Unit 2 Guided Notes

Quadratic Functions

Standards: A.CED.1, A.REI.4a, A.REI.4b, A.SSE.1a, A.SSE.2, A.SSE.3b, F.BF.1, F.BF.3, F.IF.5, F.IF.6, F.IF.7a, F.IF.8, F.IF.8a, F.IF.9, G.GPE.1,

G.GPE.2, N.CN.1, N.CN.2, N.CN.7

Clio High School – Algebra 2A

ı	·
Name:	Period:
·	

Need help? Support is available!

- Miss Seitz's tutoring: See schedule in classroom
- Website with all videos and resources
 www.msseitz.weebly.com

Miss Kari Seitz Text: 810.309.9504 Classroom: 810.591.1412 Email: kseitz@clioschools.org

Concept #	What we will be learning	Text
#1	 Vertex Form and Transformations Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx) and f(x + k) for specific values of k (both positive and negative) Find the value of k given the graph Graph quadratic functions and show intercepts, maxima and minima 	4.1
#2	Standard Form of a Quadratic Function Write an equation that describes how two things are related based on a real world context 	4.2
#3	Factoring Quadratics □ Use the structure of an expression to identify ways to rewrite it	4.4
#4	Solve by Factoring Solve quadratic equations by factoring 	4.5
#5	Completing the Square \Box Use the method of completing the square to transform any quadratic equation into the form $(x-p)^2 = q$	4.6
#6	Quadratic Formula \Box Explain how to derive the quadratic formula from $(x - p)^2 = q$. \Box Solve quadratic equations using the quadratic formula	4.7
#7	 Complex Numbers Use the commutative, associative, and distributive properties to add and subtract complex numbers. Use the relation i² = -1 to multiply two imaginary numbers to get a real number Multiply two complex numbers 	4.8
#8	Parabolas in a Different Light Derive the equation of a parabola given the focus and directrix 	10.2
#9	 Circles Identify the center and radius from the equation of a circle Use completing the square to write the equation of a circle Explain how to derive the equation of a circle given the center and radius using the Pythagorean Theorem 	10.3

Vertex Form and Transformations

- \Box Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx) and f(x + k) for specific values of k (both positive and negative)
- $\hfill\square$ Find the value of k given the graph
- $\hfill\square$ Graph quadratic functions and show intercepts, maxima and minima

Vocabulary: parabola, vertex form, maximum, minimum, vertex

#1

You Try It! Identify the transformations

1.) $y = 3(x+2)^2$

2.) $y = -(x + 5)^2 + 1$

Standard Form of a Quadratic Function

□ Write an equation that describes how two things are related based on a real world context Vocabulary: standard form

DefinitionsThe Standard Form of a Quadratic Equation is $y = Ax^2 + Bx + C$ where A is not zero.Finding the VertexVertex: $\left(\frac{B}{-2A}, f\left(\frac{B}{-2A}\right)\right)$ Example 1: Identify the vertex of $y = x^2 - 4x + 1$ Steps:1. Find $x = \frac{B}{-2A}$ 2. Plug that value into
the original equation
to find y

You Try It! Find the vertex, axis of symmetry, maximum/minimum value, and range of the parabola

1.)
$$y = -x^2 + 2x + 3$$

2.) $y = 2x^2 + 3x - 5$

Standard Form to Vertex Form		
HINT: A is the same in	Example 2: Write the function in vertex form	
both forms!	$y = x^2 - 8x + 19$	
<u>Steps:</u>		
1. Find the vertex		
2. Plug A , h , and k into		
vertex form		
$\mathbf{y} = \mathbf{A}(\mathbf{x} - \mathbf{h})^2 + \mathbf{k}$		

You Try It! Write each equation in vertex form **3.**) $y = x^2 + 3x$ **4.**) $y = x^2 - 2x - 6$

Graphing Standard Form		
The y – intercept is the point (0, C)	Example 3: Graph $y = x^2 + 2x - 5$	
<u>Steps:</u> 1. Find the vertex		
2. Identify the following: y-intercept: axis of symmetry: direction of opening:		
3. Sketch the graph		

You Try It! Graph $y = 2x^2 + 4x - 4$

□ Use the structure of an expression to identify ways to rewrite it

Vocabulary: X-Box, Box Method, Factor, Difference of Squares

Fact	Factoring Using the X-Box Method		
<u>Steps:</u> 1. Factor out any common factors	Example 1:	Factor $12x^3 + 10x^2 - 12x$	
2. Put A * C in top and B in bottom			
3. Find two numbers that multiply to make the top number that also add to make the bottom number			
4. Put Ax ² in the top left box and C in the bottom right box.		[]	
5. Put sides of your X in leftover boxes			
6. Factor out what is common to each row and column			
7. Write out all the factors (Including step 1)			
	You Tr	y It! Factor	
1.) $3x^2 + 8x - 3$	/ [
2.) $4x^2 + 12x + 9$			

Difference of Squares $a^2 - b^2 = (a + b)(a - b)$		
Example 3:	Factor 4x ² – 9	
Using the D.o.S.	Using the Box Method	

	You Try It! Factor
3.) x ² - 36	4.) $9x^4 - 81$

1.)

