## 10 ESO

## UNIT 2: The physical states of matter



## Objectives

1. To know that in all the states of aggregation the matter has mass and takes a place although depending on the state, can have or not, form and volume fixed.
2. To know that in principle, any substance can appear in the three states of aggregation.
3. To know that in the processes of expansion and compression of a gas, the volume of a system changes, but the amount of matter does not change.
4. To know that the substances in liquid or gaseous state spread with facility.
5. To know that liquids and solids do not compress practically.
6. To know the basic hypotheses of the TCM.
7. To know that the size of molecules is so small that there is no possibility of seeing them with average optician.
8. To know the differences that exist between the description of systems or processes and their kinetic-molecular interpretation.
9. To know how to interpret the differences between volume, amount of substance and mass of a gas with the TCM.
10. To know how to interpret with the TCM processes like the expansion and compression of a gas, the diffusion of a gas or a liquid or the low expansion and compression of a liquid or a solid.
11. To know how to define basic properties of solids, liquids and gases: hardness, superficial tension, viscosity, ductility, malleability, etc.
12. To know the names of the changes of aggregation states.
13. To know how to define the melting and boiling points.
14. To know how to interpret with the TCM the characteristics of the aggregation states and the changes of state.
15. To know how to draw molecular diagrams with substances in the three states.
16. To know how to recognize when a phrase talks about to an observable fact or a theoretical explanation.

PROPERTIES OF SOLIDS
The properties of solids are:
$>$ They have mass
$\Rightarrow$ They take up a place in space
> They have a definite volume that does not change
$>$ They cannot change their shape easily


# PROPERTIES OF LIQUIDS 

## The properties of liquids are:

> They have mass
$>$ They take up a place in space
> They have a definite volume that does not change
$>$ They flow
They take the shape of their container


PROPERTIES OF GASES

## The properties of gases are:

$>$ They have mass
$>$ They take up a place in space
> They take up all of the available space
$>$ They take the shape of their container
$>$ They mix readily with other gases
$>$ They can compress into a small space and they can expand


## The kinetic-molecular theory

The kinetic-molecular theory is a physical theory that explains the behavior of matter on the basis of the following assumptions:
$\square$ Any material thing of the universe has a very large number of very tiny particles called molecules that are in continuous movement
$\square$ Molecules are not all equal, but they can have form and different sizes, depending on the type of material
$\square$ Among molecules there are empty spaces
$\square$ Solid molecules are close and tidy. They can only vibrate
$\square$ Liquid molecules are close and untidy. They move relative to each other
$\square$ Gas molecules are very distant with respect to their size. They are in continuous movement
$\square$ Gas molecules crash into each other and into every object that surrounds them
$\square$ The speed of molecules depends on their temperature. It grows when the temperature increases and it diminishes when the temperature decreases

## STRUCTURE OF SOLIDS

There are intense attractive forces in solids that hold the molecules together, this is the reason why solids keep their shape and their volume and they can only vibrate

There are attractive forces in liquids (but less intense than in solids) that hold the liquid molecules together. These attractive forces prevent that the molecules from separating but not from moving relative to each other, this is the reason why liquids keep their volume but do not hold their shape.

## STRUCTURE OF LIQUIDS

## STRUCTURE OF GASES

There are not attractive forces in gases. This is the reason why molecules of gases are very distant, can move freely in any direction and they don't keep their shape, and don't keep their volume either.

## Behavior of substances in gaseous state

Description of the observations

The volume of a gas reduces when we push it from outside. We call this process, compression

The volume of a gas increases when it extends through the available space. We call this process, expansion

Any gas moves through another gas and it can mix with it. We call this process, diffusion

Interpretation according to the molecular kinetic theory

In the compression the molecules approach and diminish the medium ranges among them

In the expansion the molecules move away and increase the medium ranges among them

In the diffusion the molecules move to each other through the empty spaces among molecules of the other gas, mixing themselves

## Don't be confused about this

Molecules are very small, any small piece of matter, has thousand of millions of molecules

Molecules do not expand or compresse, the molecules move away or approach

* The speed of molecules does not change if the temperature does not change


## Don't confuse volume of a gas with the amount of substance

| Description of the observations | Interpretation according to the <br> molecular kinetic theory |
| :--- | :--- |
| When we move the piston of a <br> syringe inwards or outwards, with a <br> stopper at the end, the volume that <br> takes the air that it contains <br> increases or diminishes respectively. | The volume of an object is the <br> space that their molecules take, <br> including the empty space among <br> them. This space can change for a <br> ertain number of molecules, being <br> able to be closer or more separated. |
| If we have an iron bottle full of <br> oxygen and we inject it with more <br> oxygen, the space that the oxygen <br> takes, does not change but the <br> amount of oxygen changes and so <br> does its mass (weight) | The amount of substance depends <br> on the number of molecules that <br> form an object. The mass of an <br> object is the sum of the masses <br> each one of its molecules. The mass <br> of a gas only changes when the <br> number of molecules changes. |

## Flexible and rigid containers

Gases have not own volume; its volume is always that of the container that contains them, because they always take all the available space. For that reason, the changes in the volume of a gas depend on the changes in the volume of the container.


