Unit 2 Guided Notes

Quadratic Functions

Standards: A.CeD.1, A.REI.4a, A.REI.4b, A.SSE.1a, A.SSE.2, A.SSE.3b, F.BF.1, F.BF.3, F.IF.5, F.IF.6, F.IF.7a, F.IF.8, F.IF.8a, F.IF.9, G.GPE.1, G.GPE.2, N.CN.1, N.CN.2, N.CN. 7

Clio High School - Algebra 2A

Need help? Support is available!

- Miss Seitz's tutoring: See schedule in classroom
- Website with all videos and resources
www.msseitz.weebly.com

Miss Kari Seitz
Text: 810.309.9504
Classroom: 810.591.1412
Email: kseitz@clioschools.org

Concept \#	What we will be learning...	Text
41	Vertex Form and Transformations Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$ and $f(x+k)$ for specific values of k (both positive and negative) Find the value of k given the graph Graph quadratic functions and show intercepts, maxima and minima	4.1
42	Standard Form of a Quadratic Function Write an equation that describes how two things are related based on a real world context	4.2
43	Factoring Quadratics Use the structure of an expression to identify ways to rewrite it	4.4
\#4	Solve by Factoring Solve quadratic equations by factoring	4.5
\#5	Completing the Square Use the method of completing the square to transform any quadratic equation into the form ($x-\mathrm{p})^{2}=\mathrm{q}$	4.6
\#6	Quadratic Formula Explain how to derive the quadratic formula from $(x-p)^{2}=q$. Solve quadratic equations using the quadratic formula	4.7
$\text { \# } 4$	Complex Numbers Use the commutative, associative, and distributive properties to add and subtract complex numbers. Use the relation $i^{2}=-1$ to multiply two imaginary numbers to get a real number Multiply two complex numbers	4.8
$\begin{aligned} & 48 \\ & 48 \end{aligned}$	Parabolas in a Different Light Derive the equation of a parabola given the focus and directrix	10.2
\#	Circles Identify the center and radius from the equation of a circle Use completing the square to write the equation of a circle Explain how to derive the equation of a circle given the center and radius using the Pythagorean Theorem	10.3

| | Vertex Form and Transformations
 \square Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$ and $f(x+k)$ for specific values of k (both
 positive and negative)
 \square

 \square Find the value of k given the graph
 Vocabulary: parabola, vertex form, maximum, minimum, vertex |
| :--- | :--- | :--- |

Vertex Form of a Parabola	
$y=A(x-h)^{2}+k \quad(h, k)$ is the vertex	
The V \qquad of a parabola is the highest or lowest point on the graph.	The A \qquad of S \qquad is the vertical line that passes through h
A parabola has a M \qquad when the graph opens \qquad This is because \mathbf{A} is P \qquad	A parabola has a M \qquad when the graph opens \qquad This is because \mathbf{A} is N \qquad
The domain of a quadratic function is A ___ R	
The range of a quadratic function that opens up is $y \geq k$	The range of a quadratic function that opens down is $\mathrm{y} \leq \mathrm{k}$

Identifying Transformations Hint: It's just like Unit 1 Concept 7 !	
A p \qquad is the graph of a quadratic function. Parent Function: $\mathbf{y}=\mathbf{x}^{\mathbf{2}}$	$y=-x^{2}$ What does the negative do?

You Try It! Identify the transformations
1.) $y=3(x+2)^{2}$
2.) $y=-(x+5)^{2}+1$

Writing the Equation in Vertex Form from a Graph
 (or when given the vertex and a point)

Example 1: Write the equation of the parabola in vertex form. Identify the vertex, axis of symmetry, the maximum/minimum value, and the domain and range.

Standard Form of a Quadratic Function
\square Write an equation that describes how two things are related based on a real world context Vocabulary: standard form

Definitions
The Standard Form of a Quadratic Equation is $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}^{2}+\boldsymbol{B x}+\boldsymbol{C}$ where A is not zero.

Finding the Vertex	
Vertex: $\left(\frac{B}{-2 A}, f\left(\frac{B}{-2 A}\right)\right)$	Example 1: Identify the vertex of $\mathrm{y}=\mathrm{x}^{2}-4 \mathrm{x}+1$
Steps: 1. Find $\mathrm{x}=\frac{B}{-2 A}$	
2. Plug that value into the original equation to find y	

You Try It! Find the vertex, axis of symmetry, maximum/minimum value, and range of the parabola
1.) $y=-x^{2}+2 x+3$
2.) $y=2 x^{2}+3 x-5$

Standard Form to Vertex Form

HINT: A is the same in both forms!

