 )

2. Y = ( A + B + C’ ) ( A + B’ + C’ ) ( A’ + B’ + C )

= M1 + M3 + M6

= πM( 1, 3, 6 )

Where ∑ denotes sum of product while π denotes product of sum

Conversion of Sum of Products Expressions into Canonical Form:



The  following  examples  will  illustrate  how  logic  expressions  can  be  converted  into 

canonical form.

  Example 1: Convert the expression X + XY’ into canonical form.

         The expression has two variables. The first term has only one variable. So to make it 

of two variables it can be multiplied by (Y + Y’), as Y + Y’ = 1. After multiplication the 

given logic expression can be written as

     X(Y + Y′) + XY′, as Y + Y′ = 1

       or  XY + XY′ + XY′

      or  XY + XY′

Conversion of Product of Sums Expression into Canonical Form:

Before we proceed with such a conversion a few identities should be examined.

We can write A = (A + B) (A + B′)

This can be proved as follows:

A = A +A + 0

= A( B + B′ ) + A.A + B.B′, as B + B′ =1, AA=A, BB′=1

= AB + AB′ + AA + BB′

= A (A +B) + B′ (A + B)

= (A + B) (A + B′)

Similarly, we can write A + B = (A + B +C) (A + B + C′).

(A + B + C) (A + B + C′)

= AA + AB + AC′ + AB + BB + BC′ + AC + BC + CC′

Rearranging the terms we get

AA + BB + AC′ + BC′ + AC + BC + AB + AB, as CC′ = 0

= (A + B) + C′ (A + B) + C (A + B) + AB + AB [AA = A; BB = B]

= (A + B) + (A + B) (C + C′) + AB + AB

= (A + B) + (A + B) + AB + AB as C + C′ = 1

= A + B + AB + AB as (A + B) + (A + B) = (A + B)

= A + AB + B + AB

= A (1 + B) + B (1 + A)

= A + B as 1 + B = 1,    1 + A =1

This technique can be extended to any number of variables such as



(A + B′ + C) = (A + B′ + C + D) (A + B′ + C + D′)

Example 1: Convert the following expression into canonical form:

(A + B) (B + C)

 To convert the above expression into canonical form the following identity can be used:

X + Y = (X + Y + Z) (X + Y + Z′)

Applying the above identity, the given logic expression can be written as

(A + B + C) (A + B + C′) (A + B + C) (A′ + B + C)

= (A + B + C) (A + B + C′) (A′ + B + C)

2.2.4 Karnaugh Maps

Karnaugh  maps  provide  a  systematic  method  to  obtain  simplified  sum-of-products 

(SOPs) Boolean expressions. This is a compact way of representing a truth table and is a 

technique that is used to simplify logic expressions. It is ideally suited for four or less 

variables, becoming cumbersome for five or more variables. Each square represents either 

a  minterm or  maxterm.  A K-map of  n  variables  will  have  2 squares.  For  a  Boolean 

expression, product terms are denoted by 1's, while sum terms are denoted by 0's.

A K-map consists of a grid of squares, each square representing one canonical minterm 

combination  of  the  variables  or  their  inverse.  The  map  is  arranged  so  that  squares 

representing minterms which differ by only one variable are adjacent both vertically and 

horizontally.  Therefore XY'Z' would be adjacent to X'Y'Z' and would also adjacent to 

XY'Z and XYZ'.

Minimization Technique

• Based on the Unifying Theorem: X + X' = 1

• The expression to be minimized should generally be in sum-of-products form (If 

necessary, the conversion process is applied to create the sum-of-products form).

• The  function  is  mapped  onto  the  K-map  by  marking  a  1  in  those  squares 

corresponding to the terms in the expression to be simplified (The other squares 

may be filled with 0's).

• Pairs  of  1's  on  the  map  which  are  adjacent  are  combined  using  the  theorem 

Y(X+X') = Y where Y is any Boolean expression (If two pairs are also adjacent, 

then these can also be combined using the same theorem).



