Chemistry: Hood River Valley High School	Name:	
Unit 3 Note Packet and Goals		Period:
Unit 3 – Atomic Structure and Periodic Table		

Unit 3 – Atomic Structure and Periodic Table

Unit Goals- As you work through this unit, you should be able to:

- 1. describe previous atomic theories and compare to our modern understanding of the atom (4.1)
- 2. distinguish among protons, electrons, and neutrons in terms of mass and charge. (4.2)
- 3. describe the structure of the atom. (4.2)
- 4. explain why isotopes differ and why atomic masses are not whole numbers. (4.3)
- 5. understand how atomic mass is calculated. (4.3)
- 6. describe the different electron orbitals. (5.1)
- 7. understand how to write electron configurations and orbital diagrams for atoms using the periodic table. (5.2)
- 8. understand the difference between an atom and an ion and be able to write electron configurations of various ions using the periodic table. (5.2)
- 9. describe quantum mechanical model and how we discovered this phenomenon using light. (5.3)
- 10. identify the position of groups, periods, and different chemical families on the periodic table and understand how the periodic table is organized using periodic law. (6.1)

Activities, Labs & Test

- 11. explain why elements in the same family have similar properties and relate this to electron configuration. (6.2)
- 12. describe the trends on the periodic table of atomic size, and electronegativity and how they relate to atomic structure. (6.3)

Read: Chapters 4, 5 & 6

Assignments:

	Description	5	4	0	
A1	Atomic Structure WS				Marble Lab
	(goals 1-3), Chapter 4				Nailon Isotope Lab
A2	Isotopes WS (goals 4-5) Chapter 4				Flame Test Lab
А3	Atomic Theory and Orbitals (g 6-9) Ch. 5				Chapter 4 & 5 test
A4	Elect Configs and orbital diagrams w/				
	Shorthand(g 6-9) Chapter 5				Late Lab Stamp (this stamp means you are not
A5	Period Table: Organizing the Elements(g 10-12) Chapter 6				qualified to do lab and test corrections)
A6	Periodic Table and Trends(g 10-12) Chapter 6				

Key Terms: atom, electrons, neutrons, nucleus, protons, atomic number, mass number, atomic mass, atomic mass unit, isotope, Dalton's atomic theory, ground state, excited state, quantum, quantum mechanical model, orbitals, Pauli's Exclusion Principle, Hund's Rule, Aufbau Principle, electron configuration, orbital diagrams, electron configuration, periodic table, periodic law, representative elements, period, group, metals, non-metals, alkali metals, alkaline earth metals, transition metals, halogens, noble gases, metalloids, atomic size, electronegativity,

Demo's: Vandegraff machine, Cathode Ray Tubes, Spectrophotometers, Activity Series (Na, Li, K), Outside Atom model, Pennies in HNO₃, Zinc/Copper/Mg/Lead,

	 Smallest p		is identity in a
	1. All	are composed of	
	particles called		
	2. Atoms of the s	ame element are	Atoms of any one element
	are	from atoms of	elements
	3. Atoms of diffe	erent elements	mix together, or can chemically
	combine in	rat	ios to form
	4. Chemical reac	tions occur when atoms are	,, or
		. Atoms of one element, however	er, arechanged into
	atoms of	element as a result of a	chemical reaction.
4.2 S	ubatomic Particles	: Actually means	atom.
A	A. Electrons: This	is what makes elements	·
	a. Located		·
	b . Charge is	·	
	c. Electrons	so they	can
	d . Have no		
	e. Exist at differe	ent The number	er ofcan be found by
	looking at	tl	he element
	f . The only electronic f .	ons that can bond with other ato	ms are the
		Called	•

Thompson's Experiment

B. Protons: Protons give			b/c their pos	sitive charge	
CO	ntrols th	e	_ attractions of an	atom, thus controlling	it's
	7	124			
		ated in the			
6	b. Cha	arge is	·		
C Carbon	c. Fou	nd on periodic tabl	le by looking at th	ne	of an element.
12.01	d. Has	a mass of			<u> </u>
Exa Diagram l	mple: here:	Potassium ((K) has how many	etons?electrons?ergy levels?	
		K has how i	many outer electro	ons for bonding?	
	utrons:		to the	of an atom. 1 N	eutron =
		in the			
b.	Charge	is			
c.	Total m	ass of an atom from	m the	and the	

Rutherford's Experiment

Fill in the grid below for each subatomic particle.