Steps:

1. Find the vertex
2. Plug \mathbf{A}, \mathbf{h}, and \mathbf{k} into vertex form

$$
y=A(x-h)^{2}+k
$$

Example 2: Write the function in vertex form

$$
y=x^{2}-8 x+19
$$

You Try It! Write each equation in vertex form
3.) $y=x^{2}+3 x$
4.) $y=x^{2}-2 x-6$

Graphing Standard Form

The \mathbf{y} - intercept is
the point $\mathbf{(0 , C} \mathbf{C}$
Steps:

1. Find the vertex
2. Identify the following: y-intercept: axis of symmetry: direction of opening:
3. Sketch the graph

Example 3: Graph $y=x^{2}+2 x-5$

You Try It! Graph $y=2 x^{2}+4 x-4$

Factoring Quadratics
Text: 4.4
\square Use the structure of an expression to identify ways to rewrite it Vocabulary: X-Box, Box Method, Factor, Difference of Squares

Factoring Using the X-Box Method	
Steps: 1. Factor out any common factors	Example 1: Factor $12 x^{3}+10 x^{2}-12 x$
2. Put $\boldsymbol{A}^{\star} \boldsymbol{C}$ in top and \boldsymbol{B} in bottom 3. Find two numbers that multiply to make the top number that also add to make the bottom number	
4. Put $\mathbf{A x}^{\mathbf{2}}$ in the top left box and \mathbf{C} in the bottom right box. 5. Put sides of your X in leftover boxes 6. Factor out what is common to each row and column	
7. Write out all the factors (Including step 1)	

You Try It! Factor
1.) $3 x^{2}+8 x-3$

2.) $4 x^{2}+12 x+9$

Difference of Squares $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$	
Example 3:	Factor $4 \mathrm{x}^{2}-9$
Using the D.o.S.	Using the Box Method

You Try It! Factor
3.) $x^{2}-36$
4.) $9 x^{4}-81$

Definitions	
The R \qquad or Z \qquad of a Quadratic Function are any values of x for which $f(x)=0$.	The Z \qquad P \qquad P. \qquad says If $a \cdot b=0$, then $a=0$ or $b=0$.

Using the Zero Product Property

Example 1: Find the solutions of

$$
(x+4)(x-9)=0
$$

Example 2: Find the solutions of

$$
(x+5)(x+8)=0
$$

Solving by Factoring

Example 3: Solve $x^{2}-x-30=0$
Steps:

1. Factor using X-Box

You Try It! Solve each by factoring
1.) $2 x^{2}+8 x-10=0$
2.) $x^{2}+6 x=40$

Text: 4.6
\square Use the method of completing the square to transform any quadratic equation into the form $(x-p)^{2}=q$ Vocabulary: completing the square, perfect square trinomial

Solve Using Square Roots		
1. $3 x^{2}=75$	2. $5 x^{2}=45$	3. $(x+4)^{2}=25$

Writing Equations in Standard Form

4. $(x-2)^{2}=$	5. $(x+3)^{2}=$	6. $(x-5)^{2}=$

What do you notice about the number in the parentheses and the middle term in standard form?	What do you notice about the number in the parentheses and the last term in standard form?
A P__ has these special relationships.	
If we can write a quadratic equation in this way then we can take the	
square root of each side to solve.	

Solving Using Square Roots

7. $x^{2}+12 x+36=25$
8. $x^{2}-10 x+25=144$

Completing the Square

You can form a perfect square trinomial from $\boldsymbol{x}^{2}+\boldsymbol{B x}$ by adding $\left(\frac{B}{2}\right)^{2}$.

$$
x^{2}+B x+\left(\frac{B}{2}\right)^{2}=\left(x+\frac{B}{2}\right)^{2}
$$

Example 1: Complete the square $x^{2}+22 x+\square$
Steps:

1. Identify \boldsymbol{B}
2. Divide \boldsymbol{B} by 2
3. Square $\frac{B}{2}$

You Try It! Complete the square
1.) $x^{2}+2 x$
2.) $x^{2}-6 x$

Solving by Completing the Square

Example 2: Solve $x^{2}+10 x-1=0$ by Completing the Square.
Steps:

