Name: \qquad
Date: \qquad

Lesson 1.2

1. Name the intersection of planes FGED and BCDE \qquad
2. Name another point on plane GFB

- Planes are named with a minimum of 3 non-collinear points. There is not a symbol for planes
- Lines are named with two points ($\overleftrightarrow{B C}$)

3. Shade plane GFB
4. Name the intersection of $A H C$ and GDC \qquad
5. Name the intersection of $\overleftrightarrow{D C}$ and $\overleftrightarrow{E D}$ \qquad
6. Name the plane represented by the top of the box \qquad
7. Name any line on the top of the box \qquad True or false:
8. A, D, and B are collinear \qquad
9. A, D, E are collinear \qquad
10. C, D, A are coplanar \qquad

- Two lines intersect in a point
- Collinear points form 1 line

11. F, E, G are coplanar \qquad

Lesson 1.3
True or false:
12. $\overleftrightarrow{A H}$ and $\overleftrightarrow{D C}$ are skew lines \qquad
13. $\overleftrightarrow{F G}$ and $\overleftrightarrow{G D}$ are skew lines \qquad

14. $\overleftrightarrow{H C}$ and $\overleftrightarrow{A B}$ are skew lines \qquad
15. $\overleftrightarrow{G H}$ and $\overleftrightarrow{B C}$ are parallel lines \qquad
16. $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$ are parallel lines \qquad
17. $\overleftrightarrow{G D}$ and $\overleftrightarrow{F E}$ are parallel lines \qquad
18. FGH and EDC are parallel planes \qquad
19. GDH and EBC are parallel planes \qquad

- Skew lines are not parallel, never intersect, and they are non-coplanar
- Parallel lines never intersect but are coplanar
- Opposite rays have the same endpoint and extend in opposite directions
- Undefined terms cannot be measured

Lesson 1.3 cont.

20. $\overrightarrow{C A}$ and $\overrightarrow{B D}$ are opposite rays \qquad

21. $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are opposite rays \qquad
22. $\overrightarrow{C B}$ and $\overrightarrow{C D}$ are opposite rays \qquad
23. Which of the following is an acceptable name for the line? \qquad (more than one answer is ok)
A. $\overleftrightarrow{A B}$
B. BC
C. $\overleftrightarrow{A B C D}$
D. $\overleftrightarrow{C B}$
E. \overleftrightarrow{A}
F. $\overleftrightarrow{A B C}$
G. $\overrightarrow{A D}$
H. $A B$
24. Circle the three terms that are considered undefined in geometry:

Point Circle Segment Line Plane Angle

Lesson 2.5

Solve for x then find the measure of the angles
25. a.

b.

26. If possible, find the complement and supplement of the angles:
a) 24°
b) 57°
c) 112°
comp: \qquad comp: \qquad comp: \qquad

Complimentary Angles

$$
A+B=90^{\circ}
$$

- $\angle 1$ and $/ 3$ are vertical angles.
- $\angle 2$ and $/ 4$ are vertical angles.

Vertical Angles are congruent

Supplementary Angles

$A+B=180^{\circ}$

Linear Pairs are supplementary

Lesson 3.1

Name the angle pairs.
27. $\angle 1$ and $\angle 5$ \qquad
28. $\angle 3$ and $\angle 6$ \qquad
29. $\angle 4$ and $\angle 5$ \qquad
30. $\angle 2$ and $\angle 6$ \qquad
31. $\angle 1$ and $\angle 8$ \qquad
32. $\angle 2$ and $\angle 7$ \qquad
33. $\angle 3$ and $\angle 7$ \qquad
34. $\angle 1$ and $\angle 4$ \qquad
35. The two lines are parallel, solve for x : \qquad

Lesson 3.1 cont

Name the angle pairs.
36. $\angle 2$ and $\angle 8$ \qquad
37. $\angle 4$ and $\angle 6$ \qquad
38. $\angle 3$ and $\angle 5$ \qquad
39. $\angle 1$ and $\angle 7$ \qquad
40. $\angle 1$ and $\angle 2$ \qquad
41. $\angle 6$ and $\angle 8$ \qquad
42. if $\mathrm{m} \angle 1=110^{\circ}, \mathrm{m} \angle 7=$ \qquad
43. The two lines are parallel, solve for x \qquad

Corresponding:

Alternate Interior:
AIA

Alternate Exterior:

AEA

Vertical Angles:

VA

Supplementary Angles
Same Side Interior:
SSIA

Same Side Exterior:
SSEA

Linear Pair:
LP

Lesson 3.5

44. Find the slope of the line passing through the points $(4,3)$ and $(-5,-2)$.
45. Find the slope of the line.

46. Find the equation of the line that has a slope of -2 and a y-intercept of -9 .
47. Find the equation of the line that has a slope of 6 and passes through the point (-3,5).