The minimization procedure consists of recognizing those pairs and multiple pairs

->These are circled indicating reduced terms.

o Groups which can be circled are those which have two (21) 1's, four (22) 

1's, and eight (23) 1's.

->Note that because squares on one edge of the map are considered adjacent to those 

on the opposite edge, group can be formed with these squares.

->Groups are allowed to overlap.

The objective is to cover all the 1's on the map in the fewest number of groups and to 

create the largest groups to do this.

Once all possible groups have been formed, the corresponding terms are identified.

->A group of two 1's eliminates one variable from the original minterm.

->A group of four 1's eliminates two variables from the original minterm.

->A group of eight 1's eliminates three variables from the original minterm, and so on.

->The variables eliminated are those which are different in the original minterms of 

the group.

In any K-Map, each square represents a minterm. Adjacent squares always differ by just 

one literal (So that the unifying theorem may apply: X + X' = 1). For the 2-variable case 

(e.g.: variables X, Y), the map can be drawn as in Figure 2.2.4 (a). Two variable map is 

the one which has got only two variables as input.

                                                       Figure 2.2.4 (a)



Equivalent Labeling

K-map need not follow the ordering as shown in the Figure 2.2.4(a). What this means is 

that we can change the positions of m0, m1, m2, m3 of the above figure as shown in the 

Figure 2.2.4 (b) and Figure 2.2.4(c).

Position assignment is the same as the default k-map positions. This is the one which we 

will be using throughout this unit.

                                                       Figure 2.2.4 (b)

This figure is with changed positions of m0, m1, m2, m3.

                                                               Figure 2.2.4(c)

The K-map for a function is specified by putting a '1' in the square corresponding to a 

minterm, a '0' otherwise.

Grouping/Circling K-maps

The power of K-maps is in minimizing the terms, K-maps can be minimized with the help 

of grouping the terms to form single terms as shown in Figure 2.2.4 (d). When forming 

groups of squares, observe/consider the following:



• Every square containing 1 must be considered at least once.

• A square containing 1 can be included in as many groups as desired

        A group must be as large as possible.

Figure 2.2.4 (d)

• If a square that is containing 1 which cannot be placed in a group, then leave it out 

to include in final expression.

• The number of squares in a group must be equal to 2(pair), 4(quad), 8(octet).

The map is considered to be folded or spherical; therefore squares at the end of a row or 

column are treated as adjacent squares.

The  simplified  logic  expression  obtained  from  a  K-map  is  not  always  unique. 

Groupings can be made in different ways as shown in Figure 2.2.4(e).

Before drawing a K-map the logic expression must be in canonical form.



                                                 Figure 2.2.4 (e) 

In the next few pages we will see some examples of grouping.

2-Variable K-Map:

Example - F= X'Y+XY

In this example we have the equation as input, and we have one output function. Draw the 

k-map for function F with marking 1 for X'Y and XY positions. Now combine two 1's as 

shown in Figure 2.2.4 (f) to form the single term. As you can see X and X' get canceled 

and only Y remains F = Y



                                                       

                                                              Figure 2.2.4 (f)

Example - X'Y+XY+XY'

In this example we have the equation as input, and we have one output function. Draw the 

k-map for function F with marking 1 for X'Y, XY and XY positions. Now combine two 

1's as shown in Figure 2.2.4(g) to form two single terms.

F = X + Y

                                                          Figure 2.2.4(g)

3-Variable K-Map

There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable 

K-map. One important thing to note is that K-maps follow the gray code sequence, not 

the binary one.

Using gray code arrangement ensures that minterms of adjacent cells differ by only one 

literal.