1. Rewrite so all terms with x are on the same side
2. Find $\left(\frac{B}{2}\right)^{2}$
3. $\operatorname{Add}\left(\frac{B}{2}\right)^{2}$ to both sides of the equation
4. Factor the trinomial
THINK: $\left(\mathrm{x}+\frac{B}{2}\right)^{2}$
5. Take the square
root of both sides
6. Solve for x

You Try It! Solve by completing the square
3.) $x^{2}+2 x=7$
4.) $x^{2}-6 x=10$

The Quadratic Formula
Text: 4.7
Explain how to derive the quadratic formula from $(x-p)^{2}=q$.
\square Solve quadratic equations using the quadratic formula
Vocabulary: quadratic formula, discriminant

Identifying A, B, and C

Example 1: Identify A, B, and C in each equation
A. $4 x^{2}+3 x-5$
B. $-2 x^{2}-4 x+5$

The Discriminant

The D \qquad of a quadratic equation in the form $A x^{2}+B x+C=0$ is

$$
(B)^{2}-4(A)(C)
$$

It tells us how many real solutions there are to a quadratic equation.

Example 2: Evaluate the discriminant and determine how many real solutions for $x^{2}-4 x=-4$
$A=$
$B=$
$C=$

You Try It! Evaluate the discriminant and determine how many real solutions
1.) $x^{2}-x+6=0$
2.) $2 x-5=x^{2}$

The Quadratic Formula	
	$x=\frac{-(B) \pm \sqrt{(B)^{2}-4(A)(C)}}{2(A)}$
$\begin{aligned} & A= \\ & B= \\ & C= \end{aligned}$	Example 3: Solve using the quadratic formula:$x^{2}-3 x-10=0$
Find the discriminant $B^{2}-4 A C$	

You Try It! Use the Quadratic Formula to solve each equation
3.) $x^{2}+6 x+9=0$
4.) $4 x^{2}+x=1$

Imaginary Numbers

You can take the square root of a negative number by using the

I \qquad number i.

$$
i=\sqrt{-1}
$$

Example 1: Write $\sqrt{-18}$ using the imaginary number i. Simplify the radical as much as possible.

You Try It! Simplify each number by using the imaginary number i
1.) $\sqrt{-8}$
2.) $\sqrt{-144}$

Complex Numbers	
A C \qquad N \qquad imaginary It is written in the form $a+b i$ whe	\qquad has two parts; a real part and an (it has " i "). a and b are real numbers and $b \neq 0$. $\text { e: } 5+6 i$
Adding \& Subtracting Complex Numbers When adding or subtracting complex numbers, combine the real parts, and then combine the imaginary parts (just like combining like terms!!!).	
Example 2: Find the sum $(3+i)+(2+3 i)$	Example 3: Find the sum $(6-\sqrt{-16})+(-4+\sqrt{-25})$
Example 4: Find the difference (4+2i)- (6-3i)	

You Try It! Find the sum or difference
3.) $(5+6 i)+(-2+4 i)$
4.) $(12+5 i)-(2-i)$

Multiplying Complex Numbers

When multiplying complex numbers, use the Distributive Property or the Box Method.
Example 5: Find the product $(7-3 i)(-4+9 i)$

You Try It! Find each product
5.) $3 i(1-2 i)$
6.) $(3+i)(2+i)$

Finding Complex Solutions	
Use the Quadratic	Example 5: What are the solutions of $2 x^{2}-3 x+5=0$?
Formula:	
A =	
B $=$	
C =	

You Try It! Find the solutions to the quadratic equation
7.) $3 x^{2}-x+2=0$
\square Derive the equation of a parabola given the focus and directrix
Vocabulary: focus, directrix, parabola

Definitions	
A P \qquad is the set of all points in a plane that are the same distance from a fixed line and a fixed point not on the line.	 The fixed point is called the F \qquad The fixed line is called the D \qquad
Vertex Fo	$y=A(x-h)^{2}+k \quad(h, k)$ is the vertex

Transformations of a Parabola		
	Vertex (0, 0)	Vertex (h, k)
Equation	$y=\frac{1}{4 c} x^{2}$	$y=\frac{1}{4 c}(x-h)^{2}+k$
Focus	$(0, \mathbf{c})$	$(h, k+c)$
Directrix	$\mathbf{y}=-\mathbf{c}$	$\mathbf{y}=\mathbf{k}-\mathbf{c}$