	Location in atom	Charge	Weight
rotons			
uetrons			
lctrons			
3 Disting	guishing Between Atoms = T	The Periodic Table	
A. At	omic Number: This is the _	number f	or each element on the
per	riodic table. It tells us how m	nany there	are for that element.
Rei	member, the protons are posi	itive, so they control the	of
eac	ch element.		
	1. Atomic # of carbon =		
	2. Atomic # of potassium	=	
B. Ma	ass Number: The number of	f plus _	·
Rei	member, the mass is not affect	cted by bec	cause they are so
a.	The number of neutrons can	be found by:	
	1. Oxygen with a mass num	mber of 16 has:	
	2. Sodium with a mass nur	mber of 23 has:	
	3. How many neutrons are	e in carbon 14?	
	4. How many neutrons are	e in boron 11?	
b.	Isotopic Symbol for any eler	ment is the	&
	ie 197 79	A	
C Io	otonos. All otoms of an alam	ant have some number of	Dut in
	otopes: All atoms of an elemure, some atoms of the same		
	y are called different		
dor	ir stays the s	same o/c the neutrons are _	so they

Copy the three neon isotopes on page 113 below.

Problem	: An atom is identified as platinum-195.
a. Wh	nat does the number represent?
b. Ho	w many protons?
c. Ho	w many neutrons?
d. Ho	w many electrons?
D. Atomic Ma a. Individua	al atoms are
b. We meas	sure the mass of atoms using
i.	This standard unit was set using carbon-12 which has
	protons and neutrons.
ii.	Carbon-12 was given a mass of
iii.	One atomic mass unit is of carbons mass.
iv.	Each proton and neutron has a mass of about
	·
v.	The of an element is the
	mass of all the isotopes of an element in
	nature This is only useful for
	in the

Copy Figure 4.10, pg. 115 (calculating weighted averages)

Magnesium atoms exis	lem 1. Magnesium has three natural as Magnesium-24 (23.9850 g/mol) 1.17% exist as Magnesium-26 (25.9 sium?	l), 10.03% exist as Magnesium-25
every 250 neon atoms,	lem 1. Neon has two major isotope 225 will be Neon-20 (19.992 g/moerage atomic mass of Neon?	
A. Bohr Model: Uses	iodic table to useful models of ato sto show the enerof that element. This r	
1. The protons i	n the nucleus are found by looking	at the
2. The neutrons	plus the protons must add up to	
	s fill the shells from	
	They fill in the following order	-
	level is called a	
		te sure they match the
b. This n	nodel can only be used for the first	20 atoms. After that it
	lcium 44	i.e. lithium 7

Draw Bohr Models for the following Isotopes. Include...

- # of Electrons in correct orbitals
- # of Protons in nucleus
- # of Neutrons in nucleus

Sulfur 34	Boron 10	Helium 3
Sulfur 32	Boron 14	Helium 4

Directions: Complete the table for the following isotopes of each element:

Element	Symbol	Number	Number	Number	Atomic	Mass	Valence
		of	of	of	Number	Number	Electrons
		Protons	Electrons	Neutrons			
Sodium				13			
Mercury				120			
			4	5			
	F					19	

A.	In 1926	, the Austrian physicist Erwin Schrodinger took atomic models one step
	further.	He has given us the modern description of the electrons in atoms, called the

<u>Atomic Orbitals – Page 131</u>

- **a.** What is a principal energy level?
- **b.** What are sublevels?
- **c.** What are orbitals?
- **d.** What are the four "letters" used to denote the energy sublevels?
- **e.** What shape do the first 3 atomic orbitals take? Remember, they are "clouds" of probability. (draw them below)

S shape P shape D shape (f shape clouds are too complicated to draw...) The S sublevel has _____ orbital , therefore can hold _____ electrons. The P sublevel has _____ orbitals, therefore can hold _____ electrons. The D sublevel has _____ orbitals, therefore can hold _____ electrons.

The F sublevel has ____ orbitals, therefore can hold _____ electrons. f. Three different views of the Quantum Mechanical Model. 1. Aufbau Diagram: Try Chromium $\check{\mathbf{3}}$ 2 1 **2.** Electron Configuration Pyramid" (see poster in room): 1**s** 2**p** 3**s** 3**d** 4s4**d** 4**f** 5**p** 5**d** 5**f** 5s6**d**

7**p**

7**d**

7s

		3.]	Block	c Diag	gram,												
						33 3	S					33 : 33					
											300						
		1-47 1451									8				31 11	2	90: S
				- 0						8	Š	50 1	5				0
				·													
atom	3. Hu end ort so	uli Eand's ergy, pital i they	Rule	ion Pi sp. : Wh & t leve	rincipin. Hen electro I has _with	ectronon en	Only _ ns occ ters e electro osite s	cupy ach oonspins.	_ ele	with	per of theele	orbita rbital ectron	l, eac	h with he spin n occ	until upy e	each ach o	rbital
b.	Fluor	rine															
c.	Rubio	dium															
d.	Nick	el															