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-

variable K-map has n adjacent neighbours as shown in Figure 2.2.4(h)



                                                Figure 2.2.4(h)

There is wrap-around in the K-map

• X'Y'Z' (m0) is adjacent to X'YZ' (m2)

XY'Z' (m4) is adjacent to XYZ' (m6) as shown in Figure 2.2.4(i)

                                                       Figure 2.2.4(i)

Example

F = XYZ'+XYZ+X'YZ



F = XY + YZ

Example

F(X, Y, Z) = (1, 3, 4, 5, 6, 7)

F = X + Z

4-Variable K-Map

There are 16 cells in a 4-variable (W, X, Y, Z) K-map as shown in the Figure 2.2.4 (j).



                                        Figure 2.2.4(j)

There are 2 wrap-arounds: a horizontal wrap-around and a vertical wrap-around. Every 

cell  thus  has  4  neighbours.  For  example,  the  cell  corresponding  to  minterm m0  has 

neighbours m1, m2, m4 and m8 as shown in Figure 2.2.4(k).

                                               Figure 2.2.4(k)

Example

F (W, X, Y, Z) = (1, 5, 12, 13)



F=WXY'+W'Y'Z

Example

F (W, X, Y, Z) = (4, 5, 10, 11, 14, 15)

F = W'XY' + WY

Don’t Care:

In some digital systems, certain input conditions never occur during normal operations; 

therefore the corresponding output never appears. Since the output does not appear it is 

indicated by an X in the truth table.

X is called don’t care condition. So don’t cares can be treated as 0’s and 1’s which ever is 

more convenient in the process of k-map simplification.



Consider the following truth table in which the output is low for all input entries from 

1001 and ‘X’ from 1010 through 1111.  The don’t care conditions are denoted by ’X’.

A B C D Y
0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

X

X

X

X

X

X



Here  three  don’t  cares  are  treated  as  1’s  to  get  a  quad which  eliminates  two 

variables. The remaining don’t cares are treated as 0’s.

Steps to be followed to apply don’t care conditions:

1. For the given truth table, draw a K-map with 0’s, 1’s and don’t cares.

2. Encircle the actual 1’s on the K-map in the largest groups, by treating the don’t cares as 

1’s.

3. After the actual 1’s have been included in groups discard the remaining don’t cares 

visualizing them as 0’s.

2.2.5 Implementing Boolean Expressions Using NAND Gates:

The implementation of a Boolean function with NAND-NAND logic requires that the 

function be simplified in the sum of product form. The relationship between AND-OR 

logic and NAND-NAND logic is explained using the following example.

Consider the Boolean function: Y = A B C + D E + F

This Boolean function can be implemented using AND-OR logic as shown in

 Figure 2.2.5 (a).

                                   Figure 2.2.5 (a) AND-OR



                              Figure 2.2.5 (b) NAND-Bubbled OR

Figure 2.2.5 (b) shows the AND gates are replaced by NAND gates and the OR gate is 

replaced  by  a  bubbled  OR  gate.  The  implementation  shown  in  Figure  2.2.5(b)  is 

equivalent to implementation in Figure 2.2.5 (a), because two bubbles on the same line 

represent double inversion (complementation) which is equivalent to having no bubble on 

the line. In case of single variable, F, the complemented variable is again complemented 

by bubble to produce the normal value of F.

Figure 2.2.5(c) NAND-NAND

In Figure 2.2.5 (c), the output NAND gate is redrawn with the conventional symbol. The 

NAND gate  with same inputs gives  complemented  result;  therefore  F′  is  replaced by 

NAND gate with F input to its both inputs. Thus all the three implementations of the 

Boolean function are equivalent.

From the above example we can summarize the rules for obtaining the NAND-NAND 

logic diagram from a Boolean function as follows:



1. Simplify the given Boolean function and express it in sum of products

form (SOP form).

2. Draw a NAND gate for each product term of the function that has two

or more literals. The inputs to each NAND gate are the literals of the term. This 

constitutes a group of first-level gates.

3. If Boolean function includes any single literal or literals draw NAND gates for 

each single literal and connect corresponding literal as an input to the NAND 

gate.

4. Draw a  single  NAND gate  in  the  second  level,  with  inputs  coming  from 

outputs of first level gates.