When the gas is inside a rigid walls container , like a glass or iron bottle, the volume that
it takes, cannot change. bottle, the volume that
it takes, cannot change.

Bottles of oxygen Susana Morales Bernal

## syringe

Flexible containers



When the gas is inside a flexible walls container, as a balloon or a syringe, the volume that the gas takes, can change.

## Behaviour of the substances in liquid and solid states

| Description of the observations | Interpretation according to the <br> molecular kinetic theory |
| :--- | :--- |
| Liquids and solids compress in very <br> small proportion | Molecules of solids and liquids are close <br> (although empty spaces exist). If we <br> want to approach them, repulsive forces <br> appear, that prevent their approaching |
| Solids and liquids practically do not <br> expand and, when they do, it is in very <br> small proportion | In solid and liquid states, the forces <br> among molecules are sufficiently <br> intense to prevent them from <br> separating |
| Solids do not flow and keep the same <br> shape. Liquids can flow and they do not <br> keep the shape | Molecules of solids only can vibrate. <br> Molecules of liquids can move relative <br> to each other |
| Some solids present a crystalline <br> structure | Molecules of crystalline solids are tidied <br> following the directions of regular <br> geometric figures. If the molecules of a <br> solid are not in order, we call the solid <br> "amorphous solid" |

## Some properties of solids

| Property | Description |
| :--- | :--- |
| Hardness | It is the ability of a substance to scratch or be scratched. The hardest <br> mineral is the diamond. Hard is the opposite of soft |
| Fragility | It is the ability to break easily. The diamond is very hard but it is <br> fragile. Fragile is the opposite of strong |
| Ductility | It is the ability to form wires or filaments. |
| Malleability | It is the ability to form thin sheets. |
| Flexibility | It is the ability to deform easily. Flexible is the opposite of rigid |
| Elasticity | It is the physical property of a material when it is deformed because <br> of stress (external forces), but turns into its original shape when the <br> stress removes. Elastic is the opposite of plastic. |

## Hardness is one of the physical properties of minerals

Hardness is one measure of the strength of the structure of minerals relative to the strength of its chemical bonds

A hard mineral can scratch a softer mineral, but a soft mineral cannot scratch a harder mineral (no matter how hard you try)

A French mineralogist Friedrich Mohs proposed almost one hundred and seventy years ago, a relative scale to account for the differences in hardness simply by seeing which minerals scratch another

The Mohs Hardness Scale starts with talc at 1 and ends with diamond at 10. The higher the number, the harder the mineral.

The Mohs Hardness Scale is below

Talc<br>Gypsum<br>Calcite<br>Fluorite<br>Apatite<br>Orthoclase<br>Quartz<br>Topaz<br>Corundum (ruby and sapphire)<br>Diamond

## Some properties of liquids

Some properties of liquids are: superficial tension and viscosity


The superficial tension of a liquid is the resistance to the penetration of bodies in it. One of the substances that has greater superficial tension is water. For that reason, it is possible that some insects walk on water. The superficial tension is the cause of the spherical form of the drops of liquids. Another consequence of the superficial tension is the ascent of liquids within tubes of small diameter.

Viscosity is the resistance of a liquid to flow. Oil is less dense than water because it floats on water but it is more viscous because the oil slides worse on a surface.


## Changes of aggregation states



| CHANGE OF STATE | WHAT IS IT? |
| :--- | :--- |
| Melting | It is the change from a solid to a liquid. |
| Freezing | It is the change from a liquid to a solid. |
| Vaporization | It is the change from a liquid to a gas, to <br> the temperature of boiling and in all the <br> mass of the liquid. |
| Evaporation | It is the change from a liquid to a gas, to <br> any temperature and in the surface of <br> the liquid. |
| Condensation | It is the change from a gas to a liquid. |
| Sublimation | It is the change from a solid to a gas. |
| Sublimation | It is the change from a gas to a solid. |

## States of matter

Any substance can exist as a solid material, liquid, or gas, depending on the conditions of temperature or pressure.
Matter can change its own state when we heat it or when we cool it.