Definitions		
The R or Z of a	The Z P	
Quadratic Function are any values	P says	
of x for which $f(x) = 0$.	If $a \cdot b = 0$, then $a = 0$ or $b = 0$.	

Using the Zero Product Property			
Example 1: Find the solutions of Example 2: Find the solutions of			
(x + 4)(x - 9) = 0	(x + 5)(x + 8) = 0		

Solving by Factoring		
Example 3: Solve $x^2 - x^2$	x - 30 = 0	
<u>Steps:</u>		
1. Factor using X-Box		
2. Use the Zero Product Property		

You Try It	Solve each by factoring
$2x^2 + 8x - 10 = 0$	2.) $x^2 + 6x = 40$

Completing the Square

 \Box Use the method of completing the square to transform any quadratic equation into the form $(x - p)^2 = q$ Vocabulary: completing the square, perfect square trinomial

Solve Using Square Roots		
1. 3x ² = 75	2. $5x^2 = 45$	3. $(x + 4)^2 = 25$

Writing Equations in Standard Form			
4. $(x-2)^2 =$	$(x-2)^2 =$ 5. $(x+3)^2 =$		

What do you notice about the	What do you notice about the
number in the parentheses and the	number in the parentheses and the
middle term in standard form?	last term in standard form?
A P S T	has these special relationships.

If we can write a quadratic equation in this way then we can take the square root of each side to solve.

Solving Using Square Roots		
7. $x^2 + 12x + 36 = 25$		8. $x^2 - 10x + 25 = 144$

Text: 4.6

Completing the Square		
You can form a per	fect square trinomial from $x^2 + Bx$ by $adding\left(\frac{B}{2}\right)^2$.	
$x^2 + Bx + \left(\frac{B}{2}\right)^2 = \left(x + \frac{B}{2}\right)^2$		
Example 1: Complete the square $x^2 + 22x + \Box$		
<u>Steps:</u>		
1. Identify B		
2. Divide B by 2		
3. Square $\frac{B}{2}$		

You Try It! Complete the square **2.)** $x^2 - 6x$

1.) x² + 2x

Solving by Completing the Square		
Example 2: Solve x	2 + 10x -1 = 0 by Completing the Square.	
<u>Steps:</u>		
1. Rewrite so all		
terms with <i>x</i> are		
on the same side		
2. Find $\left(\frac{B}{2}\right)^2$		
3. Add $\left(\frac{B}{2}\right)^2$ to		
both sides of the		
equation		
4. Factor the		
trinomial		
THINK: $(x + \frac{B}{2})^2$		
5. Take the square		
root of both sides		
6. Solve for x		

You Try It! Solve by completing the square

3.) x² + 2x = 7

The Quadratic Formula

 \Box Explain how to derive the quadratic formula from $(x - p)^2 = q$.

□ Solve quadratic equations using the quadratic formula Vocabulary: quadratic formula, discriminant

Identifying A, B, and C		
Example 1: Identify A, B, and C in each equation		
A. $4x^2 + 3x - 5$	B. $-2x^2 - 4x + 5$	

You Try It! Evaluate the discriminant and determine how many real solutions **2.)** $2x-5 = x^2$ **1.)** $x^2 - x + 6 = 0$

The Quadratic Formula		
$x = \frac{-(B) \pm \sqrt{(B)^2 - 4(A)(C)}}{2}$		
	x = 2(A)	
A =	Example 3: Solve using the quadratic formula:	
B =	$x^2 - 3x - 10 = 0$	
C =		
C =		
Find the discriminant		
$B^2 - 4AC$		

You Try It! Use the Quadratic Formula to solve each equation **3.**) $x^2 + 6x + 9 = 0$

4.) $4x^2 + x = 1$

Complex Numbers

#7

- Use the commutative, associative, and distributive properties to add and subtract complex numbers.
- Use the relation $i^2 = -1$ to multiply two imaginary numbers to get a real number
- □ Multiply two complex numbers

Vocabulary: imaginary number, complex number

Imaginary Numbers		
You can take the square root of a negative number by using the I number <i>i</i> . $i = \sqrt{-1}$	Example 1: Write $\sqrt{-18}$ using the imaginary number <i>i</i> . Simplify the radical as much as possible.	