2.2.6 Implementing Boolean Expressions Using NOR Gates:

The NOR function is a dual of the NAND function. For this reason, the implementation 

procedures and rules for NOR-NOR logic are the duals of the corresponding procedures 

and rules developed for NAND-NAND logic.

The  implementation  of  a  Boolean  function  with  NOR-NOR  logic  requires  that  the 

function  be  simplified  in  the  product  of  sums  form.  In  product  of  sums  form,  we 

implement all sum terms using OR gates. This constitutes the first level. In the second 

level all sum terms are logically ANDed using AND gates. The relationship between OR-

AND logic and NOR-NOR is explained using following example

Consider the Boolean function: Y = (A + B +C) (D + E) F

The Boolean function can be implemented using OR-AND logic, as shown in the

 Figure 2.2.6 (a)



Figure 2.2.6 (a) OR-AND

                                Figure 2.2.6 (b) NOR-Bubbled AND

In Figure 2.2.6 (b) the OR gates are  replaced by NOR gates and the AND gate is replaced 

by a bubbled AND gate. The implementation shown in Figure 2.2.6 (b) is equivalent to 

implementation shown in Figure 2.2.6 (a) because two bubbles on the same line represent 

double inversion (complementation) which is equivalent to having no bubble on the line. 

In case of single variable, F, the complemented variable is again complemented by bubble 

to produce the normal value of F.



                                           Figure 2.2.6(c) NOR-NOR

In Figure 2.2.6 (c), the output NOR gate is redrawn with the conventional symbol. The 

NOR gate with same inputs gives complemented result, therefore, F  is replaced by  NOR 

gate with F input to its  both inputs. Thus all the three implementations of the Boolean 

function are equivalent.

From the above example, we can summarize the rules for obtaining the NOR-NOR logic 

diagram from a Boolean function as follows:

1. Simplify  the  given  Boolean  function  and  express  it  in  product  of  sums 

form(POS form)

2. Draw a NOR gate for each sum term of the function that has two or more 

literals. The inputs to each NOR gate are the literals of term. This constitute a 

group of first level gates.

3. If Boolean function includes any single literal or literals, draw NOR gate for 

each single literal and connect corresponding literal as an input to the NOR 

gate.

4. Draw a single NOR gate in the second level, with inputs coming from outputs 

of first level gates



Check Your Progress 1

1. The simplified form of Boolean expression(X+Y+XY) (X+Z) is

(a) X+Y+Z                                                     (b) XY+YZ

(c)X+YZ                                                        (d) XZ+Y

2. The simplified form of Boolean expression(X +Y'+Z) (Z+ Y'+Z') is

(a) X' Y+Z'                                                        (b) X+Y' +Z

(c) X                                                                (d) XY+Z'

3. The canonical form of logical expression A+A' B is

(a)AB+AB'+A'B                                              (b) A'B' +AB+AB'

(c) AB'+A'B+AB'                                             (c) A'B+A B' +A'B'

4. The canonical form of logical expression (A+B') (B'+C) is

(a) (A+B'+C') (A+B'+C) (A'+B'+C)

(b) (A+B'+C') (A+B'+C) (A'+B+C')

(c) (A+B+C') (A+B'+C') (A'+B'+C)

(d) (A+B'+C) (A+B'+C) (A'+B'+C)

2.3 Combinational Circuits

A combinational circuit consists of input variables, logic gates and output variables. The 

logic  gates  accept  signals  from the  input  variables  and  generate  output  signals.  This 

process transforms binary information from the given input data to the required output 

data. Figure 2.3 shows the block diagram of a combinational circuit.  As shown in the 

figure the combinational circuit accepts  n input binary variables and generates m output 

variables depending on the logical combination of gates.

                                                               Figure 2.3

In this  section we shall  discuss  about  the functions  of  Half  Adder,  Full  Adder,  Half 

Subtractor,  Full  Subtractor,  Parallel  Binary  Adder,  BCD Adder,  Encoders,  Decoders, 

Multiplexers and Demultiplexers.