Vertex at the Origin	
When given focus (0, \mathbf{c})	
Steps: 1. Identify c	Example 1: Vertex at origin, Focus: $\left(0, \frac{1}{28}\right)$
3. Write equation	
When given directrix y $=-\mathbf{c}$	
Steps: 1. Identify \mathbf{c}	Example 2: Vertex at origin, Directrix: $y=-\frac{1}{8}$
2. Find $\boldsymbol{a}=\frac{1}{4 c}$	
3. Write equation	

You Try It! Use the information provided to write the vertex form of the parabola
1.) Vertex at origin, Focus: $\left(0, \frac{1}{44}\right)$
2.) Vertex at origin, Directrix: $y=-\frac{1}{4}$

Vertex at the (h, k)	
When given focus ($\mathbf{h}, \mathbf{k}+\mathbf{c}$)	
Steps: 1. Identify \mathbf{c} 2. Take \mathbf{c} and subtract k 3. Find $\boldsymbol{a}=\frac{1}{4 c}$ 4. Write equation	Example 3: Vertex: $(-8,-2)$, Focus: $\left(-8,-\frac{11}{4}\right)$
When given directrix $\mathbf{y}=\mathbf{k}-\mathbf{c}$	
Steps: 1. Identify c 2. Take -c and add \mathbf{k} 3. Find $\boldsymbol{a}=\frac{1}{4 \boldsymbol{c}}$ 4. Write equation	Example 4: Vertex: $(-9,-5)$, Directrix: $y=-\frac{19}{4}$

You Try It! Use the information provided to write the vertex form of the parabola
3.) Vertex: $(4,-4)$, Focus: $\left(4,-\frac{49}{12}\right)$
4.) Vertex: ($-6,-9$), Directrix: $y=-\frac{71}{8}$

Finding the Focus and Directrix	
Steps:	Example 5: What are the vertex, focus, and directrix of the 1. Identify the vertex 2. $\boldsymbol{a}=\frac{1}{4 \boldsymbol{c}}$ to find c

Circles
Text: 10.3
Circles
\square Identify the center and radius from the equation of a circle
\square Use completing the square to write the equation of a circle
\square Explain how to derive the equation of a circle given the center and radius using the Pythagorean Theorem Vocabulary: circle, radius

Definitions	
A C \qquad is the set of all points in a plane that are a distance r from a given point, the center of the circle.	The distance r is called the R
Standard Form of an Equation of a Circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ Center: (h, k) Radius: \mathbf{r}	

Derive the Standard Form of an Equation of a Circle.	
Start with the Distance Formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
The radius is the distance from the center (h, k) circle.	

Writing the Equation of a Circle

Example 1: Write the equation in standard form of a circle with center $(-1,3)$ and radius 10

Steps:

1. Write the standard form
of an equation of a circle.
2. Plug in \mathbf{h}, \mathbf{k}, and \mathbf{r}
3. Simplify

You Try It! Write the equation in standard form
1.) center $(2,3)$ radius 4.5
2.) center $(0,0)$ radius 10

Finding the Center and Radius

Example 2: Find the center and radius of the circle with equation

	$(x+1)^{2}+(y-3)^{2}=16$
Identify h and k	
Take the square root of the right side	

You Try It! Find the center and radius of each circle
3.) $x^{2}+(y+1)^{2}=25$
4.) $x^{2}+y^{2}=64$

Graphing Circles

Example 3: Use the center and radius to graph the circle with equation

$(x+3)^{2}+(y+2)^{2}=4$	
	10
Center: (__ , __)	$\square)^{10}-{ }^{-1}$ -
Radius:	- $\quad 8$
	6
Plot the center	- ${ }^{4-}$
	- $2-$
	(10-8
	$\square-{ }^{-2-}$
Go out your radius number of spaces in four directions	-4.
spaces in four direction	-6-
	- -8
Draw a circle between your four points	- $-10 \overbrace{\square}^{-}$

Example 4: Identify the center and radius and write the equation of the graph.

You Try It!

5.) Use the center and radius to graph the circle. $(x+4)^{2}+(y-1)^{2}=1$

6.) Identify the center and radius and write the equation of the graph.