Text: 4.8

You Try It! Simplify each number by using the imaginary number *i* **1.)** $\sqrt{-8}$ **2.)** $\sqrt{-144}$

Complex NumbersA C______N N_______has two parts; a real part and an
imaginary part (it has "i ").It is written in the form
$$a + bi$$
 where a and b are real numbers and $b \neq 0$.Example: $5 + 6i$ Adding & Subtracting Complex NumbersWhen adding or subtracting complex numbers, combine the real parts, and then combine
the imaginary parts (just like combining like terms!!!).Example 2:Find the sum $(3 + i) + (2 + 3i)$ Example 4:Find the difference $(4 + 2i) - (6 - 3i)$ You Try It!Find the sum or difference

5.) 3*i* (1 – 2*i*)

Finding Complex Solutions Example 5: What are the solutions of $2x^2 - 3x + 5 = 0$? Use the Quadratic Formula: A = B = C =

You Try It! Find the solutions to the quadratic equation **7.)** $3x^2 - x + 2 = 0$

Parabolas in a Different Light

Transformations of a Parabola		
	Vertex (0, 0) Vertex (h, k)	
Equation	$y = \frac{1}{4c}x^2$	$y = \frac{1}{4c}(x-h)^2 + k$
Focus	(0, c)	(h, k + c)
Directrix	y = -c	y = k – c

Vertex at the Origin		
When given focus (0,	c)	
Steps:	Example 1:	Vertex at origin, Focus: $\left(0, \frac{1}{28}\right)$
1. Identify c 2. Find $\boldsymbol{a} = \frac{1}{4c}$		
3. Write equation		
When given directrix		
<u>Steps:</u> 1. Identify c	Example 2:	Vertex at origin, Directrix: $y = -\frac{1}{8}$
2. Find $a = \frac{1}{4c}$		
3. Write equation		

You Try It! Use the information provided to write the vertex form of the parabola

1.) Vertex at origin, Focus: $\left(0, \frac{1}{44}\right)$ **2.)** Vertex at origin, Directrix: $y = -\frac{1}{4}$

Vertex at the (h, k)		
When given focus (h, k + c)		
<u>Steps:</u> 1. Identify c	Example 3 : Vertex: $(-8, -2)$, Focus: $\left(-8, -\frac{11}{4}\right)$	
2. Take c and subtract k 3. Find $a = \frac{1}{4c}$ 4. Write equation		
When given directrix	y = k – c	
<u>Steps:</u> 1. Identify c 2. Take – c and add k 3. Find $a = \frac{1}{4c}$ 4. Write equation	Example 4 : Vertex: (-9, -5), Directrix: $y = -\frac{19}{4}$	

You Try It! Use the information provided to write the vertex form of the parabola

3.) Vertex:
$$(4, -4)$$
, Focus: $\left(4, -\frac{49}{12}\right)$ **4.)** Vertex: $(-6, -9)$, Directrix: $y = -\frac{71}{8}$

Finding the Focus and Directrix		
<u>Steps:</u> 1. Identify the vertex	Example 5 : What are the vertex, focus, and directrix of the parabola with equation $y = \frac{1}{12}x^2$?	
2. Use $a = \frac{1}{4c}$ to find c		

Circles

#9

- □ Use completing the square to write the equation of a circle
- □ Explain how to derive the equation of a circle given the center and radius using the Pythagorean Theorem Vocabulary: circle, radius

Definitions		
A C is the set of all points in a plane that are a distance <i>r</i> from a given point, the center of the circle.	The distance <i>r</i> is called the R	
Standard Form of an Equation of a Circle $(x - h)^2 + (y - k)^2 = r^2$		

Center: (h, k) Radius: r

Derive the Standard Form of an Equation of a Circle.	
Start with the Distance Formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
The radius is the distance from the center (h, k) to any point (x, y) on the circle.	
Square both sides.	

Writing the Equation of a Circle		
Example 1: Write the equation in standard form of a circle with center $(-1, 3)$		
and radius 10		
Steps:		
1. Write the standard form		
of an equation of a circle.		
2. Plug in h , k , and r		
3. Simplify		

You Try It! Write the equation in standard form

1.) center (2, 3) radius 4.5

2.) center (0, 0) radius 10

Finding the Center and Radius	
Example 2: Find the center	and radius of the circle with equation
	$(x + 1)^2 + (y - 3)^2 = 16$
Identify h and k	
Take the square root of the right side	

You Try It! Find the center and radius of each circle

3.) $x^2 + (y + 1)^2 = 25$ **4.**) $x^2 + y^2 = 64$

You Try It!

5.) Use the center and radius to graph the circle. $(x + 4)^2 + (y - 1)^2 = 1$

6.) Identify the center and radius and write the equation of the graph.