2.3.1 Half Adder

Half adder is a logic circuit that finds the arithmetic sum of two binary digits at a 

time. Its logic circuit is shown in Figure 2.3.1(a).

                                                         

                                               Figure 2.3.1(a) Half Adder

 The outputs of the XOR and AND gates produces the sum and carry respectively.

                              THE TRUTH TABLE:

A B SUM 
A B

CARRY 

A.B

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

                                       

                                             

                                                        Map for SUM



                                                     Map for CARRY

                                                       CARRY = A . B

The input variables of half adder are augend and addend. The output variables are sum 

and carry. It is necessary to specify two output variables, because the sum of 1+1=10. Let 

A & B be input variables SUM and CARRY be output variables.

The output ‘CARRY’ represents an AND function. The output SUM represents exclusive 

OR function. The Boolean functions of the two outputs are

            SUM    = A     B   and

           CARRY = A . B

2.3.2 Full Adder

When two binary numbers are added a carry may be generated onto the subsequent bit 

positions.  Hence,  it  is  required  to  add  three  bits  for  the  subsequent  additions.  A 

combinational circuit that finds the arithmetic sum of three bits is called a Full adder. A 

Full adder can be constructed using two half adders and an OR gate as shown in the 

Figure 2.3.2(a).



                         Figure 2.3.2(a)  Full Adder

                     Truth table:

A B C CARRY SUM
0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

Thus a full-adder is a combinational circuit  that  performs the arithmetic  sum of three 

input bits. It consists of three inputs and two outputs. Two of the input variables denoted 

by A, B represents the two significant bits to be added. The third input C represents the 

carry from the  lower significant  position.  The  two outputs  are  denoted  by SUM and 

CARRY. The Boolean expressions for SUM and CARRY outputs are given below.

                    



      

2.3.3 Half Subtractor:

A Half subtractor is a combinational logic circuit which is used to find the difference 

between two binary digits. Its logic circuit is shown in Figure 2.3.3(a).

                                 Figure 2.3.3(a) Half Subtractor

TRUTH TABLE:

A B BORROW DIFFERENCE

0

0

1

1

0

1

0

1

0

1

0

0

0

1

1

0

                             



                         Map for DIFFERENCE:

                                           DIFFERENCE = A'B + AB'

                                                                  = A     B

                           Map for BORROW:

                                                      BORROW = A'B

A half subtractor consists of two input variables A and B (minuend and subtrahend) and 

two  output  variables  DIFFERENCE  and  BORROW.  The  DIFFERENCE  output  is 

obtained by a 2-input XOR gate. The BORROW output is obtained by the expression 

A'B

     Hence DIFFERENCE = A    B

                  BORROW     = A'B



2.3.4 Full Subtractor: 

A full subtractor (Figure 2.3.4 (a)) is a combinational circuit that performs a subtraction 

between  two  bits  taking  into  account  that  a  1  may  have  been  borrowed  by  a  lower 

significant stage.

                                                        Figure 2.3.4 (a) Full Subtractor

This circuit has three inputs and two outputs. The three inputs A, B and C denote the 

minuend, subtrahend and previous borrow respectively. The two outputs DIFFERENCE 

and BORROW represent the difference and borrow, respectively. The truth table for the 

circuit is as follows. 

A B C BORROW DIFFERENCE

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

1

0

1

1

0

1

0

0

1



The Boolean functions for the two outputs of the full subtractor are derived in the K-map 

as shown below.                                  

                                          

                                                        Map for BORROW

                                   BORROW = A'C + A'B + B

                     

                                     Map for DIFFERENCE

2.3.5 Parallel Binary Adder:

A parallel binary adder is a digital circuit that produces the arithmetic sum of two binary 

numbers in parallel. It consists of full adders connected in cascade, with the output carry 

from one full adder connected to the input carry of the next full adder. Figure 2.3.5 shows 

the circuit diagram of a 4-bit parallel binary adder.