(a)

(b)

(c)

```
Solids + energy }\longrightarrow\mathrm{ liquids (Melting)
Liquids + energy }\longrightarrow\mathrm{ gases (Vaporization and Evaporation)
Liquids - energy }\longrightarrow\mathrm{ solids (Freezing)
Gases - energy }\longrightarrow\mathrm{ liquids (Condensation)

As a solid, matter has a fixed volume and shape and is usually unable to flow, except in the case of glaciers.

The melting point is the constant temperature when a solid turns to a liquid. The melting point of water is \(0^{\circ} \mathrm{C}\). The opposite is the freezing point.

When we heat the solid state of matter, it turns into a liquid. As a liquid, a substance has a fixed volume, but its shape changes to fill the shape of its container.

The boiling point is the constant temperature when a liquid turns to a gas. The boiling point of water is \(100^{\circ} \mathrm{C}\). The opposite is the condensation point.

When we heat the liquid state of matter, it turns into a gas. As a gas, a substance does not have a fixed volume or shape. Gas expands to fill the shape and volume of its container.

\section*{Don't be confused about this}

Molecules do not melt, do not solidify, do not change of volume

Molecules do not boil, do not condense
* Molecules move faster or slower

Molecules approach each other or move away

\section*{The aggregation states of matter}


\section*{EXERCISE 1}

\section*{Draw particles of a solid and a gas. The particles of the liquid are those of the drawing}


\section*{EXERCISE 2}

Classify the following characteristics into solids, liquids or gases
\begin{tabular}{|l|}
\hline Definite shape \\
\hline Changeable shape \\
\hline Changeable shape \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Changeable volume & Hardness \\
\hline Definite volume & Viscosity \\
\hline Definite volume & Expansion \\
\hline
\end{tabular}
\begin{tabular}{l} 
Molecules close and tidy \\
Molecules close and untidy \\
Molecules distant \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline SOLID & LIQUID & GAS \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{EXERCISE 3}

We take a metal cube and we pass it from a container to another, what changes?
A. The volume of the cube
B. The shape of the cube
C. The mass of the cube
D. Nothing, the cube has the same volume, mass and shape


\section*{EXERCISE 4}

We take a certain amount of liquid and we transfer it from one container to another, what changes?

\author{
A. Density \\ B. Shape \\ C. Volume \\ D. Mass
}


\section*{EXERCISE 5}

\section*{Why can we pour a liquid from one} container to another?

A. Because they have not definite mass
B. Because their particles are not as strongly united as in a solid
C. Because they tend to take all the volume
D. Because their particles are as strongly united as in a solid

\title{
EXERCISE 6
}

If we inject a certain amount of air into a container, what happens to the mass of that air?
A. It changes
B. It does not change
C. It depends
D. It changes because the air is in a greater container

\section*{EXERCISE 7}

If we pass gas from one balloon to another, what happens to its mass?
A. It depends
B. It changes because it has a different volume
C. It changes its shape or volume but not its mass
D. It changes because it has a different shape


\title{
EXERCISE 8
}

An iron bottle has a capacity of twenty litres. We have it full of oxygen.

If we add two litres of oxygen
A. What volume takes now the oxygen in the bottle?
B. Will the bottle weigh more or less?

If we take one litre of oxygen out
A. What volume takes now the oxygen in the bottle?
B. Will the bottle weigh more or less?

\section*{EXERCISE 9}

What happens if we compress a gas too much?
A. It has a greater volume B. It has less mass
C. It disappears
D. It turns to liquid state


Normal gas



Compressed gas

\section*{EXERCISE 10}

This open container does not contain any liquid, what has in its interior?
A. Nothing
B. 250 g of air
C. 250 L of air
D. 250 mL of air


\section*{EXERCISE 11}

Order the following words to form a text with sense
, when they do and liquids to prevent

Solids
practically do not expand and
, it is in very small proportion
In solid and liquid states ,
the forces
among molecules
them from separating
are sufficiently intense

\section*{EXERCISE 12}

Are the following phrases true or false?
A. Any substance can exist in the three states of matter
B. If 100 g of a gaseous substance take all the volume of a container, 50 g of that same gas take half of the container
C. The particles of matter are in continuous movement
D. When we compress a gas, its particles diminish in size
E. When we expand a gas, its particles increase in size

\section*{EXERCISE 13}

\section*{Relate the terms of the two columns}
A. Elasticity
B. Fragility
C. Ductility
D. Malleability
E. Flexibility
F. Hardness