• Ions? Atc	oms tha	t nav	/e				or			eı	ectr	ons.		
Li+1, lithium tha	t has			one	elec	tron	•							
F-1, fluorine that	t has			one	elec	ctron								
A. Shorthand from now to finding electrons.	on. Let's	try a	few.	Write	down	n the _		n	oble a	gas th	at was	s fille	d on t	he way
Phosphorus														
Germanium														
Argon														
Calcium ion, Ca ⁺²														
Oxygen ion, O ⁻²														

•	-			a wave.		
	· ·	•	· ·	•	ee a small sl 	iver called
ıll electroma	gnetic spect	rum below.				
	ght has beha the full elect t which rang	ght has behavior like a p the full electromagnetic t which ranges between	ght has behavior like a particle and be the full electromagnetic spectrum of	the full electromagnetic spectrum of wavelengths t which ranges between	ght has behavior like a particle and behavior like a wave. the full electromagnetic spectrum of wavelengths. We only s t which ranges between	ght has behavior like a particle and behavior like a wave. the full electromagnetic spectrum of wavelengths. We only see a small slit which ranges between

1. When atoms _____energy, electrons move into ____energy levels.

2. Each element will emit it's own unique _____ when energy is added. Each discrete line, or color represents

one exact ______ or _____ released as electrons return to

These electrons then lose energy by _____light when they return to

Diagram Hydrogen below

A. Atomic Spectra

____energy levels.

____states, or resting energy levels.

6.1 Organizing Elements

													I					
																		1
											П						T]
				\vdash				T	T		T	\top	T			1	1	1
											_							ı
A.]		s, Nor						2										
	a.																	
											-	n pass						
			: Means they can be pounded : Means they can be draw into thin															
								•										
		ivat room temp except																
	b.	b of the ladder i. Do not (exception																
		i.	Do	not .								(e	xcept	ion				vs.
)												
												hit wi	th har	nmer				
				•						m tem	•							
										_ are	solid	ls at ro	oom t	emp				
					•		roon		•									
	c.											he lac						
		i.	Th	ese h	ave _				_ prop	erties	of_			an	ıd			
	d.					_	_										s is b/c	
																	ch gro	
				_								_•						
			-The	ir val	lence	elect	rons f	follow	v wha	t patte	ern?							
		ii.	Grou	ıp 2A	meta	als are	e call	ed			_							
			-The	ir val	lence	elect	rons f	follow	v wha	t patte	ern?							
		iii.	Grou	ıp 7A	are o	called	l											
			-The	ir val	lence	elect	rons f	follow	v wha	t patte	ern?							

		-Think														
		-Their va	alence	elect	rons f	follow	what	patt	ern?							
e.	The _				group	s are	called							_ because		
	meta	ls with _		_ ene	rgy sı	ubleve	els in	their				s	hell ca	an		
						their	valen	ce ele	ectror	ns. T	here a	are of	cours	se three		
	their valence electrons. There are of course three exceptions(,)															
	v.					_ met	als ha	ve va	alence	e elec	trons	that o	occup	y an		
		en	ergy s	ublev	el and	d the	neares	st	er	nergy	suble	evel				
	vi.			t	ransit	tion n	netals	have	vale	nce e	lectro	ns th	at occ	upy an		
		energy sublevel and the nearestenergy sublevel. These are found														
				the p	period	lic tab	ole.									
2 Periodic	Trando															
A. Atom			ed as t	he ato	mic				of an	atom	hv tak	ino		the		
														and Iodine		
a.			le	vels a	re inci									beca		
h.						o acros	ss a ne	riod	to the	<u>.</u>			th	e valence		
		nucleus														
	ı										T	Т	Т			
												-	_			
	L.,											_	_			
			1						\vdash			1	\vdash			
									1		1					
				_	·						<u>'</u>		'			
				· _	T			T	· T	T		<u> </u>	 	,		

iv. Group 8A are called _____

В.		Electronegativity: The ability of an atom to attract electrons when the atom is in a compound. a. Electronegativityas you go down a group because the																		
					nucleus becomes															
					it's influence.															
	b.					as you move														
				becau	ise th	e prote	on inf	luence	e				alo	_along the same principal						
	energy level.																			
Ī																				
ı		\neg									Ì									
ı		\top															$\neg \neg$			
ŀ														\neg	\neg					
ŀ	-+	+								-+	\dashv		-+	\dashv	\dashv		-			
ŀ	_								-	-	-+			\dashv	-					
L																				
																	Г			
					\vdash	\vdash											\vdash			
									L								\bot			

Diagram how electronegativity affects ion formation below between fluorine and cesium. Include relative sizes of atoms to help illustrate why they are so different.