                                        Figure 2.3.5 Parallel Binary Adder

The augend bits of A and the addend bits of B are designated by subscript number from 

right to left, with subscript  0  denoting the low-order bit. The carries are connected in a 

chain through the full adders. The input carry to the adder is C0 and the output carry is C4. 

The S outputs generate the required sum bits. An n-bit parallel binary adder requires n full 

adders. 

The following example illustrates the parallel binary addition



2.3.6. BCD adder

A BCD adder is a circuit that adds two BCD digits and produces a sum digit also in BCD. 

BCD numbers use 10 digits, 0 to 9 which are represented in the binary form 0000 to 

1001, i.e. each BCD digit is represented as a 4-bit binary number. When we write BCD 

number say 526, it can be represented as

5 2 6

      

                                  0101         0010         0110

Here, we should note that BCD cannot be greater than 9.

The addition of two BCD numbers can be best understood by considering the two cases 

that occur when two BCD digits are added.

Sum Equals 9 or less with carry  0 :

 Let us consider additions of 3 and 6 in BCD.

6 0110  BCD for 6

        + 3 0011  BCD for 3

                 _____            _____

          9 1001  BCD for 9

The addition is  carried out as in normal  binary addition and the sum is 1001, 

which is BCD code for 9.

Sum greater than 9 with carry  0 :

Let us consider addition of 6 and 8 in BCD

6 0110  BCD for 6

         + 8 1000  BCD for 8

        _____           ______

            14 1110  Invalid BCD number

The sum 1110 is an invalid BCD number. This has occurred because the sum of 

the  two digits  exceeds  9.   Whenever  this  occurs  the sum has  to  be  corrected  by the 

addition of six (0110) in the invalid BCD number, as shown below



6 0110 BCD for 6

         + 8 1000 BCD for 8

         _______ ______

           14 1110  Invalid BCD number

                     + 0110  add 6 for correction

                        _____

           0001    0100  BCD for 14

After addition of 6, carry is produced into the second decimal position.

Going through these two cases of BCD addition we can summarize the BCD addition 

procedure as follows:

1. Add two BCD numbers using ordinary binary addition.

2. If the 4-bit sum is equal to or less than 9, no correction is needed. The sum 

is in proper BCD form.

3. If the 4-bit sum is greater than 9 or if a carry is generated from the 4-bit 

sum, the sum is invalid.

4. To correct the invalid sum, add 01102 to the 4-bit sum. If a carry results 

from this addition, add it to the next higher-order BCD digit.

Thus to implement BCD adder we require:

  A 4-bit binary adder for initial addition

 Logic circuit to detect sum greater than 9 and

 One more 4-bit adder to add 01102 if the sum is greater than 0 or carry is 1.

Figure 2.3.6 shows the block diagram of a BCD adder.



     Figure 5.3.6 BCD adder

As shown in Figure 5.3.6 the two BCD numbers, together with input carry, are first 

added in the top 4-bit binary adder to produce a binary sum. When the output carry is 

equal to zero (i.e. when sum <=9 and Cout=0) nothing (zero) is added to the binary 

sum. When it is equal to one (i.e. when sum>9 or Cout=1), binary 0110 is added to the 

binary sum through the bottom 4-bit binary adder. The output carry generated from 

the bottom binary adder can be ignored.

2.3.7 Encoders

An  encoder  (Figure  2.3.7(a))  converts  an  active  input  signal  into  a  coded output 

signal.  There is  n input lines of which only one is active. Internal logic within the 

encoder converts this active input to a coded binary output with m bits.



                                                    Figure 2.3.7(a) Encoders

Decimal to BCD Encoder

The Figure 2.3.7 (b) shows a common type of encoder such as a Decimal to BCD 

Encoder. The switches are push-button switches like those of a pocket calculator.

When button 3 is pressed, the C and D OR gates receive high inputs.