1. It is the ability to deform easily.
2. It is the ability of a substance to scratch or be scratched.
3. It is the ability to break easily.
4. It is the ability to form wires or filaments.
5. It is the ability to form thin sheets.
6. It is the physical property of a material when it is deformed because of stress (external forces), but turns to its original shape when the stress removes.

\section*{EXERCISE 14}

\section*{Connect the terms of the two columns}
A. Change from solid to gas
B. Change from gas to liquid
C. Change from liquid to solid
D. Change from solid to liquid
E. Change from liquid to gas
1. Melting
2. Sublimation
3. Condensation
4. Vaporization
5. Freezing

\section*{EXERCISE 15}

What happens to the water of a pool that disappears?
A. It disappears
B. It turns to gas and its particles mix with the particles of air
C. It is a sublimation

D. It is a vaporization

\section*{EXERCISE 16}

We know that water boils at \(100^{\circ} \mathrm{C}\) and that ice melts at \(0^{\circ} \mathrm{C}\)

What temperature does water condense at?


What temperature does water freeze at?

\section*{EXERCISE 17}

What happens to the particles of subtances with the changes of state?
A. That the particles become solid, liquid and gaseous
B. That they become greater or smaller
C. That they separate or they approach
D. Nothing

Which changes of state require cooling to take place?

\section*{EXERCISE 18}

100 g of a liquid substance has a volume of 125 mL . When this substance turns to a solid, it has a volume of 105 mL .
A. Does the mass of this substance change with this process? Why?
B. What is the density of this substance in liquid state? And in solid state?

\section*{Identify the process that happens}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ IT HAPPENS } & PROCESS \\
\hline When the mirror of the bath fogs & \\
\hline When liquid water turns to ice & \\
\hline When we see our breath on a cold morning & \\
\hline When we open a bottle of ammonia and we can smell it from a distance & \\
\hline When we heat iron until it turns to liquid & \\
\hline When the water of a pool dries up & \\
\hline The wax of a candle melts & \\
\hline When the lava of a volcano cools and hardens & \\
\hline When we heat water until \(100{ }^{\circ} \mathrm{C}\) & \\
\hline When we pass a certain amount of gas to a larger container & \\
\hline When we pass a certain amount of gasutaraqspallerngontainer & \\
\hline
\end{tabular}

\title{
EXERCISE 20
}

\section*{Revise your vocabulary}

\section*{Choose a word and fill the blanks below}
softest, ductility, untidy, mixing, hardest, expansion, melting, away, vibrate, close , temperature, boiling, increase, continuous, distant, compression, diffusion, vaporization, malleability
A. Solid molecules are \(\qquad\) and tidy. They can only
B. Liquid molecules are close and \(\qquad\) They move relative to each other.
C. Gas molecules are very \(\qquad\) with respect to the size of molecules. They are in movement.
D. In the \(\qquad\) molecules approach and diminish the medium ranges among them.
E. In the .................... molecules move and \(\qquad\) ranges among them.
F. In the \(\qquad\) molecules move to each other through the empty spaces among molecules of the other gas, \(\qquad\) themselves
G. Diamond is the mineral. Talc is the \(\qquad\) mineral.
H. ................... is the ability to form thin sheets.
I. .................... is the ability to form wires.
J. ................... is the change from a liquid to a gas, to the temperature of and in all the mass of the liquid.
\(K\). The \(\qquad\) point is the constant moraes sarnat.. when a solid turns to a liquid.
\(\square \quad\) Attractive
\(\square\) Close
\(\square\) Container
\(\square\) Condensation
\(\square\) Difussion
\(\square\) Ductility
\(\square\) Elastic
\(\square\) Elasticity
\(\square\) Evaporation
\(\square\) Flexibility
\(\square\) Flexible
\(\square\) Force
\(\square\) Fragile
\(\square\) Fragility
\(\square\) Freely
\(\square\) Freezing
\(\square\) Gas
\(\square\) Hard
\(\square\) Hardness
\(\square\) Kinetic
\(\square\) Liquid
\(\square\) Malleability
\(\square\) Melting
\(\square\) Molecule
\(\square\) Particle
\(\square\) Plastic
\(\square\) Rigid
\(\square\) Shape
\(\square\) Soft
\(\square\) Solid
\(\square\) Speed
\(\square\) State of matter
\(\square\) Strong
\(\square\) Sublimation
\(\square\) Tidy
\(\square\) To approach
Susana Morales Bernal
\(\square\) To compress
\(\square\) To crash
\(\square\) To decrease
\(\square\) To diminish
\(\square\) To expand
\(\square\) To flow
\(\square\) To grow
\(\square\) To hold
\(\square\) To increase
\(\square\) To keep
\(\square\) To mix
\(\square \quad\) To move
\(\square\) To push
\(\square\) To reduce
\(\square\) To vibrate
\(\square\) Untidy
\(\square\) Vaporization
\(\square\) Viscosity```