Slope: $m=x_{2}-x_{1}$

Slope Intercept Form $y=m x+b$

Standard Form

$A x+B y=C$

$$
\begin{gathered}
\text { Point Slope Form } \\
y-y_{1}=m\left(x-x_{1}\right)
\end{gathered}
$$

Horizontal Line

slope of zero
\longleftrightarrow
equation

$$
y=b
$$

Vertical Line undefined slope

equation
$x=a$

Lesson 3.6

Write the equation of the line that is parallel to the given line through the point (you may solve the equation or graph)
52. $y=2 x+3 ;(1,1)$

53. $y=\frac{2}{3} x-2 ;(-3,2)$

Lesson 3.6 cont.

Write the equation of the line perpendicular to the given line through the point (you may graph or write an equation).
54. $y=3 x-2 ;(3,-2)$

55. $y=-\frac{1}{2} x+4 ;(1,1)$

Parallel lines have the same slope and different y intercepts.
$y=3 x+5$ and $y=3 x+7$ are parallel
$y=-3 x-2$ and $y=3 x+5$ are NOT parallel

Equation method: plug in values for m, x, and y into $y=m x+b$; solve for b. write equation

Graphing method: graph the original line. Plot the point. From this point use the same slope as the line. Find the y-intercept, write equation.

Perpendicular lines have

 opposite reciprocal slopes.$y=3 x+5$ and $y=-\frac{1}{3} x-1$ are perpendicular.
$y=2 x+1$ and $y=\frac{1}{2} x-1$ are NOT perpendicular.

To get the equations for perpendicular lines follow the steps for parallel EXCEPT make sure to use the opposite reciprocal slope!

Distance formula:

Find the length of the segment (distance between the points) and the midpoint

Lesson 1.7

Find the perimeter and area of each figure:
57.

58.

$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint formula:

$$
\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)
$$

Use the distance formula to find the length of each segment

Perimeter is the distance around the shape - add up all sides

Area is the space inside the figure

Rectangle $A=b h$
Triangle $A=\frac{1}{2} b h$
(base and height are perpendicular sides)

Lesson 1.5 and 5.2

59. $\overleftrightarrow{P Q}$ is the perpendicular bisector of \qquad
60. M is the \qquad of $\overline{A B}$
61. $\mathrm{m} \angle \mathrm{PMB}$ \qquad
62. If $\overline{A B}=14 \mathrm{~cm}$, then $\overline{A M}=$ \qquad
And $\overline{B M}=$ \qquad
63. $\overline{A M}=7 \mathrm{x}-12$ and $\overline{B M}=2 \mathrm{x}+8$
$X=$ \qquad
$\overline{A M}$ \qquad
$\overline{B M}$ \qquad
$\overline{A B}$ \qquad
64. Place point R anywhere along $\overleftrightarrow{P Q}$. What do you know about the lengths of $\overline{R A}$ and $\overline{R B}$? \qquad
65. Points A and C are on the perpendicular bisector of $\overline{B D}$
$\overline{A B}$ \qquad $\overline{D E}$ \qquad $\overline{B C}$ \qquad

Lesson 1.5

$\overrightarrow{B D}$ is the bisector of $\angle A B C$
66. $\angle A B D$ is congruent to \qquad
67. $\mathrm{m} \angle \mathrm{ABC}=62^{\circ}$.
$\mathrm{m} \angle \mathrm{ABD}$ \qquad $\mathrm{m} \angle \mathrm{CBD}$ \qquad
68. $m \angle A B D=25^{\circ}$.

$\mathrm{m} \angle \mathrm{CBD}$ \qquad $\mathrm{m} \angle \mathrm{ABC}$ \qquad
69. $\angle A B D=(8 x-4)^{\circ} \angle C B D=(2 x+32)^{\circ}$
\qquad
=
$\mathrm{m} \angle \mathrm{ABD}=$ \qquad $\mathrm{m} \angle \mathrm{CBD}$ \qquad $\mathrm{m} \angle \mathrm{ABC}$ \qquad
70. Use the segment addition postulate to find x . Then find the length of each segment. DG $=66$
$X=$ \qquad DO = \qquad OG = \qquad

The perpendicular bisector of a segment splits the segment into two congruent segments and forms a 90° angle

Thereom 5-2: if a point is on the perpendicular bisector of a segment, then it is equidistant to the endpoints of the segment.

$\overleftrightarrow{C P}$ is the perpendicular bisector of $\overline{A B}$, then $C A=$ CB.

An angle bisector divides an angle into two congruent angles.

Segment Addition Postulate
$A B+B C=A C$