Therefore the output is

ABCD=0011

If button 5 is pressed, the output becomes

ABCD=0101

When switch 9 is pressed the output is

ABCD=1001



                    Figure 2.3.7 (b) Decimal to BCD Encoder

2.3.8 Decoders

A decoder is a combinational circuit that converts binary information from ‘n’ input lines 

to a maximum of 2n unique output lines. The circuit in Figure 2.3.8(a) represents a 2-to-4 

line decoder.



                                   Figure 2.3.8 (a) 2-to-4   decoder.

The two inputs are decoded into 4 outputs each output representing one of the minterms 

of the 2-input variables. The two inverters provide the complement of inputs and each of 

the four AND gates generate one of the minterms.

The following is the truth table of the 2-to-4 line decoder with two inputs and 4 outputs.

A B D0 D1 D2 D3

0

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

       2.3.9 Multiplexer

A multiplexer is circuit with many inputs but only one output. By applying

control  signals,  we can steer any one of the inputs to the output.  Figure 2.3.9 (a) 

illustrates the general idea.

The circuit has n input signals, m control signals and one output signal.



                                         Figure 2.3.9(a) Multiplexer

                                Figure 2.3.9 (b) 4-to-1 Multiplexer

A B Y

0

0

1

1

0

1

0

1

D0

D1

D2

D3



Figure  2.3.9  (b)  shows  a  4-to-1  Multiplexer.  A  multiplexer  is  also  called  Data 

selector because the output bit depends on the input data bit that is selected. The input 

bits are labeled D0 through D4. Only one of these inputs is transmitted to the output, 

depending on the control inputs AB.

For instance, when AB=00   the upper AND gate is enabled while all other AND 

gates  are  disabled.  Therefore,  data  bit  D0 is  transmitted  to  the  output,  giving 

Y=D0. If  D0 is low, Y is low; If D0 is high, Y is high. The point is that Y depends 

only on the value of D0. If control bits are changed to AB=11, all gates are disabled 

except the bottom AND gate. In this case D3 is the only bit transmitted to the output 

and Y= D3. As you can see, the control bits determine which of the input data bits is 

transmitted to the output.

2.3.10 Demultiplexer

A demultiplexer is a logic circuit with one input and may outputs. By applying control 

signals, we can steer the input signal to one of the output lines. Figure 2.3.10(a) illustrates 

the general idea. The circuit has 1 input signal, m control signals and n output signals.

                                           Figure 2.3.10 (a) Demultiplexer



                                          Figure 2.3.10 (b) 1x4 Demultiplexer

Figure 2.3.10 (b) shows a 1x4 Demultiplexer. The input bit is labeled as D. This data bit 

(D) is transmitted to the data bit of the output lines. This depends on the value of AB, the 

control inputs. When AB=00 the upper AND gate is enabled while all other AND gates 

are disabled. Therefore the data bit (D) is transmitted only to the Y0 output, giving Y0 = D.

If D is low, Y0 is low. If D is high, Y0 is high. As you can see, the value of Y0 depends on 

the value of D. All other outputs are in the low state. If the control bits are changed to 

AB=11 all gates are disabled except the bottom AND gate. Then D is transmitted only to 

the Y3 output and Y3=D.

Check Your Progress 2

1. A half adder adds………………………..bits.

(a) 16                   (b) 10                   (c) 8                         (d) 2

2. Parallel binary adders are

(a)Combinational logic circuits        (b) Sequential logic circuits

(c) Both of the above                      (d) None of the above



3. A combinational circuit which is used to change a decimal number into an equivalent 

BCD number is

(a) Decoder          (b) Encoder          (c) Multiplexer              (d) Demultiplexer

4. A combinational circuit which is used to change a BCD number into an equivalent 

decimal number is

(a) Decoder          (b) Encoder          (c) Multiplexer              (d) Demultiplexer

5. Multiplexer is also known as

(a) Data selector         (b) Data distributor         (c) Multiplexer           (d) Encoder

6. A combinational circuit which is used to send data coming from a single source to two 

or more separate destinations is called as:

(a) Decoder          (b) Encoder          (c) Multiplexer              (d) Demultiplexer

2.4 Summary

With Boolean algebra you may be able to simplify a Boolean equation.

Given the truth table, you can identify the fundamental products that produce output 1s. 

By ORing these products, you get the sum of products for the truth table. Therefore sum-

of-product equation always results in an AND-OR circuit or its equivalent NAND-NAND 

circuit.

The Karnaugh method of simplification starts by converting a truth table into a karnaugh 

map.  Next,  you  encircle  all  the  octets,  quads  and  pairs.  This  allows  you  to  write  a 

simplified Boolean equation and to draw a simplified logic circuit.  When a truth table 

contains don’t cares,  you can treat  them as 0s or 1s, whichever produces the greatest 

simplification.

Half adder is a logic circuit with two inputs and two outputs. It adds two bits at a time, 

producing a sum and a carry output.

Full adder is a logic circuit with three inputs and two outputs. The circuit adds three bits 

at a time, giving a sum and a carry output.

Half subtractor is a logic circuit that subtracts two bits and produces their difference.



Full subtractor is a logic circuit that performs a subtraction between two bits, taking into 

account borrowing by lower significant stage. It has three inputs and two outputs.

BCD adder adds two BCD digits and produces a sum digit also in BCD form.

Encoder is circuit that converts an active input signal into coded output form.

A decoder is a combinational circuit that converts binary information from ‘n’ input lines 

to a maximum of 2n unique output lines.

A  multiplexer  is  circuit  with  many  inputs  but  only  one  output.  By applying  control 

signals, we can steer any one of the inputs to the output.

Demultiplexer is a circuit with one input and many outputs. By applying control signals, 

we can steer the input signal to one of the outputs.

2.5 Glossary

BCD adder A logic circuit that adds two BCD digits and produces a sum digit also in 

BCD.

Decoder is a combinational circuit that converts binary information from ‘n’ input lines 

to a maximum of 2n unique output lines.

Demultiplexer A circuit with one input and many outputs.

Don’t  care  conditions  An  input  output  condition  that  never  occurs  during  normal 

operations. Since the condition never occurs, you can use X in the truth table.

Encoder An circuit that converts an active input signal into coded output form.

Full adder A logic circuit with three inputs and two outputs. The circuit adds three bits at 

a time, giving a sum and a carry output.

Half adder A logic circuit with two inputs and two outputs. It adds two bits at a time, 

producing a sum and a carry output.

Half subtractor  A logic circuit that subtracts two bits and produce their difference.

Full subtractor  A logic circuit that performs a subtraction between two bits, taking into 

account borrowing by lower significant stage. It has three inputs and two outputs.

Karnaugh map   A map that shows all the fundamental products and the corresponding 

output values of a truth table.

Multiplexer A circuit with many inputs but with only one output.

Octet Eight adjacent 1s in a   karnaugh map.

Overlapping  groups Using  the  same  1  more  than  once  when  looping  the  1s  of  a 

karnaugh map.



Pair  Two horizontally or vertically adjacent 1s in  a Karnaugh map..

Parallel binary adder   A logic circuit with number of full adders connected in cascade. 

The carry output of each adder is connected to the carry input of the next higher adder.

Product of sum equation The logical product of those fundamental sums that produce 

output 1s in the truth table.

Quad Four horizontal, vertical, or rectangular 1s in a Karnaugh map.

Redundant group  A group of 1s in a   karnaugh map that is a part of other groups.

Sum of products equation The logical sum of those fundamental products that produce 

output 1s in the truth table.

Truth table A table that shows all   the input-output possibilities of a logic circuit.
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2.7 Answers to Check Your Progress Questions

Check your progress1

1. c

2. b

3. a

4. a

Check your progress 2

     1.  d

     2.  a

     3.  b

    4.  a

    5.  a



    6.  d


